Что характерно для бактериальной клетки

Тот случай, когда встречают и провожают по одежке

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Разнообразие форм клеток прокариот не является (по крайней мере не всегда) случайным феноменом эволюции этих организмов. Исследования показали, что форма бактерий может быть обусловлена физическими законами среды обитания: в вязкой среде эффективнее перемещаются микрообитатели спиральные формы, а следовать направлению лучше могут изогнутые вибрионы и т.д. Согласно расчетам наиболее удобна для микроскопических одноклеточных прокариот форма палочек, которые благодаря своей форме могут противостоять броуновскому движению в жидкостях, имеют эффективное соотношение поверхности к объему клетки и могут закрепляться на субстрате…Авторы статьи проанализировали исследования эволюции и связи с экологией формы клеток бактерий.

Форма и размер бактериальных клеток, как и свойства их клеточной стенки (что отразилось на широко известном делении бактерий на грамположительных и грамотрицательных) – одни из самых первых признаков, использованных для классификации этих организмов. Разнообразие форм клеток и в то же время постоянство формы клеток на видовом уровне (за некоторым обсуждаемом ниже исключением) позволили довольно подробно и точно определять таксономическую принадлежность бактерий. Однако причины возникновения разнообразия формы и ее стабильность внутри разного уровня таксонов прокариот долго оставались загадкой. Новые методы исследований – электронная микроскопия, методы молекулярной биологии и биохимии, а также исследования физических закономерностей и математическое моделирование помогли установить ряд факторов, определяющих внешнее строение бактерий. В обсуждаемой статье авторы представили анализ исследований связи формы клеток бактерий с их экологией и эволюцией.

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Несмотря на то, что основными являются три типа клеток бактерий (заглавная иллюстрация) – сферическая, палочковидная и спиральная – специалисты выделяют довольно большое разнообразие других форм (рис. 1). Известно, что бактерии по строению клеточной стенки можно разделить на два типа (рис. 1, 2). Строение оболочки (клеточной стенки бактерий) в значительной степени связано с ее формой. Среди определяющих форму бактерий факторов на данным момент выделяют несколько основных:
— наличие/отсутствие внешней мембраны (у грамотрицательных бактерий);
— относительная толщина пептидогликанового слоя;
— особенности строения продольных пептидных сшивок между гликановыми нитями, ориентированными перпендикулярно длинной оси клетки: у грамотрицательных образуются напрямую, а у грамположительных через дополнительный мостик.

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Ряд авторов отмечают, что морфологическое разнообразие грамотрицательных бактерий выше, чем таковое грамположительных (см. рис. 1). Среди грамположительных бактерий преобладают палочки, часто встречаются кокки и нитевидные формы, а вот изогнутые и спиральные формы очень редки. Палочки также преобладают и среди грамотрицательных бактерий, но второе и третье места по распространенности делят изогнутые и спиральные формы. А вот кокки и одноклеточные нитчатые формы среди грамотрицательных бактерий редки, хотя некоторые палочки и спиральные бактерии в определенных условиях могут приобретать округлую форму, например, в стационарной фазе культивирования и при неблагоприятных условиях.

На настоящий момент превалирует представление, что белки цитоскелета, такие как MreB (Murein cluster B) и FtsZ (Filamenting temperature-sensitive mutant Z) гомологи актина и тубулина эукариот, не являются собственно архитектурными элементами формы клеток, а представляют собой нечто похожее на разметку для активации процессов синтеза/разборки клеточной стенки, являясь сайтами прикрепления соответствующих ферментов и регуляторных белков. Экспериментально было показано, что присутствие белка MreB отвечает за палочкообразную форму клетки, а белок FtsZ отвечает за формирование перегородки и других структур во время деления клетки (так называемое Z-кольцо). Представляется, что белок MreB это основной фактор формирования палочковидной формы: он организует в определенных местах клеточной стенки (там, где будут «стенки палочки») синтез пептидогликана (клеточной стенки) после разделения клетки на дочерние и, таким образом, обеспечивает удлинение клеток. У кокков (сферическая форма) этого белка нет, а наращивание клеточной стенки происходит в кольцевой зоне при делении клетки за счет белка FtsZ и других белков, участвующих в делении клетки. Для объяснения формы клеток прокариот еще одним важным белком считается кресцетин CreS. Его наличие в определенной области затормаживает образование клеточной стенки, что приводит к искривлению клетки в результате неравномерного роста. Так могут получаться изогнутые формы. Есть и другие белки-кандидаты (например, бактофилины), претендующие на роль в процессе формообразования у прокариот, однако их функции пока изучены недостаточно.

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Кокки. Можно выделить два типа прокариот, имеющих сферическую форму. Одни кокки («собственно» кокки) в течение всего жизненного цикла остаются сферическими. Другие («производные» кокки) – палочки, вибрионы, и др.- приобретают сферическую форму только в неблагоприятных условиях. Как уже говорилось, у подавляющего большинства «собственно» кокков не обнаружен белок MreB (ответственный за палочковидную форму) и сферическая форма приобретается в ходе процессов роста дочерних клеток в зоне деления материнской клетки. «Производные» кокки получают свою сферическую форму другим путем: за счет, так называемого, «редуктивного» деления, когда многократные деления клеток не перемежаются синтезом клеточной стенки в районе стенок (т.е. удлинением). Очевидно, напрашивается вывод, что кокки произошли от палочковидных бактерий в результате потери основного белка MreB, обеспечивающего удлинение стенок.

Чем же выгодно быть сферическим? У сферической формы наименьшее соотношение площади поверхности к объему, это объясняет их малые размеры, потому кокки являются доминирующей группой в микропорах различных типов почв. Это же свойство выгодно при переживании неблагоприятных условий в случае с «производными» кокками. Поскольку шарообразная форма наименее удобна для управляемого движения, кокки, как правило, лишены «органов движения», например, жгутиков. Показано, что сферическая форма позволяет бактериям быстрее распространяться пассивно с током воды, чем бактериям других форм. Эта закономерность объясняет «любовь» кокков образовывать скопления (диплококки – две клетки, стрептококки – нити клеток, стафилококки – гроздья клеток), которые затормаживают пассивное передвижение, а при необходимости агрегация распадается под действием специальных ферментов, разделяющих склеенные между собой клетки (рис. 3).

Палочки. По-видимому, самая удобная (универсальная) для бактерий форма клеток. Большинство исследователей считает палочки исходной в эволюционном плане формой. Подсчитано, что клетки с соотношением длины к диаметру (l/d) около 3.7 испытывают наименьшее сопротивление среды при активном передвижении в жидких средах, более того выгоднее быть длиннее, чем короче, данного соотношения: чтобы испытывать такое же сопротивление среды, как кокки, палочки должны стать в 130 раз длиннее своего диаметра. При соотношении l/d от 3 до 6 наблюдается наибольшая эффективность поглощения питательных веществ из окружающей среды и их внутриклеточного транспорта. Именно таким формам удобно закрепляться на субстрате. Замечено, что очень успешно палочки «собираются» в (печально известные) биопленки.

Многочисленные нитевидные формы это производные палочек, длина стенок которых во много раз превышает диаметр клетки. Нитевидная форма одна из стратегий избегания хищничества со стороны простейших. Длинные, разветвленные формы получают возможность функционально дифференцировать клетку, что способствует более эффективному питанию в случае дефицита определенных элементов питания.

Извитые (спиральные) формы. Бактерии могут становится извитыми разными способами в разных эволюционных линиях прокариот. Например, Helicobacter pylori, вызывающий язву желудка, особыми ферментами (группы Csd) контролируемо разрезает сшивки между нитями в пептидогликановом слое, благодаря чему правильно организованный цилиндр клеточной стенки скручивается в спираль (рис. 4). Интересно, что грамположительные бактерии не имеют ферментов этой группы, к тому же их сшивки между нитями содержат дополнительные (пентаглициновые) мостики, а не сшиты напрямую, как у грамотрицательных бактерий. Эти обстоятельства в некоторой степени объясняют редкость спиральных форм среди грамположительных бактерий.

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

По-видимому, другой способ скручиваться изобрели Spirochaetae. Сначала было подозрение, что имеющиеся у спирохет жгутики, расположенные в внутреннем пространстве между мембранами (см. рис. 2, межмембранное пространство), ответственны за скручивание клеток. Действительно, было показано, что извитые формы спирохет в виде плоской волны «используют гены» внутренних жгутиков для образования стяжек в нужных местах для придания волнообразной формы клетке. Однако полученные правильно скрученные спиральные мутантные формы без внутренних жгутиков показали, что спиральные спирохеты используют еще какой-то механизм для скручивания. Представляется, что спиральные формы более эффективны при движении в вязкой среде, чем другие формы бактерий.

Изогнутые формы– вибрионы – можно рассматривать как короткие спиральные формы. Но у вибрионов есть покрайней мере еще один способ изогнуться: при помощи «тормозящего» белка кресцетина CreS (см. выше). Ряд исследований показал, что изогнутая форма вибриона способствует активному движению в жидкости и активному поиску лучшего места (хемотаксису).

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Помимо общей формы клетки бактерии также могут иметь дополнительные внешние морфологические элементы – жгутики, мембраны, выросты, ножки – отражающие способности прокариот специфически приспосабливаться к определенным условиям жизни, моделируя для себя субнишевые (в экологическом смысле) пространства (рис. 5). Понятно, что целый ряд факторов, таких как свойства среды, способ питания, хищничество со стороны простейших, взаимодействие с субстратом и др. определяют эволюцию формы клеток бактерий. Интересно, что один и тот же тип клеток, как и дополнительных внешних морфологических приспособлений, может обеспечиваться разными структурными элементами оболочки и молекулярными механизмами в ходе эволюции разных таксонов.

Источник

Что характерно для бактериальной клетки

Жёсткая бактериальная клеточная стенка придаёт микроорганизмам определённую форму, а также служит механическим барьером, предохраняющим клетку от воздействия факторов окружающей среды. Клеточная стенка грамположительных бактерий состоит из толстого слоя пептидогликана и клеточной мембраны, в то время как у грамотрицательных микроорганизмов — из трёх слоев: внутренней, внешней мембраны и тонкого слоя пептидогликана.

Клеточная стенка микобактерий также содержит большое количество липидных веществ, некоторые из которых обладают иммунореактивностью.

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

По форме бактерии подразделяют на кокки (округлой формы), бациллы (палочковидной формы) и коккобациллы (промежуточная форма). Кроме того, различают изогнутые и спиралевидные бактерии. Наиболее важные структурные компоненты бактериальной клетки:
• капсула — слизистое аморфное образование, состоящее из полисахаридов и защищающее клетку от фагоцитоза и высыхания;
• липополисахариды — мощные стимуляторы выброса цитокинов, защищающие грамотрицательные бактерии от цитолитических компонентов комплемента;

• фимбрии (пили) — тонкие нитевидные белковые органеллы, участвующие в адгезии (прикрепление к клеткам организма хозяина) и расселении микроорганизмов (факторы колонизации). Например, фимбрии (Р-фимбрии) уропатогенных штаммов Escherichia coli избирательно связываются с маннозными рецепторами эпителия мочеточников.
Антигены фимбрии часто обладают иммуногенностью, индивидуальной для каждого штамма (например, Neisseria gonorrhoeae), чем можно объяснить возникновение рецидивирующих инфекций;

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

• жгутики — органы движения бактерий, позволяющие микроорганизмам передвигаться в поисках источников питания и проникать через слизистые оболочки организма хозяина. Жгутики (один или несколько) могут располагаться на полюсах (полярное расположение) или по всей поверхности (перитрихи) бактериальной клетки. У некоторых видов (например, у определённых штаммов Treponema) жгутики закреплены внутри клеточной стенки;

• слизь — полисахаридная субстанция, секретируемая некоторыми бактериями и предохраняющая их от воздействия антибиотиков и иммунной системы хозяина;

• споры — метаболически неактивные формы бактерий, образующиеся в неблагоприятных условиях и позволяющие микроорганизмам долгое время выдерживать воздействие механических, температурных и химических факторов окружающей среды (до наступления благоприятных условий).

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Бактерий относят к прокариотам, так как они не имеют ядра и содержат только одну хромосому. Процессы спирализации и суперспирализации ДНК микроорганизмов катализирует ДНК-гираза, что позволяет хранить большой объём хромосомного материала.

Рибосомы микроорганизмов отличаются от рибосом эукариотов, что делает их мишенями для антибактериальных препаратов. Более того, бактерии имеют дополнительную ДНК, содержащуюся в плазмидах. Кроме того, в них часто заключена генетическая информация о факторах патогенности.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Научная электронная библиотека

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клеткиучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клеткитранспортировка питательных веществ и утилизация продуктов обмена клетки;

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клеткибуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клеткиподдержание тургора (упругость) клетки;

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клеткивсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Что характерно для бактериальной клетки. Смотреть фото Что характерно для бактериальной клетки. Смотреть картинку Что характерно для бактериальной клетки. Картинка про Что характерно для бактериальной клетки. Фото Что характерно для бактериальной клетки

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *