Что такое онтология в информатике

Онтология (информатика)

Онтоло́гия (в информатике) — это попытка всеобъемлющей и детальной формализации некоторой области знаний с помощью концептуальной схемы. Обычно такая схема состоит из структуры данных, содержащей все релевантные классы объектов, их связи и правила (теоремы, ограничения), принятые в этой области. Этот термин в информатике является производным от древнего философского понятия «онтология».

Содержание

Отличия от философского понятия онтологии

Хотя термин «онтология» изначально философский, в информатике он принял самостоятельное значение. Здесь есть два существенных отличия:

Элементы онтологий

Современные онтологии строятся по большей части одинаково, независимо от языка написания. Обычно они состоят из экземпляров, понятий, атрибутов и отношений.

Экземпляры

Экземпляры (англ. instances ) или индивиды (англ. individuals ) — это основные, нижнеуровневые компоненты онтологии. Экземпляры могут представлять собой как физические объекты (люди, дома, планеты), так и абстрактные (числа, слова). Строго говоря, онтология может обойтись и без конкретных объектов. Однако, одной из главных целей онтологии является классификация таких объектов, поэтому они также включаются.

Понятия

Понятия (англ. concepts ) или классы (англ. classes ) — абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Пример:

Атрибуты

Объекты в онтологии могут иметь атрибуты. Каждый атрибут имеет по крайней мере имя и значение и используется для хранения информации, которая специфична для объекта и привязана к нему. Например, объект Ford Explorer имеет такие атрибуты, как:

Значение атрибута может быть сложным типом данных. В данном примере значение атрибута, который называется Двигатель, является списком значений простых типов данных.

Отношения

Важная роль атрибутов заключается в том, чтобы определять отношения (зависимости) между объектами онтологии. Обычно отношением является атрибут, значением которого является другой объект.

Предположим, что в онтологии автомобилей присутствует два объекта — автомобиль Ford Explorer и Ford Bronco. Пусть Bronco — это модель-наследник Explorer, тогда отношение между Ford Explorer и Ford Bronco определим как атрибут «isSuccessorOf» со значением «Explorer» для объекта Bronco (следует заметить, что в языках описания онтологий существуют предопределенные отношения наследования).

Специализированные и общие онтологии

Специализированные (предметно-ориентированные) онтологии — это представление какой-либо области знаний или части реального мира. В такой онтологии содержатся специальные для этой области значения терминов. К примеру, слово «поле» в сельском хозяйстве означает участок земли (Поле (сельское хозяйство)), в физике — один из видов материи (Поле (физика)), в математике — класс алгебраических систем (Поле (алгебра)).

Общие онтологии используются для представления понятий, общих для большого числа областей. Такие онтологии содержат базовый набор терминов, глоссарий или тезаурус, используемый для описания терминов предметных областей.

Языки описания онтологий

Язык описания онтологий — формальный язык, используемый для кодирования онтологии. Существует несколько подобных языков (список неполон):

Для работы с языками онтологий существует несколько видов технологий: редакторы онтологий (для создания онтологий), СУБД онтологий (для хранения и обращения к онтологии) и хранилища онтологий (для работы с несколькими онтологиями).

Источник

С чего начинаются онтологии

И в качестве вводного курса копипаста из перевода на русском языке для поднятия интереса к этой теме.

За перевод спасибо неизвестному переводчику Филяеву А.И.

В будущем, надеюсь, продолжу данную тему по мере освоения материала и получения новых знаний.

Зачем создавать онтологию?

В последние годы разработка онтологий — формальных явных описаний терминов предметной области и отношений между ними (Gruber 1993) – переходит из мира лабораторий по искусственному интеллекту на рабочие столы экспертов по предметным областям. Во всемирной паутине онтологии стали обычным явлением. Онтологии в сети варьируются от больших таксономий, категоризирующих веб-сайты (как на сайте Yahoo!), до категоризаций продаваемых товаров и их характеристик (как на сайте Amazon.com). Консорциум WWW (W3C) разрабатывает RDF (Resource Description Framework) (Brickley and Guha 1999), язык кодирования знаний на веб-страницах, для того, чтобы сделать их понятными для электронных агентов, которые осуществляют поиск информации. Управление перспективных исследований и разработок министерства обороны США (The Defense Advanced Research Projects Agency, DARPA) в сотрудничестве с W3C разрабатывает Язык Разметки для Агентов DARPA (DARPA Agent Markup Language, DAML), расширяя RDF более выразительными конструкциями, предназначенными для облегчения взаимодействия агентов в сети (Hendler and McGuinness 2000). Во многих дисциплинах сейчас разрабатываются стандартные онтологии, которые могут использоваться экспертами по предметным областям для совместного использования и аннотирования информации в своей области. Например, в области медицины созданы большие стандартные, структурированные словари, такие как snomed (Price and Spackman 2000) и семантическая сеть Системы Унифицированного Медицинского Языка (the Unified Medical Language System) (Humphreys and Lindberg 1993). Также появляются обширные общецелевые онтологии. Например, Программа ООН по развитию (the United Nations Development Program) и компания Dun & Bradstreet объединили усилия для разработки онтологии UNSPSC, которая предоставляет терминологию товаров и услуг (http://www.unspsc.org/).

Онтология определяет общий словарь для ученых, которым нужно совместно использовать информацию в предметной области. Она включает машинно-интерпретируемые формулировки основных понятий предметной области и отношения между ними.

Создание явных допущений в предметной области, лежащих в основе реализации, дает возможность легко изменить эти допущения при изменении наших знаний о предметной области. Жесткое кодирование предположений о мире на языке программирования приводит к тому, что эти предположения не только сложно найти и понять, но и также сложно изменить, особенно непрограммисту. Кроме того, явные спецификации знаний в предметной области полезны для новых пользователей, которые должны узнать значения терминов предметной области.

Отделение знаний предметной области от оперативных знаний – это еще один вариант общего применения онтологий. Мы можем описать задачу конфигурирования продукта из его компонентов в соответствии с требуемой спецификацией и внедрить программу, которая делает эту конфигурацию независимой от продукта и самих компонентов (McGuinness and Wright 1998). После этого мы можем разработать онтологию компонентов и характеристик ЭВМ и применить этот алгоритм для конфигурирования нестандартных ЭВМ. Мы также можем использовать тот же алгоритм для конфигурирования лифтов, если мы предоставим ему онтологию компонентов лифта (Rothenfluh et al. 1996).

Анализ знаний в предметной области возможен, когда имеется декларативная спецификация терминов. Формальный анализ терминов чрезвычайно ценен как при попытке повторного использования существующих онтологий, так и при их расширении (McGuinness et al. 2000).

Часто онтология предметной области сама по себе не является целью. Разработка онтологии сродни определению набора данных и их структуры для использования другими программами. Методы решения задач, доменно-независимые приложения и программные агенты используют в качестве данных онтологии и базы знаний, построенные на основе этих онтологий. К примеру, в этой статье мы разрабатываем онтологию вин и еды, а также подходящие комбинации вин и блюд. Затем эту онтологию можно будет использовать как основу для приложений в наборе инструментов для управления рестораном: Одно приложение могло бы составлять список вин для меню на текущий день или отвечать на запросы официантов и посетителей. Другое приложение могло бы анализировать инвентарный перечень винного погреба и предлагать категории вин для пополнения и конкретные вина для закупки к следующим меню или для поваренных книг.

Источник

Онтологии в информационной безопасности

Как онтологии могут помочь быстрее и лучше защищать мир от угроз — и не только.

Что такое онтология в информатике. Смотреть фото Что такое онтология в информатике. Смотреть картинку Что такое онтология в информатике. Картинка про Что такое онтология в информатике. Фото Что такое онтология в информатике

Что такое онтология в информатике. Смотреть фото Что такое онтология в информатике. Смотреть картинку Что такое онтология в информатике. Картинка про Что такое онтология в информатике. Фото Что такое онтология в информатике

В «Лаборатории Касперского» мы регулярно анализируем новые технологии и ищем им применение в сфере кибербезопасности. В этом посте я хочу рассказать о том, как для нужд безопасности можно использовать онтологии — и что это вообще такое. Пусть этот подход пока не очень популярен (это лишь вопрос времени), однако он способен существенно упростить и ускорить многие процессы.

Что такое онтология — с точки зрения информационных систем

Чем могут быть полезны онтологии в информационных системах? Тем, что, используя специальный язык (например, OWL, Web Ontology Language), можно разработать инструменты описания и анализа онтологий для выявления скрытых связей, недостающих деталей или других неочевидных вещей. Если вернуться к примеру с комиксами: с помощью анализа онтологии вселенной «Марвел» мы сможем найти наилучшую команду из супергероев и одержать победу над врагом с минимальными усилиями.

Например, для этого нам подошла бы платформа Protégé, разработанная в Стэнфордском университете. Изначально она предназначалась для анализа биомедицинских данных, а в настоящее время это бесплатный проект с открытым исходным кодом для создания онтологий любых областей знаний.

В чем разница между онтологиями и машинным обучением?

Вам может показаться, что у инструментов для работы с онтологиями много общего с алгоритмами машинного обучения, но есть существенное различие. Модели машинного обучения анализируют большой массив данных — и на его основе делают прогноз относительно новых объектов. Например, модель просматривает 100 вредоносных писем и выделяет в них конкретные параметры. Когда модель видит новое электронное письмо с некоторыми из этих параметров, она делает вывод, что оно тоже вредоносное.

Онтология тоже анализирует данные, но вместо прогнозов она указывает на информацию, которая логически вытекает из заданных параметров. Она не учится и не использует предыдущий опыт для анализа информации. Если мы укажем в онтологии, что письмо А — фишинговое и что все фишинговые письма вредоносные, а затем заявим, что письмо В — фишинговое, то онтология предложит единственный логический вывод: письмо В — вредоносное. Если мы предложим проанализировать письмо С, но не дадим никаких характеристик, результат будет нулевым.

Онтологии и машинное обучение могут отлично дополнять друг друга: например, онтологии позволяют оптимизировать и ускорять модели машинного обучения. Благодаря имитации логических рассуждений и способности автоматически классифицировать и связывать информацию они значительно упрощают процесс обучения моделей. А использование онтологических аксиом — правил, описывающих взаимоотношение понятий, — помогает сузить область поиска решения, тем самым сэкономив время.

Как еще можно использовать онтологии в кибербезопасности?

В кибербезопасности онтологии также используются для выявления скрытых возможностей или слабых сторон. При помощи онтологий можно проанализировать инфраструктуру компании с точки зрения защищенности от конкретной киберугрозы, например программ-вымогателей. Для этого на платформе создаем онтологию (подробное описание) мер защиты от вымогателей и синхронизируем со списком действующих защитных мер организации.

Точно таким же образом, как и в примере с анализом героев «Марвел», онтология покажет, достаточно ли защищена инфраструктура и требуются ли доработки. Аналогично можно протестировать, отвечает ли система ИТ-безопасности стандартам IEC, NIST или другим. Это же можно делать и вручную, но такая проверка будет гораздо дольше и затратнее.

Также онтологии упрощают жизнь специалистов по информационной безопасности еще и в том плане, что они позволяют им говорить друг с другом на одном языке. Онтология кибербезопасности поможет узнать о проблемах и атаках, с которыми сталкивались другие специалисты, и грамотно внедрить защитные меры. Кроме того, онтологии полезны при создании архитектуры информационной безопасности с нуля — имея систематизированное представление обо всех уязвимостях, атаках и их связях, эксперты могут эффективней выстраивать защиту.

Может показаться, что онтологии — это что-то далекое и сложное, но поверьте, вы сталкиваетесь с ними почти каждый день. Например, когда ищете что-то в Интернете. Именно онтологии лежат в основе семантического поиска. Проще говоря, они позволяют обрабатывать запрос целиком, а не через значение отдельных слов, что значительно улучшает качество поисковой выдачи. Аналогичные технологии использует Pinterest — социальная сеть для обмена изображениями. Она анализирует действия и реакции своих пользователей, а затем использует эти данные для совершенствования рекомендаций и таргетированной рекламы.

Это далеко не все примеры использования онтологий — они могут применяться в самых разных областях. Мы в «Лаборатории Касперского» заинтересованы не только перспективой развития онтологий в кибербезопасности, но и за ее пределами — это огромные возможности для бизнеса.

Источник

Cybernetics Wiki

This wiki’s URL has been migrated to the primary fandom.com domain.Read more here

Онтология (информатика)

Онтологии применяются в искусственном интеллекте, семантической паутине (Semantic Web) и технологии программирования как форма представления знаний о реальном мире или его части.

Содержание

Отличия от философского понятия онтологии [ ]

Хотя термин «онтология» изначально философский, в информатике он принял самостоятельное значение. Здесь есть два существенных отличия:

Элементы онтологий [ ]

Экземпляры [ ]

Экземпляры ( англ. instances ) (или индивиды ( англ. individuals )) — это основные, нижнеуровневые компоненты онтологии. Экземпляры могут представлять собой как физические объекты (люди, дома, планеты), так и абстрактные (числа, слова). Строго говоря, онтология может обойтись и без конкретных объектов. Однако одной из главных целей онтологии является классификация таких объектов, поэтому они также включаются.

Понятия [ ]

Понятия ( англ. concepts ) (или классы ( англ. classes )) — это абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Пример:

Атрибуты [ ]

Объекты в онтологии могут иметь атрибуты. Каждый атрибут имеет по крайней мере имя и значение, и используется для хранения информации, которая специфична для объекта и привязана к нему. Например, объект the Ford Explorer имеет такие атрибуты, как:

Отношения [ ]

Важная роль атрибутов заключается в том, чтобы определять зависимости (отношения) между объектами онтологии. Обычно отношением является атрибут, значением которого является другой объект.

Предположим, что в онтологии автомобилей присутствует два объекта — автомобиль Ford Explorer и Ford Bronco. Пусть Bronco — это модель-наследник Explorer, тогда отношение между Ford Explorer и Ford Bronco определим как атрибут «isSuccessorOf» со значением «Explorer» для объекта Bronco (следует заметить, что в языках описания онтологий существуют предопределенные отношения наследования).

Специализированные и общие онтологии [ ]

Специализированные (предметно-ориентированные) онтологии (онтологии предметных областей-ПрО) — это представление какой-либо области знаний или части реального мира. В такой онтологии содержатся специальные для этой области значения терминов. К примеру, слово « поле » в сельском хозяйстве означает участок земли (см. здесь ), в физике — один из видов материи (см. здесь ), в математике — особую структуру (см. здесь ).

Если использующая специализированные онтологии система развивается, то может потребоваться их объединение. И для инженера по онтологиям это серьёзная задача. Подобные онтологии часто несовместимы друг с другом, хотя могут представлять близкие области. Разница может появляться из-за особенностей местной культуры, идеологии и т. п., или вследствие использования другого языка описания.

Сегодня объединение онтологий приходится выполнять вручную, это трудоёмкий, медленный и дорогостоящий процесс. Использование базисной онтологии — единого глоссария — несколько упрощает эту работу. Есть научные работы по технологиям объединения, но они по большей части теоретические.

Языки описания онтологий [ ]

Для работы с языками онтологий существует несколько видов технологий: редакторы онтологий (для создания онтологий), DBMS онтологий (для хранения и обращения к онтологии) и хранилища онтологий (для работы с несколькими онтологиями).

Источник

Онтологии в компьютерных системах


Роль онтологий в современной компьютерной науке


Автор: Лапшин Владимир Анатольевич
Источник: RSDN Magazine #4-2009

Опубликовано: 23.07.2010
Исправлено: 10.12.2016
Версия текста: 1.0

Что такое онтология


Мотивация

Хотя термин «онтология» сейчас достаточно популярен в программистском сообществе, четкого его понимания еще не сложилось. Знания о том, что такое онтологии, и как их использовать при создании информационных систем, до сих пор являются чем-то эзотерическим, доступным только избранным специалистам по обработке знаний. Другое мнение состоит в том, что онтологии представляют собой нечто абстрактное, неприменимое на практике «игрушечное знание», которым занимаются в своих «отвлеченных сферах» так называемые «crazy scientists», в просторечье именуемые «ботанами». Между тем, термин «онтология» совсем не сложен для понимания и был придуман для достижения вполне практических целей. В этой статье автор постарается объяснить, для чего были придуманы онтологии, и как их можно использовать при построении информационных систем.

Конечно, представить в журнальной публикации подробную онтологию использования онтологий в компьютерных системах не представляется возможным. Для полноценного описания всех аспектов такого использования необходима целая книга. В связи с этим автор рад представить свою книгу «Онтологии в компьютерных системах», изданную в 2010 году в издательстве «Научный мир» [1].

Онтологии, упрощенно говоря, представляют собой описания знаний, сделанные достаточно формально, чтобы быть обработаны компьютерами. Такие формальные описания используются в самых различных и порой достаточно неожиданных областях компьютерной науки. Далее мы рассмотрим, какие обстоятельства привели к возникновению термина «онтология», а также опишем некоторые популярные аспекты его использования при написании программ.

Онтологии как интерфейсы интеллектуальных систем

Термин «онтология» впервые появился в работе Томаса Грубера [2], в которой рассматривались различные аспекты взаимодействия интеллектуальных систем между собой и с человеком. Интеллектуальными системами называются программы, которые моделируют некоторые аспекты интеллектуальной деятельности человека. Конечно, любая программа занимается таким моделированием в той или иной степени, ведь именно в этом и состоит ценность компьютера для человека – компьютерная система позволяет освободить человека от выполнения какой-то однотипной деятельности. Эта деятельность может быть весьма сложной и изощренной, но она всегда однотипна: компьютерная система, созданная, например, для редактирования графики, не может быть использована для управления комбайнами во время сенокоса. В этом смысле знания, которые закладывает в программу ее создатель (т.е. алгоритм этой программы), всегда статичны, они не меняются (конечно, за исключением очень конкретных знаний, которые мы называем «данными программы»). Интеллектуальная система в этом смысле более универсальна – в ней знание о том, что надо делать в процессе исполнения программы, не вшито в программу раз и навсегда, но может меняться. Если так, то эти знания необходимо передавать программе как данные, т.е. возникает необходимость их описания.

Знания, которые заложены в компьютерных программах, можно разделить на два сорта:

Таким образом, при создании интеллектуальной системы приходится учитывать такое разделение знаний и придумывать какие-то программные инструменты для оперирования этими знаниями.

Томас Грубер рассматривал вопросы взаимодействия интеллектуальных систем между собой, а также с человеком. Идея Грубера состояла в том, чтобы позволить интеллектуальным системам обмениваться между собой заложенными в них знаниями о мирах задач. Если внутри интеллектуальной системы знания о мире могут быть закодированы как угодно, то для обмена этими знаниями с другой интеллектуальной системой необходимо предоставить описание этих знаний. Это описание должно быть в достаточной степени формальным, чтобы быть понятным другой системе, а также должен быть известен язык этого описания. Кроме того, описание должно быть понятно также и человеку. Для этого Грубер предложил описывать знания двумя способами:

Таким образом, онтология по Груберу представляет собой описание декларативных знаний, сделанное в виде классов с отношением иерархии между ними. К этому описанию, предназначенному для чтения человеком, присоединено описание в канонической форме, которое предназначено для чтения машинами. Каждая интеллектуальная система может предоставлять несколько таких описаний, соответствующих различным областям хранящихся в ней декларативных знаний и, таким образом, выступает как хранилище библиотеки онтологий. Грубер представлял, что интеллектуальные системы будут выступать как библиотеки онтологий и свободно обмениваться онтологиями между собой. При этом библиотеке онтологий уже не обязательно быть интеллектуальной системой, достаточно просто предоставлять сервис по передаче онтологий по требованию.

Современное понимание термина «онтология»


Онтологии в Интернет

До сих пор повествование было посвящено довольно абстрактным вещам, настало время перейти к чему-то более конкретному. В данном разделе мы рассмотрим, как онтологии применяются для описания содержимого Web-страниц.

Зачем нужно описывать содержимое Web-страницы

ПРИМЕЧАНИЕ

Термин «Web 3.0» является производным от «Web 2.0». Этим термином обозначают текущее состояние Web, которое принципиально отличается от того, в котором Web находился при его зарождении. С самого начала Web задумывался как распределенное по всему миру хранилище гипертекстовых документов, таковым Web остается и сегодня. Но с начала нынешнего века, с ростом числа пользователей, Web превратился в социальный феномен. Сегодня популярными сервисами являются не только те, которые предоставляют информацию, но и те, которые просто обеспечивают общение пользователей друг с другом. Такие сервисы получили название «социальные сети». Социальная сеть – совершенно новый феномен, который отличается от сети обычных гипертекстовых документов, как по принципам использования, так и по идеологии. Web социальных сетей – это Web 2.0. Одним из наиболее существенных отличий Web 2.0 от Web предыдущего поколения является то, что содержимое Web-страниц формируется пользователями, тогда как в старом Web это была задача разработчиков хранилищ документов – сайтов, на которых находились Web-страницы.

Формальная спецификация содержимого Web-документа дает возможность поисковой программе делать выводы о соответствии поискового запроса данному Web-документу не только на основе синтаксической информации, получаемой из текста этого документа, но и основываясь на семантике содержания данного документа. Это может кардинально улучшить качество Web-поиска, так как описание мира Web-страницы, понятное поисковой программе, дает последней гораздо больше информации, чем она может получить из неструктурированного текста.

Идеи умного Web давно были восприняты сообществом W3, в результате чего уже на протяжении более десяти лет ведутся работы по воплощению этих идей в жизнь. Первой задачей, которую необходимо решить для этого, является разработка стандартного языка, который был бы понятен всем поисковым программам. На настоящий момент разработаны два таких языка:

Язык RDF

Язык RDF [6] разработан для того, чтобы описывать содержимое Web. В Semantic Web, когда говорят о каких-то сущностях Web, называют эти сущности ресурсами. RDF представляет собой язык для описания таких ресурсов. Ввиду того что описания семантики документов должны быть понятны компьютерам, необходимо разработать специальные программы-агенты, которые производили бы такое чтение. Также необходимо обеспечить возможность обмена информацией между различными программными агентами. Таким образом, под RDF подразумевается не только сам язык, но также и различные дополнительные программные модули, необходимые для обеспечения полноценного чтения и обмена информацией, записанной на этом языке. Этот факт подчеркивается в названии языка RDF.

Главный элемент языка RDF–это тройка, или триплет. Тройка представляет собой совокупность трех сущностей:

Предикаты еще часто называют свойствами. Тройка имеет также представление в виде графа вида субъект–предикат–объект, где субъект и объект представлены как узлы, а предикат выступает в роли ребра, которое эти узлы соединяет.

Дескрипционная логика (Description Logic – DL) базируется на формализмах семантических сетей [8] и фреймов [9], но использует аппарат математической логики. В математической логике производится явное разделение на синтаксис и семантику. Синтаксис задает язык, с помощью которого записываются различные высказывания об элементах мира данной логической системы. Семантика задает ту часть описываемого мира, которая удовлетворяет заданным ограничениям. Таких частей может быть более одной или даже бесконечно много. Каждая такая часть мира называется моделью данной логической системы. Опишем ограничения, налагаемые на синтаксис и семантику дескрипционных логик.

Синтаксис

Язык любой дескрипционной логики состоит из следующих элементов:

Ввиду того, что RDF предполагается использовать для описания ресурсов, распределенных по разным участкам Web, необходимо как-то решить проблему идентификации имен узлов и ребер RDF графа, т.е. элементов троек. Для этого используется стандартный подход: каждый элемент описывается посредством так называемого Унифицированного Идентификатора Ресурса (URI – Uniform Resource Identifer [10]). Обычно URI представляет собой либо URL (Унифицированный Указатель Ресурса–Uniform Resource Locator [11]), содержащий информацию о местонахождении данного ресурса в Web, либо URN (Унифицированное Имя Ресурса – Uniform Resource Name [12]), позволяющий идентифицировать данный ресурс в некотором пространстве имен. Пространство имен представляет собой просто именованное множество элементов и используется, чтобы обеспечить уникальность имен этих элементов в Web.

В Semantic Web используются три стандартных пространства имен:

Семантика

В математической логике в качестве модели логической системы обычно используется некоторое множество, назовем его M. Каждому элементу множества унарных предикатных символов дается в соответствие некоторое унарное отношение на этом множестве, а каждому элементу множества бинарных предикатных символов – бинарное отношение. Иначе говоря, каждому имени понятия соответствует некий класс-подмножество множества M, а каждому имени роли – бинарное отношение на множестве M. Если задаются какие-то ограничения на отношения, то они должны выполняться на всех отношениях. Каждое такое задание соответствия между именами и отношениями на множестве M (обозначим его через I) будем называть моделью данной дескрипционной логики, или ее интерпретацией. Интерпретация логической системы в некотором множестве представляет собой классический подход, но в RDF используется также интерпретация на графе. Иначе говоря, в качестве моделей может выступать граф, представляющий собой описанные выше тройки. Подробности об интерпретациях на графах можно узнать из документа [14].

В дескрипционных логиках проводится различие между т.н. терминологическим компонентом – TBox (terminological box) и компонентом суждений – ABox (assertional box). TBox содержит высказывания, касающиеся иерархии понятий, т.е. задающие отношения между понятиями, а ABox содержит высказывания, характеризующие отношения индивидов и понятий. Например, высказывание «каждый пользователь – это человек» задает отношение между понятиями «пользователь» и «человек», следовательно, принадлежит множеству TBox. Высказывание «Иван является пользователем» задает отношение между индивидом «Иван» и понятием «человек» и принадлежит множеству ABox. В дескрипционной логике элементы множества TBox представляют собой ограничения, задаваемые исключительно унарными предикатами (понятиями), в этом состоит их отличие от высказываний множества ABox. Различение высказываний на TBox и ABox полезно, если рассматривать возможность построения процедуры логического вывода на моделях дескрипционных логик. Высказывания из TBox задают свойства «классификации», а высказывания из ABox – свойства, которые можно условно назвать свойствами «проверки экземпляра». Логический вывод по этим множествам может существенно различаться по производительности, поэтому имеет смысл реализовать отдельные алгоритмы вывода для каждого компонента.

Имеется множество стандартных видов дескрипционной логики, задаваемых различными ограничениями на виды отношений, которые в этих видах логики могут быть заданы. Здесь мы их перечислять не будем, обратимся лучше к конкретному примеру.

Пример спецификации онтологии на RDF

Предположим, что имеется некая база данных, содержащая информацию о пользователях. Информация о пользователе содержит следующие поля:

База данных содержит информацию о трех пользователях:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *