Что характеризует и как направлено нормальное ускорение
Нормальное и тангенциальное ускорение
Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.
Если тело движется по криволинейной траектории, то его скорость направлена по касательной к этой траектории.
Так как направление скорости все время меняется, значит, в таком случае криволинейное движение всегда происходит с ускорением, также, если модуль скорости не меняется.
В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением . Тангенциальное ускорение описывает степень изменения скорости по модулю:
Нормальное ускорение – это составляющая ускорения, которая направлена к центру кривизны траектории, то есть она является нормалью (направлена перпендикулярно) к скорости. Нормальное ускорение описывает степень изменения скорости по направлению:
Здесь R – это радиус кривизны траектории в заданной точке.
Тангенциальное и нормальное ускорение всегда имеют перпендикулярное направление, откуда получаем модуль полного ускорения:
.
Лекция №2. Элементы кинематики
1.4. Нормальное и тангенциальное ускорения при криволинейном движении
В общем случае при движении тела его скорость изменяется как по величине, так и по направлению. Для характеристики быстроты изменения скорости движения вводится понятие ускорения.
Таким образом, ускорение есть векторная величина, равная первой производной скорости по времени.
Тангенциальная составляющая ускорения
т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.
называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны. Поэтому эту составляющую ускорения называют также центростремительным ускорением.
Таким образом, полное ускорение тела a есть геометрическая сумма тангенциальной aτ и нормальной an составляющих
Тангенциальное ускорение равно первой производной по времени от модуля скорости и определяет быстроту изменения скорости по модулю, и направлено по касательной к траектории.
Нормальное ускорение определяет быстроту изменения скорости по направлению и направлено к центру кривизны траектории.
Векторы aτ и an взаимно перпендикулярны поэтому модуль полного ускорения равен
1.5. Классификация движений материальной точки
В зависимости от тангенциальной и нормальной составляющих ускорения движение можно классифицировать следующим образом:
3) aτ= ƒ(t), an=0 − прямолинейное движение с переменным ускорением.
5) aτ=const, an≠const − равнопеременное движение по окружности.
6) aτ=0, an≠0 − равномерное криволинейное движение.
7) aτ=const, an≠0 − криволинейное равнопеременное движение.
1.6. Кинематика абсолютно твердого тела
Угловой скоростью тела называется вектор, численно равный первой производной по времени от угла поворота тела по времени и направленный вдоль оси вращения по правилу правого винта:
Вектор угловой скорости направлен по оси вращения, причем так, чтобы вращение, рассматриваемое с конца вектора угловой скорости, происходило против хода часовой стрелки (рис 1.6.1). Единицей угловой скорости является рад/с.
Скорость произвольной точки вращающегося тела называется линейной скоростью этой точки.
Равномерное вращение характеризуется периодом вращения и частотой вращения.
Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:
При ускоренном вращении вектор углового ускорения сонаправлен с вектором угловой скорости, а при замедленном − противоположен ему.
В случае равнопеременного движения точки по окружности (ε = const) угловая скорость определяется по формуле
Или в скалярном виде
Проинтегрировав выражение (1.6.1) можно получить формулу для угла поворота тела
1.7. Связь между линейными и угловыми характеристиками тела при его вращении
Тангенциальная и нормальная составляющие ускорения произвольной точки тела, вращающегося вокруг неподвижной оси, определяются формулами:
Кинематика. Ускорение.
Ускорение – величина, характеризующая быстроту изменения скорости. Движение, как правило, неравномерно, т. е. непрерывно изменяется от одного момента времени к другому. Например, автобус, трогаясь с места, со временем набирает скорость, а приближаясь к остановке он замедляет свое движение. Для вычисления скорости в любой момент времени нужно знать, как она изменяется в единицу времени.
Рассмотрим такое неравномерное движение тела, при котором его скорость за любые равные промежутки времени будет изменяться одинаково. Такое движение называется равноускоренным.
Ускорением тела при его равноускоренном движении называют физическую величину, равную пределу отношения изменения скорости к промежутку времени, в течение которого это изменение произошло:
Ускорение, как представлено на рисунке, направлено в сторону вогнутости траектории. Его можно разложить на две составляющие: тангенциальную – по касательной к траектории движения, и нормальную – перпендикулярно траектории.
Следуя из этого, проекцию ускорения aτ на касательную к траектории называют касательным (тангенциальным) ускорением, а проекцию an на нормаль – нормальным (центростремительным) ускорением.
Касательное (тангенциальное) ускорение характеризует изменение скорости по модулю при криволинейном движении:
Нормальное ускорение характеризует изменение скорости по направлению и определяется формулой:
где R – радиус кривизны траектории в соответствующей ее точке.
При криволинейном движении полное ускорение складывается из тангенциального и нормального ускорений и определяется по формулой:
Общее определение
Вам будет интересно: Чваниться — это некультурная привычка: толкование слова
То есть для вычисления величины a¯ необходимо найти производную вектора скорости по времени в данный момент. Формула показывает, что a¯ измеряется в метрах в секунду в квадрате (м/с2).
Направление полного ускорения a¯ никак не связано с вектором v¯. Однако оно совпадает с вектором dv¯.
Причиной появления у движущихся тел ускорения является действующая на них внешняя сила любой природы. Ускорение никогда не возникает, если внешняя сила равна нулю. Направление действия силы совпадает с направлением ускорения a¯.
Криволинейная траектория
В общем случае рассмотренная величина a¯ имеет две составляющие: нормальную и касательную. Но прежде всего напомним, что такое траектория. В физике под траекторией понимают линию, вдоль которой тело проходит некоторый путь в процессе движения. Поскольку траектория может представлять собой либо прямую линию, либо кривую, то движение тел делится на два типа:
В первом случае вектор скорости тела может измениться только на противоположный. Во втором же случае вектор скорости и ее абсолютное значение изменяются постоянно.
Как известно, скорость направлена по касательной к траектории. Этот факт позволяет ввести следующую формулу:
a¯ = dv¯/dt = d(v * u¯)/dt = dv/dt * u¯ + v * du¯/dt.
Нормальное ускорение точки
Обозначим эту компоненту ускорения символом an¯. Запишем для нее выражение еще раз:
Уравнение нормального ускорения an¯ можно записать в явном виде, если провести следующие математические преобразования:
an¯ = v * du¯/dt = v * du¯/d l* dl/dt = v2/r * re¯.
Центростремительная и центробежная силы
Во всех названных примерах сила центростремительная приводит к изменению прямолинейной траектории. В свою очередь, ей препятствуют инерционные свойства тела. С ними связывают центробежную силу. Эта сила, действуя на тело, пытается «выбросить» его из криволинейной траектории. Например, когда авто делает поворот, то пассажиров прижимает к одной из дверей транспортного средства. Это и есть действие центробежной силы. Она, в отличие от центростремительной, является фиктивной.
Пример задачи
Как известно, наша Земля вращается по круговой орбите вокруг Солнца. Необходимо определить нормальное ускорение голубой планеты.
Для решения задачи воспользуемся формулой:
Из справочных данных находим, что линейная скорость v нашей планеты составляет 29,78 км/с. Расстояние r до нашей звезды равно 149 597 871 км. Переводя эти числа в метры в секунду и метры, соответственно, подставляя их в формулу, получаем ответ: an = 0,006 м/с2, что составляет 0,06 % от величины ускорения свободного падения на планете.
Ускорение
Ускорение – это величина, которая характеризует быстроту изменения скорости.
Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).
Среднее ускорение
Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
где – вектор ускорения.
Направление вектора ускорения совпадает с направлением изменения скорости Δ =
—
0 (здесь
0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).
В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость
. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ
=
—
0. Тогда определить ускорение можно так:
Рис. 1.8. Среднее ускорение.
В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть
Мгновенное ускорение
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).
При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.
Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а
Рис. 1.9. Мгновенное ускорение.
При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).
Тангенциальное ускорение
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Рис. 1.10. Тангенциальное ускорение.
Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
(согласно теореме Пифагора для прямоугольно прямоугольника).
Направление полного ускорения также определяется правилом сложения векторов: