Что такое околошовная зона и зона термического влияния
Околошовная зона
Околошовная зона – это околошовный участок зоны термического влияния (ЗТВ), который располагается непосредственно у сварного шва и включает несколько рядов крупных зерен.
В этой зоне наиболее резко выражены явления перегрева и закалки, поэтому она является вероятным местом образования холодных трещин при сварке низколегированных сталей. Вот почему изделия после сварки должны охлаждаться медленно во избежание образования в ОШЗ закалочных структур. Также, околошовный участок является зоной химической и структурной неоднородности и концентрации напряжений, что сказывается на скорости коррозии.
На изображении представлены превращения в околошовной зоне. 1-ый участок зоны примыкает непосредственно к металлу шва. Основной металл на этом участке находится в твердо-жидком состоянии. Здесь и происходит собственно сварка, т. е. формирование кристаллитов шва на частично оплавленных зернах основного металла. Участок имеет небольшую ширину. По своему составу и структуре он отличается от соседнего участка основного металла. За время контакта жидкой и твердой фаз в нем протекают диффузионные процессы и развивается химическая неоднородность.
Совокупность первого участка околошовной зоны и пограничного участка металла шва называется зоной сплавления или переходной зоной. На этом участке часто образуются трещины, ножевая коррозия, усталостные разрушения при вибрационной нагрузке, хрупкие разрушения и т. п.
2ой участок околошовной зоны (участок перегрева или участок крупного зерна), включает металл, нагретый до температуры примерно 1200° С. Металл на этом участке претерпевает аллотропические превращения.
3ий участок ОШЗ — участок перекристаллизации (нормализации). Он включает металл, приобретший в процессе нагрева полностью аустенитную структуру.
4ый участок ОШЗ, получивший название участка неполной перекристаллизации, включает металл, нагретый от температуры, при которой во время нагрева начинаются аллотропические превращения (
720° С), до температуры около 880° С. Металл на этом участке подвергается только частичной перекристаллизации. Поэтому здесь наряду с зернами основного металла, не изменившимися в процессе сварки, присутствуют зерна, образовавшиеся при перекристаллизации. Изменения структуры металла на этом участке значительно меньше влияют на качество сварного соединения углеродистых конструкционных сталей, чем изменения, происходящие в первых трех участках.
На 5-ом участке околошовной зоны (участок старения при рекристаллизации) металл нагревается от температуры примерно 500° С до температуры несколько ниже температуры 720° С. Здесь происходит сращивание раздробленных при нагартовке (ковке, прокатке) зерен основного металла и некоторое разупрочнение его по сравнению с исходным состоянием. Снижение прочности наблюдается также при сварке основного металла, подвергшегося упрочняющей термообработке. На этом же участке ОШЗ при сварке углеродистых конструкционных сталей с содержанием до 0,3% С при некоторых условиях наблюдается снижение пластичности и ударной вязкости и повышение прочности металла. Можно предположить, что это обусловливается старением после закалки и дисперсионным твердением.
При сварке короткими участками шов и околошовная зона длительное время находятся в нагретом состоянии. Помимо изменения структур, это увеличивает и протяженность зоны термического влияния. Последующие слои термически воздействуют на ранее наплавленные швы, имеющие структуру литого металла, и создают в них зону термического влияния, строение и структура которой значительно отличаются от зоны термического влияния в основном металле, подвергавшемся прокатке. Эта зона на участке перегрева обычно не имеет крупного зерна и характеризуется мелкозернистыми структурами с повышенными пластическими свойствами.
Дефекты в околошовной зоне могут возникнуть по следующим причинам:
Зона термического влияния
Зоной термического влияния (ЗТВ) называют участки в области шва. В процессе сварки металл в этом месте испытывает различную термонагрузку, она влияет на изменение структуры сплава. В околошовной области влияние нагрева проявляется внутренними напряжениями, трещинами. Прочность соединения снижается. Хотя металл в ЗТВ полностью не расплавляется, он нагревается до критических температур. Структура и физические свойства сплава в области нагрева изменяются. Это сказывается на прочности сварного соединения.
Свойства
На протяжении зоны термического влияния у металла свойства меняются. Они определяются термопластическим циклом, зависят от локальности нагрева. Под воздействием температуры образуется зернистость. Чем дольше сплав прогревается до температуры фазового перехода, тем крупнее зерна. Меняются показатели ударной вязкости, пластичности. Это основные физические свойства металлоизделий.
Как же изменяется ширина зоны термического влияния с увеличением скорости сварки?
Чем быстрее нагревается и остывает деталь, тем меньше ЗТВ. При снижении силы тока сокращается влияние температуры, уменьшается размер ЗТВ.
Структура и размеры зоны термического влияния
Исходя из понятия зоны термического влияния (это нагреваемая область), нетрудно предположить, что на разном удалении от шва деталь нагревается. Для наглядности представим участок околошовной зоны сварки низкоуглеродистой стали.
Схема структурных изменений в зоне термического влияния делится на несколько участков:
1 – неполного расплава. Он является переходным, металл находится в состоянии диффузии наплавки и основного сплава, соединяются две фазы – жидкая и твердая. Протяженность участка небольшая, от 100 до 500 микрон. При температуре 1500°С начинается образование крупных зерен.
2 – перегрева (длина 3–4 мм), в сплаве образуются крупные зерна, характерные для закалочного процесса, сс-железо переходит в у-железо. Ударная вязкость и пластичность стали снижаются. Температура постепенно падает с 1500 °С до 1100°С.
3 – нормализации или перекристаллизации (длина от 200 мкм до 1,5 мм, t – от 1100 до 900°С). Металл находится в температурном интервале. Образуются вторичные мелкие зерна (ферритовая фаза), физические свойства сплава близки к начальным.
4 – неполной перекристаллизации (длина от 500 мкм до 1,2 мм, t – от 900 до 725°С). Мелкие зерна чередуются с перлитными пластинками. Физические свойства хуже, чем на 3-м участке.
5 – рекристаллизации или старения (длина до 1,5 мм, t – от 725 до 450°С). Структура, характерная для нагартованного металла, разрушается. При нагреве до точки пластичности металл восстанавливается, формируются зерна стандартной величины.
6 – синеломкости, переход к основному металлу, температура понижается до 200°С. На сплаве видны синеватые пятна побежалости. Происходит насыщение поверхностного слоя азотом, водородом и углекислым газом с образованием нитридов, карбидов. Прочность стали повышается, пластичность снижается.
При сварке других сталей, в многопроходных швах структура ЗТВ меняется. Размеры зоны термовлияния зависят от нескольких факторов: толщины заготовок, химического состава стали, вида сварочного аппарата, они установливаются экспериментальным путем.
Образование и строение зоны термического влияния
Теплота, выделяемая сварочным источником нагрева, распространяется на прилегающие ко шву участки основного металла. При нагреве и последующем остывании в этих участках изменяются структура и свойства металла. Участок основного металла, подвергающийся в процессе сварки нагреву до температуры, при которой происходят видимые или невидимые структурные изменения, называют зоной термического влияния (околошовной зоной). Наряду с тепловым воздействием основной металл околошовной зоны, как правило, претерпевает и пластическую деформацию.
Температура нагрева различных участков зоны термического влияния находится в пределах от точки плавления металла (у шва) до начальной температуры основного металла. Строение и размеры зоны термического влияния зависят от химического состава и теп-лофизических характеристик свариваемого материала, а также от термического цикла сварки.
Зона термического влияния является обязательным спутником шва при всех видах электрической сварки плавлением. Ширина ее изменяется в достаточно широких пределах в зависимости от способа и режима сварки, состава и толщины основного металла и ряда других факторов. Меньшая ширина зоны относится к условиям сварки, характеризуемым большим перепадом температур.
На рис. 2-47 приведена схема строения зоны термического влияния при сварке однослойного стыкового шва на конструкционных сталях. Рассмотрим на этом примере структурные превращения в околошовной зоне. Первый участок зоны примыкает непосредственно к металлу шва. Основной металл на этом участке находится в твердо-жидком состоянии. Здесь и происходит собственно сварка, т. е. формирование кристаллитов шва на частично оплавленных зернах основного металла. Участок имеет небольшую ширину. По своему составу и структуре он отличается от соседнего участка основного металла. За время контакта жидкой и твердой фаз в нем протекают диффузионные процессы и развивается химическая неоднородность.
Совокупность первого участка околошовной зоны и пограничного участка металла шва именуют зоной сплавления или переходной зоной. Свойства переходной зоны оказывают подчас решающее влияние на работоспособность сварной конструкции. На этом участке часто образуются трещины, ножевая коррозия, усталостные разрушения при вибрационной нагрузке, хрупкие разрушения и т. п. Поэтому дальнейшее изучение свойств переходной зоны представляет первостепенный интерес. Ширина переходной зоны зависит от природы источника нагрева, теплофи-зических свойств, состава и толщины (до определенных пределов) основного металла, режима сварки и других факторов.
Второй участок околошовной зоны, получивший название участка перегрева (участка крупного зерна), включает металл, нагретый до температуры примерно 1200° С до температуры плавления. Металл на этом участке претерпевает аллотропические превращения. При нагреве сс-железо переходит в у-железо, причем в результате значительного перегрева происходит рост аусте-нитного зерна.
Характер вторичной структуры металла на этом участке зависит от его состава и термического цикла сварки. Например, при электрошлаковой сварке низкоуглеродистой стали образуется крупнозернистая видманштеттова структура. Обычно, особенно в тех случаях, когда перегрев сочетается с последующей закалкой, металл на втором участке околошовной зоны обладает худшими свойствами (меньшая пластичность, меньшая стойкость против перехода в хрупкое состояние), чем основной металл вне зоны термического влияния. Задача выбора рациональной технологии сварки сводится в первую очередь к обеспечению наименьшего ухудшения свойств металла на этом участке.
Третий участок околошовной зоны получил название участка перекристаллизации (нормализации). Он включает металл, приобретший в процессе нагрева полностью аустенитную структуру.
Четвертый участок околошовной зоны, получивший название участка неполной перекристаллизации, включает металл, нагретый от температуры, при которой во время нагрева начинаются аллотропические превращения (
720° С), до температуры около 880° С. Металл на этом участке подвергается только частичной перекристаллизации. Поэтому здесь наряду с зернами основного металла, не изменившимися в процессе сварки, присутствуют зерна, образовавшиеся при перекристаллизации. Изменения структуры металла на этом участке значительно меньше влияют на качество сварного соединения углеродистых конструкционных сталей, чем изменения, происходящие в первых трех участках.
На пятом участке околошовной зоны, именуемом участком старения при рекристаллизации, металл нагревается от температуры примерно 500° С до температуры несколько ниже температуры 720° С. Здесь происходит сращивание раздробленных при нагартовке (ковке, прокатке) зерен основного металла и некоторое разупрочнение его по сравнению с исходным состоянием. Снижение прочности наблюдается также при сварке основного металла, подвергшегося упрочняющей термообработке. На этом же участке околошовной зоны при сварке углеродистых конструкционных сталей с содержанием до 0,3% С при некоторых условиях наблюдается снижение пластичности и ударной вязкости и повышение прочности металла. Можно предположить, что это обусловливается старением после закалки и дисперсионным твердением.
Старение после закалки является результатом фиксирования в состоянии пересыщенного твердого раствора при быстром охлаждении металла от температуры 720° С до комнатной температуры примесей (углерода и азота) в количествах, соответствующих их максимальной растворимости при температуре 720° С. В процессе последующего вылеживания происходит распад пересыщенного твердого раствора и выделение избыточного количества углерода и азота в виде тонкодисперсных карбидов и нитридов, скапливающихся вокруг участков решетки.
Тонкодисперсные выделения и скопления атомов уменьшают величину пластической деформации, что приводит к повышению прочности и снижению пластичности металла. На практике следует учитывать возможное для стареющих металлов и сплавов понижение пластичности на этом участке околошовной зоны. Уменьшение пластичности при некоторых условиях может стать Причиной снижения работоспособности конструкции. Следует учитывать также некоторое разупрочнение металла, если он до сварки был подвергнут упрочняющей термической или механической (наклеп) обработке.
Далее расположен участок, нагретый от температуры около 100° С до температуры 500° С. Этот участок в процессе сварки не претерпевает видимых структурных изменений. Однако при сварке низкоуглеродистых сталей, содержащих повышенное количество газов, на узком участке, нагретом до температуры 100—300° С (рис. 2-47, участок 6), наблюдается резкое падение ударной вязкости; оно вызвано, вероятно, старением металла после холодной деформации. Так как этот участок расположен вне зоны концентрации напряжений, наличие его в большинстве случаев не представляет непосредственной опасности для работоспособности конструкции.
Выше была описана схема строения зоны термического влияния при однопроходной сварке конструкционных сталей. При сварке других металлов и сплавов характер структур в околошовной зоне может быть другим.
При многопроходных швах строение околошовной зоны другое. При сварке длинными участками, когда ко времени формирования последующего прохода металл успел остыть до температуры окружающей среды, различие проявляется в менее четком строении околошовной зоны по всему сечению, кроме участка, расположенного у последнего слоя. Это обусловлено повторным термическим воздействием источника нагрева при наложении последующего слоя. При сварке короткими участками околошовная зона длительное время находится при малоизменяющейся температуре, что приводит к замедленному ее остыванию и соответствующему изменению ширины и строения.
При многопроходной сварке околошовная зона размещается не только в основном металле (см. рис. 2-44), но и в металле шва (рис. 2-48). Строение околошовной зоны, расположенной в пределах металла шва, значительно отличается от строения ее при расположении в основном металле, В этом случае в интервале первых трех участков в подавляющем большинстве случаев наблюдается образование мелкозернистых, обладающих повышенной пластичностью структур. Зона крупного зерна вообще отсутствует, что, по-видимому, связано с наличием между столбчатыми кристаллитами прослоек, препятствующих дальнейшему их росту.
Под влиянием теплового и деформационного воздействия сварочного процесса может наблюдаться ухудшение свойств металла зоны термического влияния по сравнению со свойствами основного металла. Принятый технологический процесс сварки должен обеспечивать по возможности оптимальные условия формирования этой зоны и получение необходимого и достаточного качества металла на этом участке, от которого в значительной мере зависит работоспособность сварных конструкций.
Что такое околошовная зона и зона термического влияния
а) Изменение структуры металла при разогреве и остывании шва при сварке.
Во время сварки температура в области шва равняется температуре плавления металла; поэтому металл околошовной зоны, называемой также зоной термического влияния, проходит весь интервал температур от нормальной рабочей температуры до температуры плавления.
В соответствии с этим, металл в разных областях зоны термического влияния получает при нагревании различные структуры в зависимости от нагрева (см. рис. 6). Остывание небольшой области нагретого металла в околошовной зоне, окруженного большими массами холодного, хорошо теплопроводящего металла, происходит достаточно быстро, поэтому весьма часто в околошовной зоне сохраняется в переохлажденном виде структура, отвечающая температуре нагрева, что приводит к развитию внутренних напряжений, повышению хрупкости (снижению ударной вязкости) и образованию трещин. Поэтому первое мероприятие по повышению качества металла шва и околошовной зоны состоит в замедлении остывания шва, что достигается защитой шва шлаками (при шлакообразуюших электродах), флюсом или защитным газом, а в ряде случаев—искусственным подогревом или отжигом.
Рис. 55.Столбчатые кристаллы металла шва
Быстрое падение температуры металла при остывании шва приводит к сохранению крупных (столбчатых) кристаллов, являющихся типичными для первичной кристаллизации сварного шва (рис. 55).
Крупнозернистость шва можно ослабить вводом в него из соответственно подобранных обмазок электродов или флюсов раскислителей (титана, марганца, кремния и других), увеличивающих число очагов кристаллизации.
б) Образование трещин при остывании шва.
Во время интенсивной кристаллизации остывающий металл шва подвергается значительным натяжениям со стороны очагов кристаллизации; между тем он в это время еще недостаточно прочен, вследствие чего в металле нередко образуются трещины, называемые горячими—по температуре образования (рис. 56).
Рис. 56. Горячие трещины при сварке
Горячие трещины, вначале часто не заметные, обладают способностью увеличиваться, особенно при воздействии динамической нагрузки, и могут полностью разрушить соединение; поэтому они являются весьма опасными. Появление горячих трещин зависит от химического состава стали (в этом отношении особенно неблагоприятны большие количества серы и фосфора), от структуры (крупнозернистая и вообще неоднородная структура менее благоприятна), от скорости отвода тепла, а потому и от формы изделия (так, крестовое и тавровое сечения, отводящие тепло по нескольким направлениям, менее благоприятны, чем простое соединение листов встык). Опасность появления горячих трещин уменьшается при легировании и, следовательно, зависит от марки покрытий электродов; в этом отношении полезны марганец (связывающий серу), ванадий, титан. Низколегированные стали вообще менее страдают от горячих трещин; весьма благоприятна сталь 3 спокойная. Зато в стали 3 кипящей трещины появляются достаточно часто, причем с повышением количества углерода опасность появления горячих трещин увеличивается. Всякие концентраторы напряжений, как, например, непровар в корне шва или сварка при низких температурах способствуют появлению горячих трещин. Возможность появления горячих трещин является основной причиной, требующей применения в ответственных сварных конструкциях спокойной стали.
Во время остывания в металле шва и околошовной зоны, нагретом выше 900°, начинает при температуре 900° происходить фазовое превращение аустенита в феррит и перлит. Это связано с уменьшением величины зерна, так как из одного зерна аустенита может образоваться несколько зерен феррита и перлита (вторичная кристаллизация). Как было уже отмечено в § 3 главы II, переход аустенита в феррит связан с увеличением объема, нарушающим нормальный закон остывания (уменьшение объема); вследствие этого появляется значительная неравномерность деформаций в смежных точках, что может служить причиной появления трещин.
При достаточно медленном остывании аустенит переходит в нормальную феррит перлитовую структуру, но в неблагоприятных условиях, при быстром остывании (хотя бы при отрицательной внешней температуре), переохлажденный аустенит при температуре
250° может перейти в мартенсит — весьма хрупкую модификацию феррита с включением атома углерода. Мартенсит весьма склонен к образованию трещин; эти трещины располагаются параллельно шву на некотором расстоянии от него, в области сравнительно низких температур. Такие трещины, называемые холодными, наиболее свойственны кипящей стали. Содержание углерода в стали выше 0,2% также способствует появлению холодных трещин. Таким образом, в околошовной зоне мы имеем несколько опасных областей, где возможно появление трещин.
в) Распределение температуры в металле при сварке.
Сварка при низких температурах. Протяженность околошовной зоны (зоны термического влияния) зависит от количества тепла, вводимого электрической дугой (т. е. от силы тока), и скорости сварки. В соответствии с законами теплопроводности по мере удаления от источника тепла (дуги) температура свариваемого изделия уменьшается по вогнутой кривой (рис. 57). Дуга—подвижный источник тепла, оставляющий за собой остывающий горячий сварной шов; в соответствии с этим за дугой происходит более медленное остывание, чем нагревание металла перед дугой, и изотермы термического влияния дуги представляют собой выгнутые, эксцентрично расположенные кривые (рис. 57). Чем скорость сварки больше, тем кривые изотерм более узки и остывание в поперечном направлении происходит более интенсивно (рис. 58); если при этом большая скорость сварки не компенсируется повышенной силой тока, возможно образование вышеуказанных хрупких областей и появление параллельных шву трещин. Низкие отрицательные температуры увеличивают интенсивность остывания и усугубляют возможность хрупкого разрушения, тем более, что при низких температурах склонность стали к хрупкому излому вообще повышается. Однако сварка хорошего качества при низких температурах (—30°) вполне возможна, что доказывается широким применением сварки и в зимнее время.
Рис. 57. Изменение температуры основного металла при сварке (изотермы) при движении электрода вдоль шва со скоростью 0,1 м/сек
Для сварки при низких температурах необходимо иметь:
а) металл с малым содержанием серы, фосфора и углерода (не более 0,2%), лучше спокойной плавки;
б) соответствующий и тщательно разработанный технологический процесс сварки с применением качественных электродов (в требуемых случаях с искусственным подогревом), гарантирующий отсутствие непроваров;
в) конструктивную форму изделия, в которой не было бы концентрации швов и связанных с этим больших сварочных напряжений.
Весьма существенное значение имеет тщательное выполнение кромок изделий без надрезов и других мест концентрации напряжений. Большинство повреждений сварных конструкций при низких температурах во время сварки или после сварки связано с концентрацией напряжений у надрезов металла и непроваров, а также с появлением холодных трещин.
Сварка при низких температурах отражается на механических характеристиках сварного соединения: существенно снижаются ударная вязкость (рис. 60) и угол загиба; предел прочности остается без изменения. Структура металла при этом часто получается переохлажденной.
Сварочные работы: Практическое пособие для электрогазосварщика (9 стр.)
Исходя из этой формулы устанавливаем, что поперечное сечение однопроходного или многопроходного шва (валика), выполненного дуговой сваркой, будет находиться в прямой зависимости от ее погонной энергии.
Контрольные вопросы:
1. По какой формуле можно определить эффективную тепловую мощность?
2. Что характеризует коэффициент в формуле тепловой мощности сварочной дуги?
3. Что вы знаете об эффективном КПД нагрева изделия?
4. При каком виде сварки наиболее рационально используется теплота, выделяемая в дуге?
5. Какая температура нагрева электрода является оптимальной для формирования качественного сварного шва?
6. Что такое погонная энергия сварки и на что она влияет?
7. Формирование и кристаллизация металла шва, строение зоны термического влияния
Дуга в процессе сварки оказывает давление на сварочную ванну. Это приводит к тому, что жидкий металл из-под основания дуги вытесняется, дуга несколько погружается. При ручной сварке толстопокрытыми электродами глубина погружения дуги составляет 3-4 мм, при сварке под флюсами – 8-10 мм. По мере продвижения дуги в хвостовой части зоны плавления металла происходит интенсивный отвод тепла в массу холодного металла. Кристаллиты растут в направлении, перпендикулярном к поверхности теплоотвода. Кристаллизация металла шва, т. е. переход из жидкого состояния в твердое, протекает с остановками. После охлаждения первого слоя происходит некоторая задержка кристаллизации из-за ухудшения теплоотвода и выделения скрытой теплоты кристаллизации первого слоя. После некоторой задержки вследствие непрекращающегося теплоотвода в глубь основного металла начинает кристаллизоваться второй слой и т. д. Таким образом, периодически происходит кристаллизация по всему продольному и поперечному сечению металла шва.
Толщина кристаллизационных слоев может колебаться от десятых долей миллиметра до нескольких миллиметров. Закристаллизовавшийся металл однопроходного шва имеет столбчатое строение, это обусловлено тем, что в направлении отвода теплоты (перпендикулярно границе плавления) кристаллиты растут быстрее, чем в других направлениях. Наибольшая толщина кристаллизационных слоев наблюдается в металле шва при электрошлаковой сварке. Ось каждого кристаллита обычно не прямая, она несколько изогнута в направлении вершины шва (рис. 17).
Рис. 17. Направление столбчатых кристаллитов в швах, выполненных электрошлаковой сваркой: а – разрез вдоль шва; б – разрез поперек шва
При сварке под флюсом уменьшается скорость охлаждения шва, это создает благоприятные условия для удаления газов из металла шва и всплывания шлаковых включений, но размер кристаллитов резко увеличивается, что ухудшает прочностные свойства металла шва. Чтобы избежать ухудшения свойств, необходимо измельчить структуру шва. Для этого в жидкий металл вводятся добавки (модификаторы) – алюминий, титан или ванадий. В процессе кристаллизации металла шва возникает неравномерное распределение составляющих сплава. Это в металловедении называют ликвацией.
Ликвация – это прежде всего неоднородность по химическому составу. Ликвация зональная характеризуется различием химического состава периферийной зоны и центральной части металла шва.
Дендритная (внутрикристаллическая) ликвация характеризуется неоднородностью химического состава отдельных кристаллов. Центральная часть дендритов состоит, как правило, из чистого твердого раствора, а граница между дендритами наиболее загрязнена вредными примесями, поэтому разрушение металла шва чаще всего происходит по границам зерен. Чтобы избежать вредного влияния ликвации (особенно при сварке легированных сталей) необходимо производить термическую обработку для выравнивания химического состава металла. На свойства сварного соединения наряду с химическим составом металла шва значительное влияние оказывает и структура металла шва, а также структура зоны термического влияния околошовной зоны. В процессе сварки нагревается основной металл и в нем происходят структурные изменения под воздействием высоких температур.
Область нагрева называют зоной термического влияния. В дальнейшем применяется сокращенное название ЗТВ. Температура, до которой нагреваются отдельные участки ЗТВ, изменяется от температуры плавления до окружающей температуры. Рассмотрим структуры ЗТВ для сталей, наиболее распространенных при сварке конструкций (до 0,20 % углерода) (рис. 18).
Рис. 18. Схема изменения структур околошовной зоны однопроходного шва:
а – температурные границы участков околошовной зоны; б – часть диаграммы состояния сплавов Fe-C
В зависимости от температуры нагрева, структурных и физико-механических изменений в ЗТВ различают следующие участки: 1) неполного расплавления; 2) перегрева; 3) нормализации; 4) неполной перекристаллизации; 5) рекристаллизации; 6) синеломкости.
Участок неполного расплавления является переходным от наплавленного металла к основному, его часто называют переходной зоной. В процессе сварки этот участок находится в твердожидком состоянии, и поэтому переходная зона отличается по химическому составу как от основного, так и от наплавленного металла. Свойства этого участка оказывают в большинстве случаев решающее влияние на работоспособность сварной конструкции.
Участок перегрева определяется температурными границами: от температуры участка неполного расплавления до температуры около 1100 °С. В некоторых случаях при ручной сварке в зоне перегрева сталей с повышенным содержанием углерода образуется крупнозернистая структура, которая заметно снижает пластичность металла и увеличивает его хрупкость.
Ударная вязкость снижается на 25 % и более.
Участок нормализации охватывает металл, нагреваемый в процессе сварки от температуры несколько выше линии критических превращений до температуры ниже 1000 °С. На этом участке происходит образование мелкозернистой вторичной структуры. Механические свойства металла на участке нормализации обычно выше свойств основного металла в его исходном состоянии.
Участок неполной перекристаллизации для низкоуглеродистой стали определяется температурным диапазоном от 725 до 850 °С. Металл на этом участке подвергается только частичной перекристаллизации. Наряду с зернами, образовавшимися в результате перекристаллизации, присутствуют зерна исходного металла.
Участок рекристаллизации наблюдается при сварке стали, подвергшейся пластической деформации (прокат). На этом участке в интервале температур 450-700 °С наблюдается некоторое измельчение зерен, что не изменяет механических свойств ЗТВ металла.
Участок синеломкости охватывает температурный диапазон от 200 до 400 °С. На этом участке наблюдаются синие цвета побежалости на поверхности металла. При сварке низкоуглеродистых сталей на участке наблюдается резкое падение ударной вязкости из-за снижения пластичности. Это происходит в тех случаях, когда в сталях содержится кислород, азот и водород в несколько избыточном количестве.
Размеры отдельных участков ЗТВ и общая ширина ее зависят от условий нагрева, охлаждения и способов сварки.
Контрольные вопросы:
1. Расскажите о формировании и структуре шва в момент перехода металла из жидкого состояния в твердое.
2. Чем вызвано направление роста кристаллов в процессе охлаждения?
3. Каково влияние скорости охлаждения на структуру шва?
4. Каково влияние химического состава на структуру шва?
5. Что такое зона термического влияния и ее основные участки?
6. Дайте краткую характеристику участков зоны термического влияния.
8. Старение и коррозия металла сварных соединений
Старением металла называют процесс изменения структуры и, как следствие, механических свойств металла со временем. Он проявляется в повышении твердости и хрупкости металла. Если процесс старения происходит при комнатной температуре, то он называется естественным старением. Если процесс старения происходит при нагреве до заданной температуры с последующим охлаждением – искусственным старением.
Искусственному старению подвергают в основном сплавы титана и алюминия для повышения прочности этих сплавов. Повышение прочности при искусственном старении оценивается при испытании на ударную вязкость металла шва.
Коррозией называется процесс физико-химического разрушения металла под влиянием внешней среды.
Коррозионная стойкость сварных соединений в различных средах и при различных температурах имеет большое значение, так как сварные швы и соединения часто работают в средах, способных вызвать разрушающую коррозию, таких как атмосферная влага, морская вода, растворы кислот и щелочей; совместное действие этих факторов.
По характеру процесса различают химическую и электрохимическую коррозию.
Химическая коррозия есть процесс окисления металла при непосредственном воздействии окружающей среды без присутствия электрического тока. Окисление железа и его сплавов происходит на воздухе, в дистиллированной воде, в концентрированных агрессивных средах и т. д.
Электрохимическая коррозия характеризуется тем, что она протекает в электролитах (растворах солей, кислот, щелочей) и сопровождается появлением электрического тока.