Что такое экземпляр класса python

Введение в Python

Поиск

Новое на сайте

Объектно-ориентированное программирование в Python

Объектно-ориентированным программированием называется такой подход к программированию, в котором используются понятия класса и объекта. Говоря проще, когда перед нами стоит задача запрограммировать какой-либо объект, то намного легче сделать это описав этот объект, чем написав ряд функций.

Терминология объектно-ориентированного программирования:

Создание класса в Python:

Определение класса начинается с ключевого слова class, после него следует имя класса и двоеточие. Теперь с отступом можно описывать сам класс.

Создание экземпляров класса:

Чтобы создать экземпляр класса следует любой переменной присвоить значение имени класса, указав в скобках аргументы, которые принимает метод __init__().

Получение доступа к атрибутам и методам класса:

Чтобы получить доступ к атрибутам класса в Python следует после объекта поставить точку и написать имя переменной или метода, которые вы хотите использовать:

Соединив все это в одном файле, получим следующее:

Что такое экземпляр класса python. Смотреть фото Что такое экземпляр класса python. Смотреть картинку Что такое экземпляр класса python. Картинка про Что такое экземпляр класса python. Фото Что такое экземпляр класса python

Углубленные темы объектно-ориентированного программирования, которые мы еще рассмотрим:

Перегрузка операторов в Python.

Сокрытие данных класса в Python.

Источник

Понимание переменных класса и экземпляра в Python 3

При изучении объектно-ориентированного программирования на Python может возникнуть несколько сложностей, когда дело доходит до разграничения переменных класса и экземпляра. В этом руководстве я объясню разницу между переменными класса и экземпляра и приведу примеры, демонстрирующие различные варианты использования.

Переменные класса и экземпляра

При работе с данными любого типа некоторые атрибуты будут уникальными, а некоторые будут общими. Рассмотрим пример с учениками: у каждого учащегося в этом классе один и тот же номер и один учитель, но у каждого из них есть уникальное имя, возраст и любимый предмет.

Переменные класса

Переменные класса обычно являются переменными, которые являются общими для всех экземпляров. И они определены так:

Каждый экземпляр класса будет иметь одинаковое значение для этих переменных:

Переменные экземпляра

Переменные экземпляра (также называемые атрибутами данных) уникальны для каждого экземпляра класса и определяются в методе класса, например:

Посмотрите, как каждый экземпляр теперь содержит уникальное значение name:

Резюме

Это был только базовый обзор переменных класса и экземпляра. Мы углубимся в следующие шаги, но наиболее важный вывод заключается в том, что переменные класса обычно используются для значений, которые являются общими для всех экземпляров класса, в то время как переменные экземпляра используются для значений, уникальных для каждого экземпляра.

Чего ожидать от переменных класса

Переменные класса являются общими для всех экземпляров класса. Напоминаем, что они определены так:

Иными словами, переменные класса ссылаются на одно и то же место в памяти. Смотрите следующее:

Функция id возвращает адрес объекта в памяти для реализации CPython.

Таким образом, с помощью функции id мы можем подтвердить, что атрибут teacher ссылается на то же место в памяти.

Изменение переменной класса

Что произойдет, если мы изменим переменную класса даже после создания экземпляров?

Как и следовало ожидать, поскольку переменная teacher ссылается на общее местоположение в памяти, она также обновляется в экземпляре.

Изменение переменной экземпляра

Это, вероятно, наиболее очевидное и ожидаемое поведение, поэтому не стесняйтесь пропустить этот шаг. Но я все же покажу несколько примеров для полноты.

Рассмотрим наш класс Student с переменными класса и экземпляра:

Мы видим, что каждый экземпляр класса имеет уникальный адрес памяти для имени:

Как и следовало ожидать, обновление атрибута name в одном экземпляре не влияет на другой:

Переменные экземпляра переопределяют переменные класса (и методы)

Важно отметить, что переменные экземпляра (или атрибуты данных) переопределяют переменные класса.

Что произойдет, если мы изменим атрибут teacher прямо в одном из случаев:

Это важно отметить: переменные экземпляров не нужно объявлять, они создаются всякий раз, когда им присваиваются, а переменные экземпляра переопределяют переменные класса. Это означает, что в экземпляре Tom teacher больше не ссылается на переменную класса, а на вновь созданную переменную экземпляра.

И, естественно, экземпляр Сьюзен не затронут:

Надеюсь, вы видите, как такое поведение может привести к путанице. По этой причине важно сохранять организованные имена переменных. Если переменная объявлена как переменная класса, она (обычно) не должна быть переопределена. Переменные экземпляра могут быть определены в очевидных местах, например, метод __init__. Часто хорошо придумать соглашение об именовании переменных. Например, методы класса должны быть глаголами, существительными переменных класса и существительными переменных экземпляра с префиксом «_».

Использование изменяемых объектов в качестве переменных класса

В связи с предыдущим шагом, будьте осторожны при использовании изменяемых объектов в качестве переменных класса. Вы можете быть удивлены поведением.

Представьте, что мы хотим получить список результатов тестов студента. Мы могли бы составить такой класс:

У нас есть переменная класса для хранения баллов, и у нас есть метод класса для добавления баллов. Теперь давайте добавим несколько баллов.

Можете ли вы угадать, какую ошибку мы только что сделали?

Так что лучший класс может выглядеть так:

И теперь наша проблема решена!

Заключение

Надеюсь, вы узнали разницу между переменными класса и экземпляра и что ожидать от каждой из них. Если я что-то упустил в этом руководстве или у вас есть отличные примеры путаницы переменных класса и экземпляра, пожалуйста, прокомментируйте ниже. Я был бы рад добавить их в это руководство!

Источник

Классы в Python

Объектно-ориентированное программирование считается одним из самых эффективных методов создания программ. В объектно-ориентированном программирование создаются классы, описывающие реальные предметы и ситуации, а затем создаете объекты на основе этих описаний. Созданием объекта на основе класса называется созданием экземпляра.

Содержание страницы:
1. Создание класса
1.1. Метод __init__()
1.2. Создание экземпляра класса
1.3. Обращение к атрибутам класса
1.4. Вызов методов класса
2. Работа с классами
2.1. Прямое изменение значения атрибута
2.2. Изменение значения атрибута с использованием метода
2.3. Изменение значения атрибута с приращением
3. Наследование класса
3.1. Переопределение методов класса-родителя

1. Создание класса в Python

Классы в Python могут моделировать практически все что угодно. Создадим простой класс, который будет описывать конкретный автомобиль:

Разберем код по порядку. В начале определяется класс с именем Car ( class Car ). По общепринятым соглашение название класса начинается с символа верхнего регистра. Круглые скобки в определение класса пусты, так как класс создается с нуля. Далее идет строка документации с кратким описанием. ( «»»Описание автомобиля»»» ).

1.1. Метод __init__()

Каждая из двух переменных self.brand = brand и self.model = model снабжена префиксом self и к ним можно обращаться вызовом self.brand и self.model. Значения берутся из параметров brand и model. Переменные, к которым вы обращаетесь через экземпляры, также называются атрибутами.

1.2. Создание экземпляра класса

С помощью класса Car мы можем создавать экземпляры для конкретного автомобиля. Каждый экземпляр описывает конкретный автомобиль и его параметры.

1.3. Обращение к атрибутам класса

К атрибутам экземпляра класса мы можем обращаться через запись:

В записи используется имя экземпляра класса и после точки имя атрибута (car_1.brand) или (car_1.model). В итоге на экран выведется следующая информация:

Bmw
X5

1.4. Вызов методов класса

После создания экземпляра на основе класса Car можете вызывать любые методы, написанные в классе. Чтобы вызвать метод, укажите экземпляр (car_1) и вызываемый метод после точки:

car_1. sold ()
car_1. discount ()

При вызове данных методов, Python выполнит код, написанный в этом методе.

Автомобиль Bmw X5 продан
На автомобиль Bmw X5 скидка 5%

2. Работа с классами на Python

В описание автомобиля есть три атрибута(параметра) это brand, model, years. Также мы создали новый атрибут mileage (пробег) и присвоили ему начальное значение 0. Так как пробег у всех автомобилей разный, в последующем мы сможем изменять этот атрибут. Метод get_full_name будет возвращать полное описание автомобиля. Метод read_mileage будет выводить пробег автомобиля.

Создадим экземпляр с классом Car и запустим методы:

car_2 = Car(‘audi’, ‘a4’, 2019)
print(car_2. get_full_name() )
car_2. read_mileage()

В результате в начале Python вызывает метот __init__() для создания нового экземпляра. Сохраняет название, модель, год выпуска и создает новый атрибут с пробегом равным 0. В итоге мы получим такой результат:

Автомобиль Audi A4 2019
Пробег автомобиля 0 км.

2.1. Прямое изменение значения атрибута

Для изменения значения атрибута можно обратиться к нему напрямую и присвоить ему новое значение. Изменим пробег автомобиля car_2:

car_2 = Car(‘audi’, ‘a4’, 2019)
print(car_2.get_full_name())
car_2.mileage = 38
car_2. read_mileage()

Мы обратились к нашему экземпляру car_2 и связанным с ним атрибутом пробега(mileage) и присвоили новое значение 38. Затем вызвали метод read_mileage() для проверки. В результате мы получим следующие данные.

Автомобиль Audi A4 2019
Пробег автомобиля 38 км.

2.2. Изменение значения атрибута с использованием метода

В Python удобнее писать методы, которые будут изменять атрибуты за вас. Для этого вы просто передаете новое значение методу, который обновит значения. Добавим в наш класс Car метод update_mileage() который будет изменять показания пробега.

car_2 = Car(‘audi’, ‘a4’, 2019)
print(car_2.get_full_name())

car_2. read_mileage()
car_2. update_mileage (17100)
car_2. read_mileage()

Вначале выведем текущие показания пробега ( car_2. read_mileage() ). Затем вызовем метод update_mileage() и передадим ему новое значение пробега ( car_2. update_mileage (17100) ). Этот метод устанавливает пробег 17100. Выведем текущие показания ( car_2. read_mileage() ) и у нас получается:

Автомобиль Audi A4 2019
Пробег автомобиля 0 км.
Пробег автомобиля 17100 км.

2.3. Изменение значения атрибута с приращением

Если вместо того, чтобы присвоить новое значение, требуется изменить с значение с приращением, то в этом случаем мы можем написать еще один метод, который будет просто прибавлять пробег к уже имеющемся показаниям. Для этого добавим метод add_mileage в класс Car :

Новый метод add_mileage() получает пробег в км и добавлет его к self.mileage.

car_2. add_mileage (14687)
car_2. read_mileage ()

Пробег автомобиля 31787 км.

В итоге после вызова метода add_mileage() пробег автомобиля в экземпляре car_2 увеличится на 14687 км и станет равным 31787 км. Данный метод мы можем вызывать каждый раз при изменении пробега и передавать новые значение, на которое будет увеличивать основной пробег.

3. Наследование класса в Python

class Car():
«»»Описание автомобиля»»»
def __init__(self, brand, model, years):
«»»Инициализирует атрибуты brand и model»»»
self.brand = brand
self.model = model
self.years = years
self.mileage = 0

def get_full_name(self):
«»»Автомобиль»»»
name = f»Автомобиль »
return name.title()

def read_mileage(self):
«»»Пробег автомобиля»»»
print(f»Пробег автомобиля км.»)

def update_mileage(self, new_mileage):
«»»Устанавливает новое значение пробега»»»
self.mileage = new_mileage

def add_mileage(self, km):
«»»Добавляет пробег»»»
self.mileage += km

Создадим экземпляр класса ElectriCar и сохраним его в переменную tesla_1

tesla_1 = ElectricCar (‘tesla’, ‘model x’, 2021)
print(tesla_1. get_full_name ())
tesla_1. battery_power ( )

При вызове двух методов мы получим:

Автомобиль Tesla Model X 2021
Мощность аккумулятора 100 кВт⋅ч

3.1. Переопределение методов класса-родителя

Методы, которые используются в родительском классе можно переопределить в классе-потомке (подклассе). Для этого в классе-потомке определяется метод с тем же именем, что и у класса-родителя. Python игнорирует метод родителя и переходит на метод, написанный в классе-потомке (подклассе). Переопределим метод def get_full_name() чтобы сразу выводилась мощность аккумуляторов.

В результате при запросе полного названия автомобиля Python проигнорирует метод def get_full_name() в классе-родителя Car и сразу перейдет к методу def get_full_name() написанный в классе ElectricCar.

tesla_1 = ElectricCar (‘tesla’, ‘model x’, 2021)
print(tesla_1. get_full_name ())

Автомобиль Tesla Model X 2021 100-Квт⋅Ч

Источник

Python. Урок 14. Классы и объекты

Данный урок посвящен объектно-ориентированному программированию в Python. Разобраны такие темы как создание объектов и классов, работа с конструктором, наследование и полиморфизм в Python.

Основные понятия объектно-ориентированного программирования

Объектно-ориентированное программирование (ООП) является методологией разработки программного обеспечения, в основе которой лежит понятие класса и объекта, при этом сама программа создается как некоторая совокупность объектов, которые взаимодействую друг с другом и с внешним миром. Каждый объект является экземпляром некоторого класса. Классы образуют иерархии. Более подробно о понятии ООП можно прочитать на википедии.

Выделяют три основных “столпа” ООП- это инкапсуляция, наследование и полиморфизм.

Инкапсуляция

Наследование

Под наследованием понимается возможность создания нового класса на базе существующего. Наследование предполагает наличие отношения “является” между классом наследником и классом родителем. При этом класс потомок будет содержать те же атрибуты и методы, что и базовый класс, но при этом его можно (и нужно) расширять через добавление новых методов и атрибутов.

Примером базового класса, демонстрирующего наследование, можно определить класс “автомобиль”, имеющий атрибуты: масса, мощность двигателя, объем топливного бака и методы: завести и заглушить. У такого класса может быть потомок – “грузовой автомобиль”, он будет содержать те же атрибуты и методы, что и класс “автомобиль”, и дополнительные свойства: количество осей, мощность компрессора и т.п..

Полиморфизм

Полиморфизм позволяет одинаково обращаться с объектами, имеющими однотипный интерфейс, независимо от внутренней реализации объекта. Например, с объектом класса “грузовой автомобиль” можно производить те же операции, что и с объектом класса “автомобиль”, т.к. первый является наследником второго, при этом обратное утверждение неверно (во всяком случае не всегда). Другими словами полиморфизм предполагает разную реализацию методов с одинаковыми именами. Это очень полезно при наследовании, когда в классе наследнике можно переопределить методы класса родителя.

Классы в Python

Создание классов и объектов

Создание класса в Python начинается с инструкции class. Вот так будет выглядеть минимальный класс.

Класс состоит из объявления (инструкция class), имени класса (нашем случае это имя C) и тела класса, которое содержит атрибуты и методы (в нашем минимальном классе есть только одна инструкция pass).

Для того чтобы создать объект класса необходимо воспользоваться следующим синтаксисом:

имя_объекта = имя_класса()

Статические и динамические атрибуты класса

Как уже было сказано выше, класс может содержать атрибуты и методы. Атрибут может быть статическим и динамическим (уровня объекта класса). Суть в том, что для работы со статическим атрибутом, вам не нужно создавать экземпляр класса, а для работы с динамическим – нужно. Пример:

В представленном выше классе, атрибут default_color – это статический атрибут, и доступ к нему, как было сказано выше, можно получить не создавая объект класса Rectangle.

width и height – это динамические атрибуты, при их создании было использовано ключевое слово self. Пока просто примите это как должное, более подробно про self будет рассказано ниже. Для доступа к width и height предварительно нужно создать объект класса Rectangle:

Если обратиться через класс, то получим ошибку:

При этом, если вы обратитесь к статическому атрибуту через экземпляр класса, то все будет ОК, до тех пор, пока вы не попытаетесь его поменять.

Проверим ещё раз значение атрибута default_color:

Присвоим ему новое значение:

Создадим два объекта класса Rectangle и проверим, что default_color у них совпадает:

Если поменять значение default_color через имя класса Rectangle, то все будет ожидаемо: у объектов r1 и r2 это значение изменится, но если поменять его через экземпляр класса, то у экземпляра будет создан атрибут с таким же именем как статический, а доступ к последнему будет потерян:

Меняем default_color через r1:

При этом у r2 остается значение статического атрибута:

Вообще напрямую работать с атрибутами – не очень хорошая идея, лучше для этого использовать свойства.

Методы класса

Добавим к нашему классу метод. Метод – это функция, находящаяся внутри класса и выполняющая определенную работу.

Методы бывают статическими, классовыми (среднее между статическими и обычными) и уровня класса (будем их называть просто словом метод). Статический метод создается с декоратором @staticmethod, классовый – с декоратором @classmethod, первым аргументом в него передается cls, обычный метод создается без специального декоратора, ему первым аргументом передается self:

Статический и классовый метод можно вызвать, не создавая экземпляр класса, для вызова ex_method() нужен объект:

Конструктор класса и инициализация экземпляра класса

В Python разделяют конструктор класса и метод для инициализации экземпляра класса. Конструктор класса это метод __new__(cls, *args, **kwargs) для инициализации экземпляра класса используется метод __init__(self). При этом, как вы могли заметить __new__ – это классовый метод, а __init__ таким не является. Метод __new__ редко переопределяется, чаще используется реализация от базового класса object (см. раздел Наследование), __init__ же наоборот является очень удобным способом задать параметры объекта при его создании.

Создадим реализацию класса Rectangle с измененным конструктором и инициализатором, через который задается ширина и высота прямоугольника:

Что такое self?

До этого момента вы уже успели познакомиться с ключевым словом self. self – это ссылка на текущий экземпляр класса, в таких языках как Java, C# аналогом является ключевое слово this. Через self вы получаете доступ к атрибутам и методам класса внутри него:

В приведенной реализации метод area получает доступ к атрибутам width и height для расчета площади. Если бы в качестве первого параметра не было указано self, то при попытке вызвать area программа была бы остановлена с ошибкой.

Уровни доступа атрибута и метода

Если вы знакомы с языками программирования Java, C#, C++ то, наверное, уже задались вопросом: “а как управлять уровнем доступа?”. В перечисленных языка вы можете явно указать для переменной, что доступ к ней снаружи класса запрещен, это делается с помощью ключевых слов (private, protected и т.д.). В Python таких возможностей нет, и любой может обратиться к атрибутам и методам вашего класса, если возникнет такая необходимость. Это существенный недостаток этого языка, т.к. нарушается один из ключевых принципов ООП – инкапсуляция. Хорошим тоном считается, что для чтения/изменения какого-то атрибута должны использоваться специальные методы, которые называются getter/setter, их можно реализовать, но ничего не помешает изменить атрибут напрямую. При этом есть соглашение, что метод или атрибут, который начинается с нижнего подчеркивания, является скрытым, и снаружи класса трогать его не нужно (хотя сделать это можно).

Внесем соответствующие изменения в класс Rectangle:

В приведенном примере для доступа к _width и _height используются специальные методы, но ничего не мешает вам обратиться к ним (атрибутам) напрямую.

Если же атрибут или метод начинается с двух подчеркиваний, то тут напрямую вы к нему уже не обратитесь (простым образом). Модифицируем наш класс Rectangle:

Попытка обратиться к __width напрямую вызовет ошибку, нужно работать только через get_width():

Но на самом деле это сделать можно, просто этот атрибут теперь для внешнего использования носит название: _Rectangle__width:

Свойства

Свойством называется такой метод класса, работа с которым подобна работе с атрибутом. Для объявления метода свойством необходимо использовать декоратор @property.

Важным преимуществом работы через свойства является то, что вы можете осуществлять проверку входных значений, перед тем как присвоить их атрибутам.

Сделаем реализацию класса Rectangle с использованием свойств:

Теперь работать с width и height можно так, как будто они являются атрибутами:

Можно не только читать, но и задавать новые значения свойствам:

Если вы обратили внимание: в setter’ах этих свойств осуществляется проверка входных значений, если значение меньше нуля, то будет выброшено исключение ValueError:

Наследование

В организации наследования участвуют как минимум два класса: класс родитель и класс потомок. При этом возможно множественное наследование, в этом случае у класса потомка может быть несколько родителей. Не все языки программирования поддерживают множественное наследование, но в Python можно его использовать. По умолчанию все классы в Python являются наследниками от object, явно этот факт указывать не нужно.

Синтаксически создание класса с указанием его родителя выглядит так:

class имя_класса(имя_родителя1, [имя_родителя2,…, имя_родителя_n])

Переработаем наш пример так, чтобы в нем присутствовало наследование:

Родительским классом является Figure, который при инициализации принимает цвет фигуры и предоставляет его через свойства. Rectangle – класс наследник от Figure. Обратите внимание на его метод __init__: в нем первым делом вызывается конструктор (хотя это не совсем верно, но будем говорить так) его родительского класса:

super – это ключевое слово, которое используется для обращения к родительскому классу.

Теперь у объекта класса Rectangle помимо уже знакомых свойств width и height появилось свойство color:

Полиморфизм

Как уже было сказано во введении в рамках ООП полиморфизм, как правило, используется с позиции переопределения методов базового класса в классе наследнике. Проще всего это рассмотреть на примере. Добавим в наш базовый класс метод info(), который печатает сводную информацию по объекту класса Figure и переопределим этот метод в классе Rectangle, добавим в него дополнительные данные:

Посмотрим, как это работает

Таким образом, класс наследник может расширять функционал класса родителя.

P.S.

Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.
Что такое экземпляр класса python. Смотреть фото Что такое экземпляр класса python. Смотреть картинку Что такое экземпляр класса python. Картинка про Что такое экземпляр класса python. Фото Что такое экземпляр класса python

Python. Урок 14. Классы и объекты : 18 комментариев

А вот если Вы добавите вот это
.entry-title a:last-child <
float:right;
>
в свой css будет намного удобнее, нежели вы будите использовать 2-ную табуляцию в HTML. Спасибо.

Класс, о методе super() вообще ни слова

Спасибо за замечание! Добавим!

Про self ничего не сказано. Похоже на ссылку на текущий обьект.

Да, это действительно ссылка на текущий объект. Нужно будет вообще этот урок переработать, в нем плохо раскрыты многие вопросы! Спасибо за комментарий!

О методе __new__(cls) тоже нет ни слова, а он так же участвует в конструировании экземпляра класса.

ОК, спасибо! Добавим!

Наконец-то всё стало понятно. Огромное спасибо за разъяснение на уровне 1 класса 2 четверти!

Определение инкапсуляции неверное. Приведенное определение скорее присуще самому понятию “класс”. А инкапсуляция – это сокрытие деталей реализации.

> Атрибут может быть статическим и не статическим (уровня объекта класса)

В других языках принято “не статические атрибуты” называть динамическими. Предлагаю использовать, чтобы язык не ломать 🙂

Пытаюсь разобраться с декораторами.
@property
def width(self):
return self.__width
@width.setter
def width(self, w):
if w > 0:
self.__width = w
else:
raise ValueError

Понял назначение методов уровня Класс. Но не понятно назначение классовых и статических методов (@classmethod, @staticmethod)

Столкнулся с проблемой
есть класс
class Users(): #класс списка пользователей
def __init__(self):
self.item=[]
self.num=0

есть класс пользователя
class Aduser(): #класс пользователь домена
def __init__(self):
self.fio=”” # ФИО
self.login=”” # login
self.email=”” # e-mail
self.list=[] # принадлежность к спискам
self.spec=”” # должность
self.dept=”” # отдел
self.stage=True # состояние активности учетной записи
self.desc=”” # примечание
usrs = Users()
usr = Aduser()

не мону понять почему не срабатывает конструкция
usrs.item.append[usr]
точнее срабатывает но в usrs.item[] приходит пустой объект Adusers()

Ссылки на предыдущие уроки не нашел, причем тут декораторы и вообще, что это (хотя бы ссылкой) тоже не нашел.

Работаю с питоном уже больше года. Долго пытался понять что такое @property и @setter, А тут автор за 10 строчек объяснил, браво!

Класно описано. Только вот про сеттеры ни слова объяснения, из кода приходится догадыватся.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *