Что такое энтропия в химии

Учебник. Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH4NO3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики).

Энтропия и фазовые переходы

Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Энтропия связана с термодинамической вероятностью соотношением: S = R ċ ln W

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q / T (приведенное тепло).

Здесь ΔS ° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S ° некоторых веществ.

Из табл. 4.1 следует, что энтропия зависит от:

агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).

изотопного состава (H2O и D2O).

кристаллической структуры (аллотропии) – алмаз, графит.

Наконец, рис. 4.3 иллюстрирует зависимость энтропии от температуры.

Что такое энтропия в химии. Смотреть фото Что такое энтропия в химии. Смотреть картинку Что такое энтропия в химии. Картинка про Что такое энтропия в химии. Фото Что такое энтропия в химииЗависимость энтропии от температуры для свинца: Tкип = 2013 К

Следовательно, стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру T ΔS количественно оценивает эту тендецию и называется энтропийным фактором.

Источник

Энтропия. Энергия Гиббса

Понятие энтропии

Абсолютная энтропия веществ и изменение энтропии в процессах

Стандартная энтропия

Стандартная энтропия образования

Энергия Гиббса

Стандартная энергия Гиббса образования

Энтальпийный, энтропийный фактор и направление процесса

Примеры решения задач

Задачи для самостоятельного решения

Понятие энтропии

Энтропия S – функция состояния системы. Энтропия характеризует меру неупорядоченности (хаотичности) состояния системы. Единицами измерения энтропии являются Дж/(моль·К).

Абсолютная энтропия веществ и изменение энтропии в процессах

При абсолютном нуле температур (Т = 0 К) энтропия идеального кристалла любого чистого простого вещества или соединения равна нулю. Равенство нулю S при 0 К позволяет вычислить абсолютные величины энтропий веществ на основе экспериментальных данных о температурной зависимости теплоемкости.

Изменение энтропии в процессе выражается уравнением:

где S(прод.) и S(исх.) – соответственно абсолютные энтропии продуктов реакции и исходных веществ.

На качественном уровне знак S реакции можно оценить по изменению объема системы ΔV в результате процесса. Знак ΔV определяется по изменению количества вещества газообразных реагентов Δnг. Так, для реакции

(Δnг = 1) ΔV > 0, значит, ΔS > 0.

Стандартная энтропия

Величины энтропии принято относить к стандартному состоянию. Чаще всего значения S рассматриваются при Р = 101,325 кПа (1 атм) и температуре Т = 298,15 К (25 о С). Энтропия в этом случае обозначается S о 298 и называется стандартной энтропией при Т = 298,15 К. Следует подчеркнуть, что энтропия вещества S (S о ) увеличивается при повышении температуры.

Стандартная энтропия образования

Стандартная энтропия образования ΔS о f,298 (или ΔS о обр,298) – это изменение энтропии в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии.

Энергия Гиббса

Энергия Гиббса G – функция состояния системы. Энергия Гиббса равна:

Абсолютное значение энергии Гиббса определить невозможно, однако можно вычислить изменение δG в результате протекания процесса.

Критерий самопроизвольного протекания процесса: в системах, находящихся при Р, Т = const, самопроизвольно могут протекать только процессы, сопровождающиеся уменьшением энергии Гиббса (ΔG

Стандартная энергия Гиббса образования

Стандартная энергия Гиббса образования δG о f,298 (или δG о обр,298) – это изменение энергии Гиббса в процессе образования данного вещества (обычно 1 моль), находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии, причем простые вещества пристутствуют в наиболее термодинамически устойчивых состояниях при данной температуре.

Для простых веществ, находящихся в термодинамически наиболее устойчивой форме, δG о f,298 = 0.

Энтальпийный, энтропийный фактор и направление процесса

Проанализируем уравнение ΔG о Т = ΔН о Т — ΔТS о Т. При низких температурах ТΔS о Т мало. Поэтому знак ΔG о Т определяется в основном значением ΔН о Т (энтальпийный фактор). При высоких температурах ТΔS о Т – большая величина, знак Δ G о Т определяется и энтропийным фактором. В зависимости от соотношения энтальпийного (ΔН о Т) и энтропийного (ТΔS о Т) факторов существует четыре варианта процессов.

Примеры решения задач

Задача 1. Используя термодинамические справочные данные, вычислить при 298,15 К изменение энтропии в реакции:

Решение. Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоNH3(г)O2(г)(г)H2O(ж)
S о 298,

Дж/(моль·К)

192,66205,04210,6469,95

В данной реакции ΔV o х.р.,298

Задача 2. Используя справочные термодинамические данные, рассчитать стандартную энтропию образования NH4NO3(к). Отличается ли стандартная энтропия образования NH4NO3(к) от стандартной энтропии этого соединения?

Решение. Стандартной энтропии образования NH4NO3 отвечает изменение энтропии в процессе:

Значения стандартных энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2(г)H2(г)O2(г)NH4NO3(к)
S о 298,

Дж/(моль·К)

191,50130,52205,04151,04

Стандартная энтропия образования NH4NO3(к), равная — 609,06 Дж/(моль·К), отличается от стандартной энтропии нитрата аммония S о 298(NH4NO3(к)) = +151,04 Дж/(моль·К) и по величине, и по знаку. Следует помнить, что стандартные энтропии веществ S о 298 всегда больше нуля, в то время как величины ΔS 0 f,298, как правило, знакопеременны.

Задача 3. Изменение энергии Гиббса реакции:

равно δG о 298= –474,46 кДж. Не проводя термодинамические расчеты, определить, за счет какого фактора (энтальпийного или энтропийного) протекает эта реакция при 298 К и как будет влиять повышение температуры на протекание этой реакции.

Решение. Поскольку протекание рассматриваемой реакции сопровождается существенным уменьшением объема (из 67,2 л (н.у.) исходных веществ образуется 36 мл жидкой воды), изменение энтропии реакции ΔS о о 298 реакции меньше нуля, то она может протекать при температуре 298 К только за счет энтальпийного фактора. Повышение температуры уменьшает равновесный выход воды, поскольку ТΔS о

Задача 4. Используя справочные термодинамические данные, определить может ли при 298,15 К самопроизвольно протекать реакция:

Если реакция не будет самопроизвольно протекать при 298,15 К, оценить возможность ее протекания при более высоких температурах.

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ΔG о х.р.,298 > 0, следовательно, при Т = 298,15 К реакция самопроизвольно протекать не будет.

Поскольку ΔS о х.р.,298 > 0, то при температуре Т>ΔН о /ΔS о величина ΔG о х.р.,298 станет величиной отрицательной и процесс сможет протекать самопроизвольно.

Задача 5. Пользуясь справочными данными по ΔG о f,298 и S о 298, определите ΔH о 298 реакции:

Решение. Значения стандартных энергий Гиббса и энтропий исходных веществ и продуктов реакции приведены ниже:

ВеществоN2O(г)H2(г)N2H4(г)H2O(ж)
ΔG о f,298, кДж/моль104,120159,10-237,23
S о 298, Дж/(моль·К)219,83130,52238,5069,95

ΔG о 298 = ΔН о 298 – ТΔS о 298. Подставляя в это уравнение величины ΔН о 298 и ТΔS о 298, получаем:

ΔН о 298 = –182,25× 10 3 + 298·(–302,94) = –272526,12 Дж = – 272,53 кДж.

Следует подчеркнуть, что поскольку ΔS о 298 выражена в Дж/(моль× К), то при проведении расчетов ΔG 0 298 необходимо также выразить в Дж или величину ΔS 0 298 представить в кДж/(мольK).

Задачи для самостоятельного решения

1. Используя справочные данные, определите стандартную энтропию образования ΔS о f,298 NaHCO3(к).

2. Выберите процесс, изменение энергии Гиббса которого соответствует стандартной энергии Гиббса образования NO2(г):

Источник

Энтропия и ее изменение при химической реакции

Мерой неупорядоченного состояния системы служит термодинамическая функция, получившая название энтропии.

Состояние системы можно характеризовать микросостояниями составляющих ее частиц, т. е. их мгновенными координатами и скоростями различных видов движения в различных направлениях. Число микросостояний системы называется термодинамической вероятностью системы W. Так как число частиц в системе огромно (например, в 1 моль имеется 6,02-1023 частиц), то термодинамическая вероятность системы выражается огромными числами. Поэтому пользуются логарифмом термодинамической вероятности lnW. Величина, равная klnW = S, где к- постоянная Больцмана, а S — энтропия системы. Энтропия, отнесенная к одному молю вещества, имеет единицу величины Дж/(моль×К). Энтропия вещества в стандартном состоянии называется стандартной энтропией вещества S°.

В отличие от других термодинамических функций, можно определить не только изменение энтропии, но и ее абсолютное значение. Это вытекает из высказанного в 1911 г. М Планком постулата, согласно которому «при абсолютном нуле энтропия идеального кристалла равна нулю». Этот постулат получил название третьего закона термодинамики.

По мере повышения температуры растет скорость различных движений частиц, т. е. число их микросостояний и, соответственно, термодинамическая вероятность и энтропия вещества.

При переходе вещества из твердого состояния в жидкое значительно увеличивается неупорядоченность, а следовательно, и энтропия вещества (S0пл). Особенно резко растет неупорядоченность вещества при его переходе из жидкого состояния в газообразное (S°кип). Энтропия увеличивается при переходе вещества из кристаллического состояния в аморфное. Энтропия простых веществ является периодической функцией порядкового номера элемента. Увеличение числа атомов в молекуле и усложнение молекулы приводит к увеличению энтропии.

Изменение энтропии системы в результате протекания химической реакции (DrS°) (энтропия реакции) равно сумме энтропии продуктов реакции за вычетом суммы энтропии исходных веществ с учетом стехиометрических коэффициентов. В результате протекания химической реакции (2.13) происходит изменение энтропии системы (энтропия реакции).

DrS° = lS0L+mS0M-dS0D-bS0B (2.15)

Пример 4. Рассчитайте энтропию реакции CH4 + Н2О = СО + ЗН2 при стандартных состояниях реагентов и продуктов процесса. Решение. В соответствии с уравнением (2.15) запишем:

Ответ: DrS° = 214,39 Дж/К.

Как видно, изменение энтропии системы в результате реакции возросло (энтропия реакции положительная) DrS°> 0. Энтропия процесса будет возрастать, если в ходе реакции объем системы будет увеличиваться. Газообразные вещества называют «носителями энтропии».

Итак, энтропия характеризует число микросостояний и является мерой беспорядка в системе. Ее увеличение говорит о переходе системы в результате термодинамического процесса от более упорядоченного состояния к менее упорядоченному.

Второй закон термодинамики для изолированных систем: в изолированных системах самопроизвольно протекают только процессы, сопровождающиеся возрастанием энтропии: DrS0>0.

Системы, в которых протекают химические реакции, не бывают изолированными, так как они сопровождаются изменением внутренней энергии (тепловым эффектом реакции), т. е. обмениваются энергией с окружающей средой. Химические реакции могут протекать самопроизвольно и без возрастания энтропии, но при этом увеличивается энтропия окружающей среды. Например, химические реакции в организме любого существа сопровождаются уменьшением энтропии (происходит упорядочение системы). Однако организм получает энергию из окружающей среды (пища, воздух). Получение пищевых продуктов сопровождается возрастанием энтропии окружающей среды, т. е. жизнь каждого существа связана с возрастанием энтропии.

Химические реакции обычно сопровождаются изменением как энтропии, так энтальпии.

Энтальпийный и энтропийный факторы изобарно-изотермических процессов. Из предыдущих рассуждений следует, что в химических процессах проявляются две тенденции: а) стремление к образованию прочных связей между частицами, к возникновению более сложных веществ, сопровождающееся понижением энергии системы; б) стремление к разъединению частиц, к беспорядку, характеризуемое возрастанием энтропии. Первая тенденция в изобарно-изотермических условиях характеризуется энтальпийным фактором процесса и количественно выражается через DrS° (кДж/моль). Вторая тенденция характеризуется энтропийным фактором и количественно выражается произведением абсолютной температуры на энтропию процесса, т. е. TDrS° (кДж/моль).

Источник

Энтропия что это такое: объяснение термина простыми словами

Что такое энтропия в химии. Смотреть фото Что такое энтропия в химии. Смотреть картинку Что такое энтропия в химии. Картинка про Что такое энтропия в химии. Фото Что такое энтропия в химииЧто такое энтропия? Этим словом можно охарактеризовать и объяснить почти все процессы в жизни человека (физические и химические процессы, а также социальные явления). Но не все люди понимают значение этого термина и уж тем более не все могут объяснить, что это слово значит. Теория сложна для восприятия, но если добавить в неё простые и понятные примеры из жизни, то разобраться с определением этого многогранного термина будет легче. Но обо всём по порядку.

Энтропия: определение и история появления термина

История появления термина

Энтропия как определение состояния системы была введена в 1865 году немецким физиком Рудольфом Клаузиусом, чтобы описать способность теплоты превращаться в другие формы энергии, главным образом в механическую. С помощью этого понятия в термодинамике описывают состояние термодинамических систем. Приращение этой величины связано с поступлением тепла в систему и с температурой, при которой это поступление происходит.

Определение термина из Википедии

Этот термин долгое время использовался только в механической теории тепла (термодинамике), для которой оно вводилось. Но со временем это определение перешло в другие области и теории. Существует несколько определений термина «энтропия».

Википедия даёт краткое определение для нескольких областей, в которых этот термин используется:«Энтропия (от др.-греч. ἐντροπία «поворот»,«превращение») — часто употребляемый в естественных и точных науках термин. В статистической физике характеризует вероятность осуществления какого-либо макроскопического состояния. Помимо физики, этот термин широко используется в математике: теории информации и математической статистике».

Виды энтропий

Этот термин используется в термодинамике, экономике, теории информации и даже в социологии. Что же он определяет в этих областях?

В физической химии (термодинамике)

Что такое энтропия в химии. Смотреть фото Что такое энтропия в химии. Смотреть картинку Что такое энтропия в химии. Картинка про Что такое энтропия в химии. Фото Что такое энтропия в химииОсновной постулат термодинамики о равновесии: любая изолированная термодинамическая система приходит в равновесное состояние с течением времени и не может из него выйти самопроизвольно. То есть каждая система стремится в равновесное для неё состояние. И если говорить совсем простыми словами, то такое состояние характеризуется беспорядком.

Энтропия — это мера беспорядка. Как определить беспорядок? Один из способов — приписать каждому состоянию число вариантов, которыми это состояние можно реализовать. И чем больше таких способов реализации, тем больше значение энтропии. Чем больше организованно вещество (его структура), тем ниже его неопределённость (хаотичность).

Абсолютное значение энтропии (S абс.) равно изменению имеющейся у вещества или системы энергии во время теплопередачи при данной температуре. Его математическая величина определяется из значения теплопередачи (Q), разделённого на абсолютную температуру (T), при которой происходит процесс: S абс. = Q / T. Это означает, что при передаче большого количества теплоты показатель S абс. увеличится. Тот же эффект будет наблюдаться при теплопередаче в условиях низких температур.

В экономике

Что такое энтропия в химии. Смотреть фото Что такое энтропия в химии. Смотреть картинку Что такое энтропия в химии. Картинка про Что такое энтропия в химии. Фото Что такое энтропия в химииВ экономике используется такое понятие, как коэффициент энтропии. С помощью этого коэффициента исследуют изменение концентрации рынка и её уровень. Чем выше значение коэффициента, тем выше экономическая неопределённость и, следовательно, вероятность появления монополии снижается. Коэффициент помогает косвенно оценить выгоды, приобретённые фирмой в результате возможной монопольной деятельности или при изменении концентрации рынка.

В статистической физике или теории информации

Информационная энтропия (неопределённость)— это мера непредсказуемости или неопределённости некоторой системы. Эта величина помогает определить степень беспорядочности проводимого эксперимента или события. Чем больше количество состояний, в которых может находиться система, тем больше значение неопределённости. Все процессы упорядочивания системы приводят к появлению информации и снижению информационной неопределённости.

С помощью информационной непредсказуемости можно выявить такую пропускную способность канала, которая обеспечит надёжную передачу информации (в системе закодированных символов). А также можно частично предсказывать ход опыта или события, деля их на составные части и высчитывая значение неопределённости для каждой из них. Такой метод статистической физики помогает выявить вероятность события. С его помощью можно расшифровать закодированный текст, анализируя вероятность появления символов и их показатель энтропии.

Существует такое понятие, как абсолютная энтропия языка. Эта величина выражает максимальное количество информации, которое можно передать в единице этого языка. За единицу в этом случае принимают символ алфавита языка (бит).

В социологии

Что такое энтропия в химии. Смотреть фото Что такое энтропия в химии. Смотреть картинку Что такое энтропия в химии. Картинка про Что такое энтропия в химии. Фото Что такое энтропия в химииЗдесь энтропия (информационная неопределённость) является характеристикой отклонения социума (системы) или его звеньев от принятого (эталонного) состояния, а проявляется это в снижении эффективности развития и функционирования системы, ухудшении самоорганизации. Простой пример: сотрудники фирмы так сильно загружены работой (выполнением большого количества отчётов), что не успевают заниматься своей основной деятельностью (выполнением проверок). В этом примере мерой нецелесообразного использования руководством рабочих ресурсов будет являться информационная неопределённость.

Энтропия: тезисно и на примерах

Пример 1. Программа Т9. Если в слове будет небольшое количество опечаток, то программа легко распознает слово и предложит его замену. Чем больше опечаток, тем меньше информации о вводимом слове будет у программы. Следовательно, увеличение беспорядка приведёт к увеличению информационной неопределённости и наоборот, чем больше информации, тем меньше неопределённость.

Пример 2. Игральные кости. Выкинуть комбинацию 12 или 2 можно только одним способом: 1 плюс 1 или 6 плюс 6. А максимальным числом способов реализуется число 7 (имеет 6 возможных комбинаций). Непредсказуемость реализации числа семь самая большая в этом случае.

Пример. Н2О (всем известная вода) в своём жидком агрегатном состоянии будет обладать большей энтропией, чем в твёрдом (лёд). Потому что в кристаллическом твёрдом теле каждый атом занимает определённое положение в кристаллической решётке (порядок), а в жидком состоянии у атомов определённых закреплённых положений нет (беспорядок). То есть тело с более жёсткой упорядоченностью атомов имеет более низкое значение энтропии (S). Белый алмаз без примесей обладает самым низким значением S по сравнению с другими кристаллами.

Пример 2. Чем выше порядок на рабочем столе, тем больше информации можно узнать о вещах, которые на нём находятся. В этом случае упорядоченность предметов снижает энтропию системы «рабочий стол».

Пример 3. Информация о классе больше на уроке, чем на перемене. Энтропия на уроке ниже, так как ученики сидят упорядочено (больше информации о местоположении каждого ученика). А на перемене расположение учеников меняется хаотично, что повышает их энтропию.

Пример. При реакции щелочного металла с водой выделяется водород. Водород-это газ. Так как молекулы газа движутся хаотично и имеют высокую энтропию, то рассматриваемая реакция происходит с увеличением её значения. То есть энтропия химической системы станет выше.

В заключение

Если объединить всё вышесказанное, то получится, что энтропия является мерой беспорядка или неопределённости системы и её частей. Интересен тот факт, что всё в природе стремится к максимуму энтропии, а человек — к максимуму информации. И все рассмотренные выше теории направлены на установление баланса между стремлением человека и естественными природными процессами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *