Что такое электрический сигнал

Электрический сигнал

Выделяют аналоговые, дискретные, квантованные и цифровые сигналы.

Содержание

Аналоговый сигнал (АС)

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС — гармонический сигнал — s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчетами. Δt называется интервалом дискретизации.

Квантованный сигнал

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому уровню присваивается некоторое число. Отсчеты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичный чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

Цифровой сигнал

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Для того чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.

См. также

Полезное

Смотреть что такое «Электрический сигнал» в других словарях:

электрический сигнал — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric signal … Справочник технического переводчика

Электрический сигнал АЭ — 1.4.2. Электрический сигнал АЭ D. Elektrischen Schallemissionssignal E. Electrical AE signal Электрический сигнал на выходе приемного преобразователя, возникающий при воздействии на него механического сигнала АЭ Источник: МИ 198 79: Акустическая… … Словарь-справочник терминов нормативно-технической документации

электрический сигнал — elektrinis signalas statusas T sritis fizika atitikmenys: angl. electrical signal vok. elektrisches Signal, n rus. электрический сигнал, m pranc. signal électrique, m … Fizikos terminų žodynas

электрический сигнал акустической эмиссии — Сигнал АЭ на выходе преобразователя АЭ. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] электрический сигнал акустической эмиссии Электрическое… … Справочник технического переводчика

электрический сигнал типа, стандартизованного в Рекомендации МСЭ-Т G.703, со скоростью передачи порядка q — электрический сигнал типа стандартизованного в Рекомендации МСЭ Т G.703, со скоростью передачи порядка q (q = 11, 12, 21, 22, 31, 32, 4) (МСЭ Т G.783). [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные… … Справочник технического переводчика

электрический силоизмеритель испытательной машины — Силоизмеритель, в котором измеряемое усилие преобразуется в электрический сигнал, воздействующий на показывающий или регистрирующий прибор. Примечание В зависимости от вида преобразователя электрические силоизмерители могут быть: тензометрические … Справочник технического переводчика

электрический — 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

сигнал — 3.4 сигнал (signal): Воздействие на органы чувств оператора, характеризующее состояние или изменение состояния производственного оборудования. Настоящий стандарт описывает сигналы, распознаваемые органами зрения (видеодисплей), слуха… … Словарь-справочник терминов нормативно-технической документации

электрический импульс — 4.20 электрический импульс (elektrischer Impuls): Электрический сигнал (напряжение, ток или сопротивление), который за ограниченный промежуток времени отклоняется от начального значения, а затем возвращается к этому значению. Источник: ГОСТ Р ЕН… … Словарь-справочник терминов нормативно-технической документации

сигнал акустической эмиссии — 3.8 сигнал акустической эмиссии: «Полезный» сигнал, возбуждаемый дефектом в процессе АЭ контроля и имеющий акустическую природу. Источник: ГОСТ Р 52727 2007: Техническая диагностика. Акустико эмиссионная диагностика. Общие требования … Словарь-справочник терминов нормативно-технической документации

Источник

Виды электрических сигналов

Цель рассказа показать в чем суть понятия «сигнал», какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это «такая штука, с помощью которой можно что-нибудь сообщить». Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово «сигнал»:

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Электрических сигналов очень много, но их можно разбить на две большие группы:

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то «туда», то «сюда».

Все сигналы, независимо от типа, обладают следующими характеристиками:

Виды сигналов

Синусоида

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Меандр

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Прямоугольный сигнал

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал
S — скважность, D — коэффициент заполнения, T — период импульсов, Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал— длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Треугольный сигнал

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Вот такое простое введение в электрические сигналы. В природе их существует множество, но выше описаны те, что в нашем радиолюбительском деле встречаются довольно часто. Надеюсь, что теперь ты будешь больше знать про них.

Источник

Понятие о сигналах

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Аналоговые электрические сигналы — сигналы, изменяющиеся во времени непрерывно и способные принимать любое значение в некотором диапазоне напряжений, тока, частоты или иных характеристик (метрик). Аналоговая природа естественна для многих физических процессов и сигналов — звука, перемещения, изменения температуры и т.п. Поэтому метрики данных физических процессов/сигналов удобно (и естественно) переводить в аналоговые электрические сигналы с целью дальнейшей их преобразования электронными схемами. Например, температура 25.256 градусов Цельсия может быть закодирована как напряжение 2.5256 В. Самыми большими проблемами использования аналоговых сигналов являются:
— их чувствительность к помехам, приводящая к искажению значений (например, в вышеприведенном примере помеха 0.1В приведет к ошибке температуры на 1 градус Цельсия);
— высокие погрешности обработки каскадами электронных схем (усиления, интегрирования и т.п.), связанные с сложностью/невозможностью изготовления электронных компонентов (резисторов, конденсаторов, транзисторов. микросхем) с параметрами (сопротивления, емкости, коэффициентами передачи и т.п.) высокой и сверхвысокой точности (до тысячных процента) и стабильности в диапазоне температур, давлений и т.д.

Дискретные электрические сигналы — сигналы, для которых допускаются лишь значения из заранее определенного ограниченного множества. Значения указываются с допустимой погрешностью. Например, дискретный электрический сигнал имеет три допустимых значения напряжений: 0В, 5В и 10В, с допуском ±1В. Дискретными могут быть физические процессы и сигналы. Например, состояние управляющей клавиши (вкл/выкл — 2 значения) или датчика установленной передачи в коробке передач автомобиля (количество дискретных значений равно числу передач) или импульсы в детекторе элементарных частиц (есть/нет). Использование дискретных сигналов имеет важное преимущество — допустимость установки значения с некоторой значительной погрешностью, что резко повышает помехоустойчивость и снижает требования к точности параметров электронных каскадов.

Различают элементы с различными спо¬собами электрического кодирования двоичной информации;
• потенциальные,
• импульсные,
• импульсно-потенциальные.
При потенциальном способе кодирования при положитель¬ной логике за единицу («1») принимается высокий потенциал, за нуль («О») — низкий потенциал. Сигнал сохраняется неизмен¬ным на время не менее одного периода следования сигналов синхронизации (рис. 1, а).
При импульсном кодировании двоичной информации чаще всего «1» соответствует импульс, синфазный с сигналом син¬хронизации, а «О» — отсутствие импульса; значение сигнала в паузе между сигналами синхронизации не рассматривается (рис. 1, б).
Одной из разновидностей импульсного способа является ди¬намическое кодирование сигналов, когда единице соответствует последовательность импульсов между двумя импульсами син¬хронизации, а их отсутствие соответствует нулю (рис. 1, в).

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Все эти свойства позволили положить цифровые сигналы в основу современных вычислительных устройств, в частности, микропроцессоров, и в основу систем хранения и передачи данных.

ЛОГИЧЕСКИЕ СОСТОЯНИЯ

Для кодирования значений логических переменных или двоичных разрядов (битов) обычно используется напряжение. Ток, частота и другие характеристики сигнала тоже применяются, но только в специальных случаях — в основном при передаче данных или как удобный вариант сопряжения электрических каскадов.
Допустимые уровни напряжения соответственно их значениям условно называют ВЫСОКИМ (HIGH) и НИЗКИМ (LOW). Как говорилось выше, уровень соответствует не одному, а диапазону значений напряжений: например, 2,5.5В — ВЫСОКИЙ уровень, 0.1 В — НИЗКИЙ уровень, но для удобства указывают только «номинальный» (обычно крайний по значению) уровень, например, 5В и 0В. Следует понимать, что НИЗКИМ уровнем понимают именно низкое значение напряжения, а не полное отсутствие сигнала, так как такой вариант может возникнуть при обрыве на линии.
Двум указанным уровням напряжения можно сопоставить пару логических значений (логических состояний, двоичных цифр).
Если ВЫСОКИЙ уровень напряжения цифрового сигнала соответствует значению «1» или «ИСТИНА», а НИЗКИЙ уровень напряжения соответствует значению «0» или «ЛОЖЬ», то такой способ кодирования логической переменной называется ПОЗИТИВНОЙ (ПОЛОЖИТЕЛЬНОЙ) ЛОГИКОЙ.
ЕСЛИ ВЫСОКИЙ уровень напряжения цифрового сигнала соответствует значению «0» или «ЛОЖЬ», а НИЗКИЙ уровень напряжения соответствует значению «1» или «ИСТИНА», то такой способ кодирования логической переменной называется НЕГАТИВНОЙ (ОТРИЦАТЕЛЬНОЙ) ЛОГИКОЙ.
Тип логики (ПОЗИТИВНАЯ или НЕГАТИВНАЯ) является не только характеристикой собственно цифрового сигнала, но также и характеристикой цифрового элемента (блока, схемы), который обрабатывает данный сигнал исходя именно из такого способа его кодирования. Например, элемент популярной логической микросхемы SN7408 в документации полностью именуется «двухвходовой элемент «И» с позитивным кодированием сигналов». Если же использовать негативное кодирование, то функция данного элемента изменится на «ИЛИ».
Современная элементная база и схемотехника в целом ориентирована на позитивную (положительную) логику. Однако в некоторых случаях негативная (отрицательныя) логика может оказаться более удобным способом кодирования цифровых или логических значений. Например, схема определения нажатия кнопки на клавиатуре часто построена таким образом, что ВЫСОКИЙ уровень вырабатывается, если кнопка не нажата, и НИЗКИЙ — при нажатии кнопки. То есть, если кодировать факт нажатия кнопки как «ИСТИНА» и при этом вырабатывается НИЗКИЙ уровень сигнала, то получаем негативное (отрицательное) кодирование. Часто удобство негативной логики для сигналов цифровых элементов определяется особенностями внутренней схемотехники этих элементов.
Чтобы не путаться с тем, какие элементы в схеме используют позитивное кодирование, а какие негативное, принято соглашение всеми элементами в схеме используется один тип кодирования сигналов (например, позитивное), а если на входе или выходе какого-нибудь элемента должен формироваться сигнал с негативным кодированием, то он преобразуется из/в позитивный путем инвертирования. Такие инвертированные сигналы обозначаются на схемах чертой над названием сигнала (знак булевой операции «отрицание»), а вход или выход элемента, на котором выполняется инверсия сигнала (зачастую это мнимое инвертирование — схема использует внутри себя непосредственно негативно закодированный сигнал), обозначается кружочком.

Примечания:
1) В силу большей естественной воспринимаемости (принцип «большему соответствует большее») и распространенности положительной логики на схемотехническом сленге часто называют ВЫСОКИЙ уровень напряжения — «1», а НИЗКИЙ уровень напряжения — «0». Таким образом, в случае использования отрицательной логики может возникнуть путаница: говоря о «единице на сигнальной линии», подразумевают ВЫСОКИЙ уровень напряжения, который на самом деле соответствует логическому значению «0».
2) Термины «позитивная» логика и «положительная» логика, а также «негативная» и «отрицательная» логика эквивалентны и в различных комбинациях встречаются в литературе. Первоисточник — английские слова «positive» и «negative». Так же встречается вариант «прямая»-«инверсная» логика (подразумевается. что сигнал с негативной логикой («инверсный») может быть получен путем инверсии сигнала с позитивной логикой («прямого»).

ПАРАМЕТРЫ ЦИФРОВЫХ СИГНАЛОВ

Параметрами реальных цифровых сигналов, наиболее важными для схемотехнического проектирования, являются:
— Диапазон напряжений для логических «0» и «1», для выходов логических элементов/схем и для входов цифровых элементов/схем;
— Нагрузочная способность (коэффициент разветвления по выходу) выходов цифровой схемы — fanout;
— Длительность переключения состояния — время измерения состояния сигнала с НИЗКОГО уровня на ВЫСОКИЙ и наоборот (перехода из логического «0» в «1» и наоборот) — transition time;
— Временная задержка цифрового сигнала при «прохождении» через логический элемент/схему — propagation delay.

Диапазоны напряжений для логических «0» и «1».

Так как именно напряжение используется для кодирования значений «0» и «1», то диапазон напряжений для логических «0» и «1» являются основным параметром цифровых схем. При этом каждому из логических уровней «0» и «1» соответствуют не фиксированные значения напряжения, например, 0В или 5В, а некоторый диапазон напряжений. Например, для микросхем семейства ТТЛ логическому «0» будет соответствовать напряжение, попадающее в диапазон от 0В до +0.8В, а логической «1» будет соответствовать напряжение в диапазоне от +2В до +5В. Кодирование логических уровней диапазонами сделано потому что:
1) Позволяет использовать цифровые элементы/схемы с достаточно значительными, допусками параметров входных и выходных каскадов, что сильно удешевляет их производство.
2) Допускает колебание параметров элементов/схем и соответствующих цифровых сигналов за счет изменения температур, электрической нагрузки и напряжения питания схем и т.п.
3) Позволяет игнорировать влияние шумов — паразитных напряжений, которые добавляются/вычитаются из рабочего напряжения при «прохождении» его через схему. Шумы возникают за счет емкостных и индуктивных связей между сигналами в схеме, помех приходящих по подключенным внешним цепям и цепям питания, за счет электромагнитных наводок.
Диапазоны напряжений цифровых сигналов, генерируемые выходами цифровых схем и воспринимаемые входами схем, делают разными. Диапазон, воспринимаемый входами более широкий по сравнению с диапазоном выходных сигналов, и диапазон выходов целиком перекрывается диапазоном входов, оставляя запас по границе минимального и максимального напряжений. Это гарантирует, что выходной сигнал вырабатываемый одной цифровой схемой и подаваемый на вход другой будет правильно восприниматься даже в условиях помех. Например, выход вырабатывает ВЫСОКИЙ уровень в диапазоне 4.5В — 5В, а вход будет воспринимать ВЫСОКИЙ уровень в диапазоне 3.5В-5.5В. Поэтому, если к выходному напряжению ВЫСОКОГО уровня равному 4.5В добавится помеха 1В, то суммарное напряжение будет 5.5В и будет воспринято входом верно — как ВЫСОКИЙ уровень.
Между диапазонами ВЫСОКОГО уровня и НИЗКОГО уровня располагается так называемая «мертвая зона». В пределах мертвой зоны производитель не гарантирует корректное восприятие уровня сигнала. Около середины мертвой зоны (но не точно) располагается пороговый уровень Шх.п (Vin.t, threshold voltage), ниже которого уровень сигнала на входе воспринимается как НИЗКИЙ, а выше — как ВЫСОКИЙ. Номинальное значение Цп определяется документацией на электронный компонент (микросхему), но реальное значение может смещаться в рамках мертвой зоны в зависимости от особенностей конкретного образца (микросхемы), от температуры, от старения компонента, от напряжения питания и других параметров.
Итого: среди основных параметров цифровых схем должны быть заданы следующие напряжения цифровых сигналов:
— Для цифровых входов:
— ивх.О.мин. (VIL.min) — минимальное напряжение, воспринимаемое как «0»;
— Uвх.0.макс.(VIL.max) — максимальное напряжение, воспринимаемое как «0»;
— ивхЛ.мин.(Ущ.тт) — минимальное напряжение, воспринимаемое как «1»;
— ивхЛ.макс.(Ущ.тах) — максимальное напряжение, воспринимаемое как «1»;
— ивх.п (VIT) — напряжение переключения (threshold voltage), значения выше которого воспринимаются как «1», а ниже — как «0».
— Для цифровых выходов:
— ивых.0 (VoL.typ) — типовое напряжение, которое устанавливается при выводе «0»;
— ивых.О.мин.(Усх.тт) — минимальное напряжение, которое может быть установлено при выводе «0»;
— ивых.0.макс.(\^Л.тах) — максимальное напряжение, которое может быть установлено при выводе «0»;
— ивыхЛ(УоШур) — типовое напряжение, которое устанавливается при выводе «1»;
— ивыхЛ.мин.(УОН.тт) — минимальное напряжение, которое может быть установлено при выводе «1»;
— ивых.1.макс. (VOH.max) — максимальное напряжение, которое может быть установлено при выводе «1».
Указанные напряжения зависят от схемотехники и параметров выходных и входных электрических каскадов цифровых схем.

Еще одна особенность/проблема — это использование цифровых микросхем с различными напряжениями питания. Дело в том, что при изменении напряжения питания микросхем, изменяются и уровни напряжения высокого и низкого уровня (см. рисунок ниже). На нынешний момент в цифровой технике наиболее распространенными являются напряжения питания 5В, 3.3В, 2.5В, 1.8В. Необходимость снижения напряжения питания вызвана многими причинами, основными из которых являются снижение потребляемой и выделяемой мощности, повышение быстродействия схем, уменьшение физических размеров транзисторов на кристалле интегральных микросхем.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Видно, что уровни схем с различным питанием не совместимы между собой. При этом их часто приходится использовать совместно в одной схеме. Например, электропитание микропроцессора может быть 5В, а питание подключенных к нему микросхем — 3.3В. И аналогов с иным питанием не производится! В таком случае добавляют специальные каскады/микросхемы преобразования уровней напряжения цифровых сигналов. Иногда эти каскады встроены в микропроцессоры. Иногда удается добиться частичной совместимости уровней, например, микросхема с питанием 3.3В допускает подключение к ней входных сигналов с напряжением до 5В с корректным распознаванием ВЫСОКОГО и НИЗКОГО уровней. Обратного подключения может не допускаться, например выходов «3.3В» ко входам «5В».
Нужно отметить, что так как любое совместное использование схем с различными уровнями напряжений это потенциальный источник ошибок и часто причина усложнения схемы, то, без особой необходимости, стараются не делать смешанных схем.

Нагрузочная способность (коэффициент разветвления по выходу)

Нагрузочная способность выхода цифровой схемы показывает, какое количество входов цифровых схем может быть подключено к данному выходу без перегрузки выходных каскадов и без искажения уровней цифрового сигнала для входов. Нагрузочная способность зависит и устанавливается для пары типов «выход-вход». Например, для выхода типа X устанавливается количество подключаемых входов типа У и количество подключаемых входов типа Z и т.п. Нагрузочная способность может различаться для уровней ВЫСОКИЙ и НИЗКИЙ, но обычно указывается только одно — меньшее значение.
Типовая нагрузочная способность — 20 входов того же типа, что и выход. Если к выходу одного типа подключены входы другого типа, то соотношение изменяется.
Ниже перечислены отрицательные последствия перегрузки выходов:
— Выходное напряжение НИЗКОГО уровня может превысить Ивх.О.макс. и НИЗКИЙ уровень будет определен как ВЫСОКИЙ;
— Выходное напряжение ВЫСОКОГО уровня может быть ниже ИвхЛ.мин. и ВЫСОКИЙ уровень будет определен как НИЗКИЙ;
— Время изменения уровня с НИЗКОГО на ВЫСОКИЙ и обратно превышает значение, допустимое спецификацией данной схемы;
— Задержка распространения сигнала через схему превышает значение, допустимое спецификацией данной схемы;
— Перегрев элементов схемы из-за повышенного тепловыделения, возникающего из-за перегрузки. В результате может возникнуть изменение параметров схемы (уровней напряжения, нагрузочных способностей, параметров быстродействия) или физическая порча перегретых элементов.

Длительность переключения состояния

В идеальном случае ВСЕ выходы цифровой схемы или ее элемента изменяют свое состояние мгновенно и одновременно. Однако реальные выходы не могут моментально переключиться с ВЫСОКОГО на НИЗКИЙ уровень и наоборот: необходимо время на перезаряд паразитных емкостей элементов цифровой схемы или емкостей и индуктивностей проводников на плате. В итоге на рисунке идеальный сигнал (a) приобретает реальную форму (с). Условное изображение на временных диаграммах «постепенного перехода» выхода цифровой схемы из состояния в состояние показано на (b).
Время перехода с НИЗКОГО уровня в ВЫСОКИЙ (Tr) называют «длительностью положительного фронта», иногда просто «длительность фронта», или rise time. Время перехода с ВЫСОКОГО уровня в НИЗКИЙ (Tf) называют «длительностью отрицательного фронта», или «длительностью спада», или fall time. Эти времена обычно близкие по значению, но немного различаются у выходов цифровых схем. Для различных типов выходов (ТТЛ, КМОП и других) эти времена могут различаться в разы. Длительности переходов возрастают при подключении большего числа входов к выходу. Это объясняется, в основном, ростом значения емкости, подключенной к выходу за счет входных емкостей входов. Для наиболее распространенных на сегодня типа КМОП длительности переходов находятся в пределах 5-10 ns для типового числа подключенных входов. Для быстродействующих каскадов «внутри» СБИС процессоров, памяти и т.п. это время уменьшается до десятых — сотых наносекунды.

Что такое электрический сигнал. Смотреть фото Что такое электрический сигнал. Смотреть картинку Что такое электрический сигнал. Картинка про Что такое электрический сигнал. Фото Что такое электрический сигнал

Задержка перехода является отрицательным фактором функционирования цифровых схем и, наряду с задержкой распространения сигнала, значительно усложняет их разработку. Основные причины этого:
— нахождение выхода в неопределенном состоянии приводит к возможности некорректного срабатывания входа, причем многократного;
— рассинхронизация в работе элелементов/частей цифровых схем;
— повышенное энергопотребление во время нахождения в неопределенном состоянии.


Задержка распространения сигналов.

Задержкой распространения сигнала через элемент (propagation delay, tp) называют время между фронтом (перепадом) цифрового сигнала на входе элемента и вызванным им (входным фронтом) перепадом сигнала на выходе элемента. Задержка распространения вызвана временем срабатывания транзисторных ключей внутри элемента. Она будет больше, чем больше количество таких ключей по пути распространения сигнала внутри элемента, т.е. количество последовательных каскадов. Задержка распространения может быть разной для перепада на выходе с НИЗКОГО на ВЫСОКИЙ уровень (tpLH) и для перепада с ВЫСОКОГО в НИЗКИЙ уровень (tpHL).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *