что относится к простым числам

Простые числа — это чудеса деления

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы поговорим о таком математическом понятии, как ПРОСТЫЕ ЧИСЛА.

В школе это проходят в 5 или 6 классе, в зависимости от программы обучения.

И интересно, что если спросить школьников, что такое простые числа, то они, скорее всего, ответят правильно.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

А вот взрослые задумаются и не факт, что вспомнят точное определение. Так что это статья скорее для них.

Простые числа — это.

Итак, вот как выглядит официальное определение:

Простые числа – это такие числа, которые имеют только два делителя. Один из них – единица, а другое – само число.

Чтобы было более понятно, приведем простой пример. Для чисел 5 и 7 надо найти все возможные делители, чтобы в результате образовалось целое число.

Если вы попробуете решить эту задачку, то получите, что 5 и 7 делятся только на 1 и 5, и 1 и 7 соответственно. Во всех других случаях вы получите дробное число. И это как раз означает, что числа 5 и 7 относятся к простым.

А вот попробуем по той же схеме разобрать числа 6 и 9. В первом случае мы получим, что 6 можно поделить на 1, 2, 3 и 6, а число 9 – на 1, 3 и 9. И это уже противоречит определению простых чисел, значит, 6 и 9 таковыми не являются.

Они называются в математике – СОСТАВНЫМИ ЧИСЛАМИ.

Список и таблица простых чисел

Некоторые ошибочно полагают, что наименьшее простое число – это единица.

С одной стороны, в этом есть логика, так как 1 делится только на 1. Но это получается одно и то же число (единица), что противоречит определению простых чисел, в котором четко прописано – «делителей должно быть два».

Значит, минимальное простое число – это 2. А первоначальный ряд выглядит следующим образом:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199…

При желании можете проверить эти числа на предмет деления. Мы же скажем, что этот ряд на самом деле не окончательный.

Количество простых чисел не ограничено. Или говоря математическим языком, оно стремится к бесконечности.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

История простых чисел

Первые упоминания о простых числах относятся к Древнему Египту. В Британском музее хранится папирус, который датируется 2000 годом до нашей эры. И на нем, согласно расшифровке, содержится учебное пособие по арифметике.

В том числе и про деление чисел. Называется этот артефакт – папирус Райнда, по имени его первого владельца.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

В этом документе есть таблица, в которой указаны числа, делящиеся на различные знаменатели. Причем они разделены таким образом, что становится понятно – древние египтяне может и не пользовались понятиям «простое число», но хотя бы имели о нем представление.

Ну а первые исследования простых чисел датируются 300 годом до нашей эры. И связаны они с именем знаменитого древнегреческого математика Евклида.

Как и многое другое, он описал простые и составные числа в своем известном произведении «Начала».

В частности, Евклид описал такие вещи, как:

Сейчас расскажем об этих понятиях подробнее.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Основная теорема арифметики

Основная теорема арифметики, которую придумал еще Евклид, гласит:

Любое натуральное число (это что?), которое больше единицы, может быть представлено в виде произведения простых чисел. Причем их количество не ограничено, а порядок следования неважен.

Если обозначить исходное число буквой N, а простые числа буквами Р1, Р2, Р3 и так далее, то можно записать эту теорему следующим образом:

N = Р1 * Р2 * Р3 * … * РК

Например, возьмем число 100. Его можно разложить на следующие простые числа:

Или более сложный пример – число 23244:

23244 = 149 * 13 * 3 * 2 * 2

Раскладывать на простые числа легко. Можно сперва делить на 2 и 3, а уже в конце автоматически получить более сложные делители.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Ради интереса придумайте любое число и сами найдите его составляющие.

Лемма Евклида

Еще одна теорема, которая имеет прямое отношение к простым числам. Она гласит;

Если некое простое число Р делит произведение чисел X и Y без остатка, то оно может точно так же поделить или X, или Y.

Звучит несколько сложновато, хотя на деле все это просто. Так, возьмем для примера P = 2, X = 6, Y = 9. И тогда получается, что

В нашем примере P делит это произведение без остатка:

А значит наша P может поделить без остатка или X, или Y. Очевидно, что это X:

Y/P = 9/2 = 4,5 (не подходит)

Как быстро и легко определить простые числа

И еще одно понятие, которое связано с простыми числами. Оно названо в честь другого древнегреческого математика Эратосфена Киренского.

Этот человек придумал, как быстро и легко определить простые числа. В частности, он сделал таблицу, в которой были указаны значения до 1000.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Свою таблицу он нарисовал на глиняной дощечке. А после прокалывал те клеточки, на которых были написаны составные числа. В результате получилось нечто вроде решета, отсюда собственно и название метода.

Кстати, пользоваться решетом Эратосфена весьма просто. Например, сделаем таблицу до 50.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

После этого из нее надо поочередно вычеркивать числа, которые кратны 2, 3, 5, 7 и 11. В результате получится вот это:

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Те числа, которые остались, и есть простые. Можете сравнить этот ряд с тем, который мы давали в начале статьи. Точно таким же способом можно составить абсолютно любой ряд простых чисел = хоть до тысячи, хоть до миллиона и больше.

Вот и все, что мы хотели рассказать о ПРОСТЫХ ЧИСЛАХ в математике.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Математика весьма хитрая наука, да и простые числа не такие уж и простые, понимание простых и составных чисел привело человечество к тому техническому прогрессу, что окружает нас сейчас.

Источник

Простые и составные числа, определения, примеры, таблица простых чисел, решето Эратосфена

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Составное число – это натуральное число, имеющее более двух положительных делителей.

Натуральные числа, которые не являются простыми, называют составными.

Таблица простых чисел

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Рассмотрим теорему, которая объясняет последнее утверждение.

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Простых чисел бесконечно много.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Решето Эратосфена

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Перейдем к формулировке теоремы.

Данное число простое или составное?

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Доказать что число 898989898989898989 является составным.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Ответ: 11723 является составным числом.

Источник

Что такое Простые числа

Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23. Единица не является ни простым числом, ни составным.

Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).

Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).

Все натуральные числа считаются либо простыми, либо составными (кроме 1).

Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4. (нет ни дробей, ни 0, ни чисел ниже 0).

Зачастую множество простых чисел в математике обозначается буквой P.

Простые числа до 1000

Как определить, является ли число простым?

Очень простой способ понять, является ли число простым — нужно его разделить на простые числа и посмотреть, получится ли целое число. Сначала нужно попробовать его разделить на 2 и/или на 3. Если получилось целое число, то оно не является простым.

Если после первого деления не получилось целого числа, значит нужно попробовать разделить его на другие простые числа: 5, 7, 11 и т. д. (на 9 делить не нужно, т. к. это не простое число и оно делится на 3, а на него вы уже делили).

Более структурированный метод — это решето Эратосфена.

Решето Эратосфена

Это алгоритм поиска простых чисел. Для этого нужно:

Те числа, которые не будут вычеркнуты в конце этого процесса, являются простыми.

Взаимно простые числа

Это натуральные числа, у которых 1 — это единственный общий делитель. Например:

Число Мерсенна

Простое число Мерсенна — это простое число вида:

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

До 1536 г. многие считали, что числа такого вида были все простыми, пока математик Ульрих Ригер не доказал, что 2 (^11) – 1 = 2047 было составным (23 x 89). Затем появились и другие составные числа (p = 23, 29, 31, 37 и др.).

Например, для p = 23 это 2 (^23) – 1 = 8 388 607; И 47 x 178481 = 8 388 607, значит оно составное.

Почему 1 не является простым числом?

Российские математики Боревич и Шафаревич в своей знаменитой работе «Теория чисел» (1964 г.) определяют простое число как p (элемент кольца D), не равен ни 0, ни 1. И p можно называть простым числом, если его невозможно разложить на множители ab (т.е. p = ab), притом ни один из них не является единицей в D. Так как 1 невозможно представить ни в одном, ни в другом виде, 1 не считается ни простым числом, ни составным.

Почему 4 не является простым числом?

Простое число — это натуральное число, больше единицы, которое делится без остатка на 1 и на само себя. Т. к. 4 можно разделить на 1, на 2 и на 4, из-за деления на 2 оно не является простым.

Самое большое простое число

21 декабря 2018 года Great Internet Mersenne Prime Search (проект, целью которого является открытие новых простых чисел Мерсенна) обнаружил новое самое большое известное простое число:

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Новое простое число также именуется M82589933 и в нём более чем на полтора миллиона цифр больше, чем в предыдущем (найденном годом ранее).

Источник

Числа. Простые числа.

Натуральные числа, большие единицы и числа, которые не являются простыми, называют составными числами. Т.о., все натуральные числа делятся на 3 класса: единица (имеет 1 делитель), простые числа (имеют 2 делителя) и составные числа (имеют больше 2-х делителей).

Начало последовательности простых чисел выглядит так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …

Если представить натуральные числа как произведение простых, то это будет называться разложение на простые либо факторизация числа.

Самое большое простое число, которое известно.

Некоторые свойства простых чисел.

Допустим, p — простое, и p делит ab, тогда p делит a либо b.

Кольцо вычетов Zn будет называться полем только в случае, если n — простое.

Характеристика всех полей — это нуль либо простое число.

Когда G — конечная группа, у которой порядок |G| делят на p, значит, у G есть элемент порядка p (теорема Коши).

Натуральное p > 1 будет простым лишь в случае, если (p-1)! + 1 можно подулить на p (теорема Вильсона).

Когда n > 1 — натуральное, значит, есть простое p: n 1 — целые взаимно простые числа, содержит нескончаемое число простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).

Любое простое число, которое большее тройки, можно представить как 6k+1 либо 6k-1, где k — натуральное число. Исходя из этого, когда разность нескольких последовательных простых чисел (при k>1) одинаковая, значит, она точно делится на шесть — к примеру: 251-257-263-269; 199-211-223; 20183-20201-20219.

Теорема Грина-Тао. Есть бесконечные арифметические прогрессии, которые состоят из простых чисел.

Ни одно простое число нельзя представить как n 2k+1 +1, где n>1, k>0. Другими словами, число, которое предшествует простому, не может быть кубом либо более высокой нечётной степенью с основанием, которое больше единицы.

Есть многочлены, у которых множество неотрицательных значений при положительных значениях переменных совпадает с множеством простых чисел. Пример:

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Источник

Простые и составные числа: определения и примеры

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Простые и составные числа: Freepick

Математика по-разному называет числа и делит их на определенные группы. На уроках услышите о простых и составных числах. Чем обосновано такое деление и как научиться различать эти категории чисел? Помогут разобраться в этом вопросе примеры.

Простые числа и их особенности

Сложение, вычитание, умножение, деление — все эти операции привычны для математиков, которые ловко оперируют самыми разными числами и способны вести подсчеты в уме не хуже, чем вычислительные машины. Помогают им в этом простые и составные числа.

Познакомимся с первой группой чисел. Простое число — это любое число, которое можно разделить само на себя и на единицу. Яркий и простой для запоминания пример — число 13. Легко заключить, что разделить его получится:

Любое число, которому подходит под это определение, попадает в группу простых. Следует помнить о том, что подразумевается деление числа нацело. С целым или дробным остатком деление возможно практически для любых чисел.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Числа в математике: Freepick

Для удобства в математике используются таблицы простых чисел. При их составлении вручную последовательно проверяется каждое число. Например:

Такие операции можно выполнять до числа 100 и далее.

Но в книге о простых числах выдающегося математика Л. Г. Шнирельмана указано, что существует бесконечное множество простых чисел. Как быть и можно ли ускорить процесс их нахождения?

Математики нашли решение этой задачи. Быстро отобрать простые числа можно с помощью решета Эратосфена:

На уроках часто пользуются уже готовыми таблицами, но важно помнить о том, каким образом в них оказываются те или иные числа. Кроме простых, выделяют также группу взаимно простых чисел, у которых есть только один общий делитель — единица (например, 14 и 25).

Что такое составные числа

Количество составных чисел в разы превышает количество простых. Составными числами называют такие, которые не относятся к простым, то есть имеют делители, кроме единицы и самого себя. Иногда составные числа называют сложными.

Рассмотрим это на примере:

Таким образом, составным числом называют такое число, у которого есть два и более простых множителей.

Зачем математики используют простые и составные числа? Это необходимо для упрощения разложения на множители. Вместо долгих поисков того, на какие числа можно разложить большое значение, достаточно использовать специальную таблицу.

Разложение на простые множители необходимо для определения самого большого общего делителя и самого маленького общего кратного. Эти значения применяют в сложении, вычитании и сравнении дробей.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Математические расчеты: Freepick

Обсуждая простые и составные числа, не было сказано, в какую группу отнести ноль и единицу. Остановимся на единице. Согласно определению, у простого числа должно быть два делителя — единица и оно само.

Но для единицы делитель фактически один, потому к простым числам ее нельзя отнести. Составным числом единица также не может быть (нет более двух делителей), а потому она остается числом без категории.

Как быть с нулем? Ноль, в отличие от единицы, делится на любые числа и получается при этом все тот же ноль. Кроме того, его не получится разложить на простые множители. С учетом теории и определения простых и составных чисел математики приняли решение ноль, как и единицу, исключить из категорий простых и составных чисел.

Таким образом, математикам удалось классифицировать и разделить на две большие группы все многообразие чисел. Ученые сделали это, найдя для них общие признаки. Простые числа имеют только два делителя, а у составных их гораздо больше. Вне этой классификации остались лишь единица и ноль.

что относится к простым числам. Смотреть фото что относится к простым числам. Смотреть картинку что относится к простым числам. Картинка про что относится к простым числам. Фото что относится к простым числам

Уникальная подборка новостей от нашего шеф-редактора

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

23571113171923
29313741434753596167
717379838997101103107109
113127131137139149