Что характерно для планет гигантов
Планеты газовые гиганты: основные характеристики и сравнительная таблица
Астрономы делят все планеты Солнечной системы на две большие группы – землеподобные планеты и планеты-гиганты. Если первые во многом похожи на Землю, то гиганты – это совсем другие небесные тела.
Общая характеристика газовых гигантов
Главное отличие планет-гигантов заключается в том, что у них нет привычной нам твердой поверхности. Они представляют собой огромные шары, состоящие по большей части из газов. По этой причине их часто называют газовыми гигантами. Получается, что человеку никогда не удастся пройтись по поверхности Юпитера или Сатурна также, как по лунному грунту.
Однако всё же гиганты не состоят полностью из газов. Дело в том, что атмосфера по мере приближения к центру планеты становится всё более плотной, и в результате она переходит из газообразного состояния в жидкое. Однако четкой границы между океаном и атмосферой (как на Земле) у газовых гигантов нет. Кстати, состоит этот океан не из воды, а по большей части из жидкого водорода.
На ещё больших глубинах давление возрастает настолько высоко, что жидкий водород становится металлическим. Под слоем металлического водорода располагается ядро планеты, состоящее из предельно сжатых каменных пород.
Вторая важная особенность газовых гигантов – их огромные размеры. Самый маленький газовый гигант в Солнечной системе – это Нептун, чей средний радиус равен 24622 км. Для сравнения – наибольшей землеподобной планетой является сама Земля, чей радиус составляет всего 6371 км. Различие в массах ещё больше – Нептун в 17 раз тяжелее Земли. Самым же большим газовым гигантом является Юпитер. Его радиус оценивается в 69911 км, а масса превосходит земную почти в 318 раз.
Для Солнечной Системы характерно то, что все планеты-гиганты располагаются значительно дальше от центральной звезды, чем орбиты землеподобных планет. Если Марс, наиболее далекая от светила планета земной группы, никогда не удаляется от Солнца на расстояние, большее 250 млн км, то ближайший к звезде гигант, Юпитер, никогда не приближается к ней ближе, чем на 740 млн км. Вообще принято делить Солнечную систему на две области – внутреннюю, в которой расположены орбиты землеподобных планет, и внешнюю, где лежат орбиты гигантов.
Газовые гиганты отличаются тем, что день на них существенно короче, чем на Земле. Например, Юпитер совершает оборот вокруг своей оси примерно за 10 часов, а Нептун – за 16 часов. В то же время из-за большой удаленности от Солнца год на этих планетах длится очень долго. На Нептуне его продолжительность составляет 164 земных года. В результате один год на планетах-гигантах состоит из тысяч и даже десятков тысяч дней.
Планеты-гиганты обладают огромным количеством спутников. На 2020 г. известно о 79 спутниках Юпитера, 82 сателлитах у Сатурна, 27 лунах Урана и ещё о 14 нептунианских спутниках. В тоже время у 4 землеподобных планет в сумме есть только три сателлита: Луна (вращается вокруг Земли), Фобос и Деймос (принадлежат Марсу). Стоит отметить, что спутники газовых гигантов сильно отличаются по размеру, но крупнейшие из них (Ганимед и Титан) по своему радиусу превосходят Меркурий.
Помимо спутников гиганты обладают и кольцами. Впервые они были открыты у Сатурна ещё в 1656 г. с помощью обыкновенного телескопа с 50-кратным увеличением. Кольца остальных гигантов удалось обнаружить только во второй половине XX в., во многом благодаря пролету рядом с этими планетами космических зондов. Кольца гигантов представляют собой множество мелких частиц пыли и газа, которое всегда располагается в точности над экватором планеты.
В химическом составе планет-гигантов преобладает водород. Его доля может составлять от 80% (Нептун) до 96% (Сатурн). Вторым по распространенности элементом является гелий. На все остальные вещества приходится не более 2-3% массы планеты.
Таблица «Сравнительная характеристика планет-гигантов»
Характеристики | Юпитер | Сатурн | Уран | Нептун |
---|---|---|---|---|
Радиус | 69911 км | 58232 км | 25362 км | 24622 км |
Масса, в массах Земли (5,97•10 24 кг) | 317,8 | 95,2 | 14,54 | 17,15 |
Период обращения вокруг собственной оси | 9,9 часа | 10,5 часа | 17,2 часа | 15,9 часа |
Период обращения вокруг Солнца | 11,86 года | 29,46 года | 84 года | 164,79 года |
Минимальное расстояние до Солнца (Перигелий) | 741 млн км | 1354 млн км | 2749 млн км | 4453 млн км |
Максимальное расстояние до Солнца (Афелий) | 817 млн км | 1513 млн км | 3004 млн км | 4554 млн км |
Список использованных источников
Планеты-гиганты
Какие существуют планеты-гиганты в Солнечной системе
Планетами-гигантами называют массивные планеты. Они бывают твердыми и газовыми. В Солнечной системе газовыми гигантами являются Юпитер и Сатурн. Две другие большие планеты — Нептун и Уран относят к ледяным гигантам.
Деление на ледяных и газовых гигантов — явление из новейшей истории астрономии. В учебниках более ранних периодов Юпитер, Сатурн, Уран и Нептун объединяются в группу газовых гигантов.
Особенности строения, общие характеристики
В отличие от планет земной группы, гиганты обладают большими массами и размерами. Давление в их недрах заметно выше земного. Атмосферы более объемные и мощные, а вращение более быстрое.
Кроме того, у планет-гигантов больше спутников и есть кольца — плоские диски из льда и пыли, вращающиеся в области экватора.
Названия «ледяные» и «газовые» являются весьма условными, так как вещества, из которых состоят планеты-гиганты, не находятся в четко твердой или газовой форме.
Сходства и различия, таблица, краткое описание
Планеты-гиганты, входящие в состав Солнечной системы, имеют сходства и различия. Каждой из них присущи особые физические характеристики, свойства, температурные режимы.
Юпитер
Юпитер в 318 раз тяжелее Земли. Его внутренняя температура очень высока. Поэтому в атмосфере наблюдается множество вихревых структур: так называемых, красных пятен и полос облаков.
Планету сопровождают 79 спутников, крупнейшими из которых являются Каллисто, Европа, Ио, Ганимед. Все они походят на планеты земной группы тем, что обладают вулканической активностью и раскаленным ядром.
Ганимед — постоянный спутник Юпитера превосходит по массе и габаритам Меркурий, считается самым большим спутником в Солнечной системе.
Сатурн
Сатурн тяжелее Земли в 95 раз. Это наименее плотная планета из вращающихся вокруг Солнца, схожая по строению и составу с Юпитером.
На сегодняшний день учеными подтверждено существование у Сатурна 82 спутников. Два из них — Энцелад и Титан обнаруживают признаки геологической активности. Однако эта активность отличается от земной: разница в том, что она обусловлена процессами, происходящими не в скальных породах, а во льдах.
Сатурн известен своими кольцами. Их множество. Вместе они составляют сложную структуру с большими щелями и едва заметными расщеплениями.
Уран — самая легкая из планет группы газовых гигантов, но его масса в 14 раз больше массы Земли. Уран примечателен тем, что совершает свои вращения, лежа на боку: ось вращения планеты наклонена на 98 градусов относительно плоскости эклиптики.
Понять схему вращения Урана легко, если представить его как большой катящийся шар. Для сравнения: другие планеты больше похожи на вращающиеся волчки.
Еще одна особенность — холодное ядро, из-за которого Уран выделяет в космическое пространство крайне низкие объемы тепла.
Нептун
Нептун уступает Урану по своим габаритам, но превосходит по массе — это значение в 17 раз превышает показатели Земли. Нептун плотный, излучает тепло, имеет 14 спутников и несколько троянских астероидов, находящихся с ним в орбитальном резонансе.
Крупнейшим спутником является Тритон. Для ученых он представляет особый интерес, так как движется в обратном направлении, обладает гейзерами жидкого азота, является геологически активным.
Общая характеристика планет гигантов
В группу планет гигантов входят: Юпитер, Сатурн, Уран и Нептун.
Все эти планеты (и особенно Юпитер) имеют большие размеры и массы. Например, по объему Юпитер превосходит Землю почти в 1320 раз, а по массе — в 318 раз.
Планеты-гиганты очень быстро вращаются вокруг своих осей; менее 10 ч требуется огромному Юпитеру, чтобы совершить один оборот. Причем экваториальные зоны планет-гигантов вращаются быстрее, чем полярные, т. е. там, где максимальны линейные скорости точек в их движении вокруг оси, максимальны и угловые скорости. Результат быстрого вращения — большое сжатие планет-гигантов (заметное при визуальных наблюдениях). Разность экваториального и полярного радиусов Земли составляет 21 км, а у Юпитера она равна 4400 км.
Планеты-гиганты находятся далеко от Солнца, и независимо от характера смены времен года на них всегда господствуют низкие температуры. На Юпитере вообще нет смены времен года, поскольку ось этой планеты почти перпендикулярна к плоскости ее орбиты. Своеобразно происходит смена времен года и на планете Уран, так как ось этой планеты наклонена к плоскости орбиты под углом 8°.
Планеты-гиганты отличаются большим числом спутников; у Юпитера к середине 2001 года их обнаружено уже 28, Сатурна — 30, Урана — 21 и только у Нептуна — 8. Замечательная особенность планет-гигантов — кольца, которые открыты не только у Сатурна, но и у Юпитера, Урана и Нептуна.
На фотографиях, переданных с борта американских АМС «Пионер» и «Вояджер», отчетливо видно, что газ в атмосфере Юпитера участвует в сложном движении, которое сопровождается образованием и распадом вихрей. Предполагается, что наблюдаемое на Юпитере около 300 лет Большое Красное Пятно (овал с полуосями 15 и 5 тыс. км) тоже представляет собой огромный и очень устойчивый вихрь. Потоки движущегося газа и устойчивые пятна видны и на снимках Сатурна, переданных автоматическими межпланетными станциями.
«Вояджер-2» дал возможность рассмотреть и детали атмосферы Нептуна.
Совокупность всех имеющихся сведений о планетах-гигантах дает возможность построить модели внутреннего строения этих небесных тел, т. е. рассчитать, каковы плотность, давление и температура в их недрах. Например, температура вблизи центра Юпитера достигает нескольких десятков тысяч Кельвинов.
В отличие от планет земной группы, обладающих корой, мантией и ядром, на Юпитере газообразный водород, входящий в состав атмосферы, переходит в жидкую, а затем и в твердую (металлическую) фазу. Появление таких необычных агрегатных состояний водорода (в последнем случае он становится проводником электричества), связано с резким увеличением давления по мере погружения в глубину. Так, на глубине, несколько большей 0.9 радиуса планеты, давление достигает 40 млн. атмосфер.
Возможно, что с быстрым вращением проводящего ток вещества, находящегося в центральных областях планет-гигантов, связано существование значительных магнитных полей этих планет. Особенно велико магнитное поле Юпитера. Оно во много раз превосходит магнитное поле Земли, причем полярность его обратна земной (у Земли вблизи северного географического полюса расположен южный магнитный). Магнитное поле планеты улавливает летящие от Солнца заряженные частицы (ионы, протоны, электроны и др.), которые образуют вокруг планеты пояса частиц высоких энергий, называемые радиационными поясами. Такие пояса из всех планет земной группы есть только у нашей планеты. Радиационный пояс Юпитера простирается на расстояние до 2,5 млн. км. Он в десятки тысяч раз интенсивнее земного. Электрически заряженные частицы, движущиеся в радиационном поясе Юпитера, излучают радиоволны в диапазоне дециметровых и декаметровых волн. Как и на Земле, на Юпитере наблюдаются полярные сияния, связанные с прорывом заряженных частиц из радиационных поясов в атмосферу, а также мощные электрические разряды в атмосфере (грозы).
Что характерно для планет гигантов
Можно распределить интересные факты о планетах-гигантах по нескольким категориям. В первой учитываются их строение и вращение. Вторая посвящена явлениям, наблюдаемым в их атмосферах. В третьей отмечается наличие у планет колец. Четвертая описывает наличие у них спутников.
Структура планет-гигантов и их вращение
В основном планеты-гиганты образованы из сложной смеси газов – аммиака, водорода, метана и гелия. Как считают ученые, эти планеты имеют каменные или металлические ядра небольших размеров.
Из-за громадной массы объекта давление в недрах газовой планеты достигает миллионов атмосфер. Ее сжатие силой гравитации высвобождает значительную энергию. В результате этого фактора планетами-гигантами тепла выделяется больше, чем поглощается из солнечного излучения.
Имея размеры, значительно больше земных, суточный оборот такие газовые планеты совершают за 9-17 часов. что касается средней плотности планет-гигантов, то она близка к 1,4 г/куб. см. – примерно равна солнечной.
К числу интересных фактов о планетах-гигантах относится и наличие мощных атмосферных оболочек, где проходят неординарные по земным понятиям процессы.
В атмосферах таких планет нередки сильные ветры, имеющие скорость свыше тысячи километров в час.
Кольца и спутники планет-гигантов
Малозаметность «оправы» Юпитера объясняется ее узостью и небольшими размерами частиц пыли в ее составе.
Кольцо Сатурна самое внушительное по размеру – его диметр равен 400 тысячам километров, а вот ширина кольца насчитывает только несколько десятков метров. Состоит кольцо из вращающихся вокруг планеты кусков льда и небольших камней. Эти части разделены несколькими щелями, что формирует несколько разных колец, опоясывающих планету.
В кольце Нептуна пять подколец, состоящих, предположительно, из частичек льда.
Спутниковая система Юпитера включает в себя почти 70 объектов. Один из них – Ганимед, считается крупнейшим спутником в составе Солнечной системы.
Этот спутник, а также два других спутника газовых планет – Титан и Ио, имеют атмосферы.
Юпитер, пятая от Солнца большая планета Солнечной системы, самая крупная из планет-гигантов.
Движение, размеры, форма
Юпитер движется вокруг Солнца по близкой к круговой эллиптической орбите, плоскость которой наклонена к плоскости эклиптики под углом 1°18,3′. Минимальное расстояние Юпитера от Солнца 4,95 а. е., максимальное — 5,45 а. е., среднее — 5,2 а. е. (1 а. е. = 149,6 млн. км).
Юпитер не имеет твердой поверхности, поэтому, говоря о его размерах, указывают радиус верхней границы облаков, где давление порядка 10 КПа; радиус Юпитера на экваторе равен 71400км. В атмосфере Юпитера отчетливо просматриваются параллельные плоскости его экватора слои, или зоны, вращающиеся вокруг оси планеты с различными угловыми скоростями. Быстрее всего вращается экваториальная зона — период ее обращения 9 ч 50 мин 30 с, что на 5 мин 11 с меньше периода обращения полярных зон. Так быстро не вращается ни одна другая планета Солнечной системы.
В умеренных южных широтах Юпитера медленно перемещается овальное Большое Красное Пятно, поперечные размеры которого 30-40 тыс. км. За сто лет оно совершает примерно 3 оборота. Природа этого феномена до конца неясна.
Строение и состав Юпитера
Как и другие планеты-гиганты, Юпитер существенно отличается по химическому составу от планет земной группы. Абсолютно доминирующими здесь являются водород и гелий в «солнечной» пропорции 3,4 : 1, но в центре планеты согласно существующим моделям имеется жидкое ядро из расплавленных металлов и силикатов, окруженное водно-аммиачной жидкой оболочкой. Радиус этого ядра порядка 1/10 радиуса планеты, масса
0,3-0,4 ее массы, температура около 2500 К при давлении
Поток тепла из недр Юпитера вдвое превышает энергию, получаемую им от Солнца. Ввиду отсутствия твердой поверхности атмосфера как таковая у Юпитера отсутствует. Его газовая оболочка состоит в основном из водорода и гелия, но имеется и небольшая примесь метана, молекул воды, аммиака и др.
Физические и химические параметры
В атмосфере Юпитера замечены грозы. Установлено также наличие ионосферы, протяженность которой по высоте — порядка 3000 км.
На Юпитере имеется магнитное поле. Его магнитный дипольный момент почти в 12000 раз превосходит дипольный момент Земли, но так как напряженность магнитного поля обратно пропорциональна кубу радиуса, а он у Юпитера на два порядка больше, чем у Земли, то напряженность у поверхности Юпитера выше, по сравнению с Землей, только в 5-6 раз. Магнитная ось наклонена к оси вращения на (10,2 ± 0,6)°. Дипольная структура магнитного поля доминирует до расстояний порядка 15 радиусов планеты. Юпитер обладает обширной магнитосферой, которая подобна земной, но увеличена примерно в 100 раз. Имеются радиационные пояса.
Однако далеко не все спутники Юпитера имеют гладкие поверхности. Так, плотность кратеров в некоторых районах Каллисто, уступающему по размерам Ганимеду, близка к предельной. В отдельных участках края кратеров смыкаются. Одной из причин такого распределения кратеров может быть легкоплавкость пород поверхности (в частности, льда).
У Юпитера установлено существование огромного плоского кольца из пыли и некрупных камней, которое при ширине в 6 км и толщине в 1 км простирается до десятков тыс. км от верхней границы облаков.
Изучение Юпитера и его спутников, уже давшее много существенно новых результатов, привело и к постановке ряда новых проблем. В частности, еще только в процессе становления находятся исследования, касающиеся физической природы интенсивных электрических полей у ближайших к Юпитеру спутников.
Сатурн, шестая от Солнца, вторая по размерам после Юпитера большая планета Солнечной системы; относится к планетам-гигантам.
Движение, размеры, форма
Эллиптическая орбита Сатурна имеет эксцентриситет 0,0556 и средний радиус 9,539 а. е. (1427 млн. км). Максимальное и минимальное расстояния от Солнца равны приблизительно 10 и 9 а. е. Расстояния от Земли меняются от 1,2 до 1,6 млрд. км. Наклон орбиты планеты к плоскости эклиптики 2°29,4′. Угол между плоскостями экватора и орбиты достигает 26°44′. Сатурн движется по своей орбите со средней скоростью 2,64 км/с; период обращения вокруг Солнца составляет 29,46 земных лет.
Температура в средних слоях атмосферы (преимущественно водородной, хотя и предполагается присутствие небольшого количества гелия, аммиака и метана) около 100 К.
По внутреннему строению и составу Сатурн сильно напоминает Юпитер. В частности, на Сатурне в экваториальной области существует образование, аналогичное Большому Красному Пятну, хотя оно и меньших размеров, чем на Юпитере.
На две трети Сатурн состоит из водорода. На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты (в области ядра) температура порядка 20000 К.
Все спутники, кроме огромного Титана, превосходящего по размерам Меркурий и имеющего атмосферу, сложены в основном изо льда (с некоторой примесью скальных пород у Мимаса, Дионы и Реи). Уникальным по яркости является Энцелад — он отражает свет, почти как свежевыпавший снег. Темнее всего поверхность Фебы, которая поэтому почти не видна. Необычна поверхность Япета: его передняя (по ходу движения) полусфера сильно отличается по отражательной способности от задней.
Из всех больших спутников Сатурна только Гиперион имеет неправильную форму, возможно, из-за произошедшего некогда столкновения с массивным телом, например, с гигантским ледяным метеоритом. Поверхность Гипериона сильно загрязнена. Поверхности многих спутников в значительной степени кратерированы. Так, на поверхности Дионы обнаружен крупнейший десятикилометровый кратер; на поверхности Мимаса лежит кратер, вал которого так высок, что это явственно заметно даже на фотографиях. Кроме кратеров, на поверхностях ряда спутников существуют разломы, борозды, впадины. Наибольшая тектоническая и вулканическая деятельность обнаружена у Энцелада.
УРАН (астрономический знак I), планета, среднее расстояние от Солнца — 19,18 а. е. (2871 млн. км), период обращения 84 года, период вращения ок. 17 ч, экваториальный диаметр 51 200 км, масса 8,7·10 25 кг, состав атмосферы: Н2, Не, СН4. Ось вращения Урана наклонена на угол 98 °. Уран имеет 15 спутников (5 открыты с Земли — Миранда, Ариэль, Умбриэль, Титания, Оберон, и 10 открыты космическим аппаратом «Вояджер-2» — Корделия, Офелия, Бианка, Крессида, Дездемона, Джульетта, Порция, Розалинда, Белинда, Пэк) и систему колец.
Движение, размеры, масса
Уран движется вокруг Солнца по эллиптической орбите, большая полуось которой (среднее гелиоцентрическое расстояние) в 19,182 больше, чем у Земли, и составляет 2871 млн. км. Эксцентриситет орбиты равен 0,047, то есть орбита довольно близка к круговой. Плоскость орбиты наклонена к эклиптике под углом 0,8°. Один оборот вокруг Солнца Уран совершает за 84,01 земного года. Период собственного вращения Урана составляет приблизительно 17 часов. Существующий разброс при определении значений этого периода обусловлен несколькими причинами, из которых основными являются две: газовая поверхность планеты не вращается как единое целое и, кроме того, на поверхности Урана не обнаружено заметных локальных неоднородностей, которые помогли бы уточнить длительность суток на планете.
Состав и внутреннее строение
Подобно другим планетам-гигантам, атмосфера Урана в основном состоит из водорода, гелия и метана, хотя их относительные вклады несколько ниже по сравнению с Юпитером и Сатурном.
Теоретическая модель строения Урана такова: его поверхностный слой представляет собой газожидкую оболочку, под которой находится ледяная (смесь водяного и аммиачного льда) мантия, а еще глубже — ядро из твердых пород. Масса мантии и ядра составляет примерно 85-90% от всей массы Урана. Зона твердого вещества простирается до 3/4 радиуса планеты
Температура в центре Урана близка к 10000 К при давлении 7-8 млн. атмосфер (одна атмосфера примерно соответствует одному бару). На границе ядра давление примерно на два порядка ниже (около 100 килобар). Эффективная температура, определяемая по тепловому излучению с поверхности планеты, составляет ок. 55 К.
История открытия Урана
В течение многих веков астрономы Земли знали только пять «блуждающих звезд» — планет. 1781 был ознаменован открытием еще одной планеты, названной Ураном. Это произошло, когда английский астроном У. Гершель приступил к реализации грандиозной программы: составлению полного систематического обзора звездного неба. 13 марта вблизи одной из звезд созвездия Близнецов Гершель заметил любопытный объект, который явно не был звездой: его видимые размеры менялись в зависимости от увеличения телескопа, а главное, менялось его положение на небосводе. Гершель первоначально решил, что открыл новую комету (его доклад на заседании Королевского общества 26 апреля 1781 так и назывался — «Сообщение о комете»), но от кометной гипотезы вскоре пришлось отказаться. В благодарность Георгу III, назначившему Гершеля королевским астрономом, последний предложил назвать планету «Георгиева звезда», однако, чтобы не нарушать традиционной связи с мифологией, было принято название «Уран». Первые немногочисленные наблюдения еще не позволяли достаточно точно определить параметры орбиты новой планеты, но, во-первых, число этих наблюдений (в частности, в России, Франции и Германии) быстро увеличивалось, и во-вторых, внимательное исследование каталогов прошлых наблюдений позволило убедиться, что планета неоднократно фиксировалась и прежде, но принималась за звезду, что также заметно увеличивало число данных.
В течение 30 лет после открытия Урана острота интереса к нему периодически падала, но только на время. Дело в том, что повышение точности наблюдений выявило загадочные аномалии в движении планеты: оно то «отставало» от расчетного, то начинало «опережать» его. Теоретическое объяснение этих аномалий привело к новым открытиям — обнаружению заурановых планет.
Нептун, восьмая от Солнца большая планета Солнечной системы, относится к планетам-гигантам.
Движение и параметры планеты
Состав и внутреннее строение
Из всех элементов на Нептуне преобладают водород и гелий примерно в таком же соотношении, как и на Солнце: на один атом гелия приходится около 20 атомов водорода. В несвязанном состоянии водорода на Нептуне значительно меньше, чем на Юпитере и Сатурне. Присутствуют и другие элементы, в основном легкие. На Нептуне, как и на других планетах-гигантах, произошла многослойная дифференциация вещества, в процессе которой образовалась протяженная ледяная оболочка как на Уране. По теоретическим оценкам, имеется и мантия, и ядро. Масса ядра вместе с ледяной оболочкой согласно расчетным моделям может достигать 90% всей массы планеты.
После того, как в 1781 У. Гершель открыл Уран и рассчитал параметры его орбиты, довольно скоро обнаружились загадочные аномалии в движении этой планеты — оно то «отставало» от расчетного, то опережало его.
В 1832 в отчете Британской Ассоциации развития науки Дж. Эри, впоследствии ставший королевским астрономом, отмечал, что за 11 лет ошибка в положении Урана достигла почти полминуты дуги. Вскоре после опубликования отчета Эри получил от британского астронома-любителя, преподобного доктора Хассея, письмо, в котором выдвигалось предположение, что эти аномалии обусловлены воздействием пока еще неоткрытой «заурановой» планеты. По-видимому, это было первым предложением искать «возмущающую» планету. Эри не одобрил идею Хассея, и поиски не были начаты.
А еще за год до этого талантливый молодой студент Дж. К. Адамс отметил в своих записях: «В начале этой недели появилась мысль заняться сразу же после получения степени исследованием аномалий в движении Урана, которые до сих пор не объяснены. Надо найти, могут ли они быть обусловлены влиянием находящейся за ним неоткрытой планеты и, если возможно, определить хотя бы приблизительно элементы ее орбиты, что может привести к ее открытию».
Адамс получил возможность приступить к решению этой задачи только через два года, и к октябрю 1843 предварительные вычисления были закончены. Адамс решил показать их Эри, однако встретиться с королевским астрономом ему не удалось. Адамсу оставалось лишь вернуться в Кембридж, оставив для Эри результаты проведенных расчетов. По непонятным причинам Эри отреагировал на работу Адамса отрицательно, ценой чего явилась потеря Англией приоритета в открытии новой планеты.
Независимо от Адамса над проблемой заурановой планеты работал во Франции У. Ж. Леверье. 10 ноября 1845 он представил Французской АН результаты своего теоретического анализа движения Урана, заметив в заключение о расхождении между данными наблюдений и расчетов: «Это можно объяснить воздействием внешнего фактора, который я оценю во втором трактате».
Такие оценки были проведены в первой половине 1846. Успеху дела помогло предположение, что искомая планета движется, в соответствии с эмпирическим —Тициуса Боде правилом, по орбите, радиус которой равен утроенному радиусу орбиты Урана, и что орбита имеет очень малый наклон к плоскости эклиптики. Леверье выступил с указанием, где следует искать новую планету. Получив второй трактат Леверье, Эри обратил внимание на очень близкое совпадение результатов исследований Адамса и Леверье, относящихся к движению предполагаемой планеты, возмущающей движение Урана, и даже подчеркнул это на специальном заседании Совета инспекторов Гринвича. Но он, как и ранее, не торопился начать поиски и стал хлопотать о них только в июле 1846, поняв, какое негодование может вызвать впоследствии его пассивность.
Тем временем Леверье 31 августа 1846 закончил еще одно исследование, в котором была получена окончательная система элементов орбиты искомой планеты и указано ее место на небе. Но во Франции, как и в Англии, астрономы все не приступали к поискам, и 18 сентября Леверье обратился к И. Галле, ассистенту Берлинской обсерватории, который, получив разрешение директора обсерватории, 23 сентября вместе со студентом Д’Арре начал поиски. В первый же вечер планета была обнаружена, она находилась всего в 52′ от предполагаемого места.
Весть об открытии планеты «на кончике пера», что явилось одним из ярчайших триумфов небесной механики, вскоре облетела весь научный мир. По установившейся традиции планета получила название Нептун в честь античного бога.
Около года между Францией и Англией шла борьба за приоритет открытия, к которой, как это часто бывает, сами герои непосредственного отношения не имели. В частности, между Адамсом и Леверье установилось полное взаимопонимание, и они оставались друзьями до конца жизни.