Что такое оогамия в биологии
Оогамия
Оогамия может осуществляться внутри женского организма или вне его (обычно в водной среде). Термин «оогамия» обычно применяют по отношению к растениям и простейшим, хотя и у всех многоклеточных животных половой процесс протекает в форме оогамии.
Связанные понятия
Гетерогамия (от др.-греч. ἕτερος — «иной», «различный» и γάμος — «брак»), анизогамия (от др.-греч. ἄνισος — «неравный» и γάμος) — форма полового процесса, при котором сливаются две морфологически разные (по форме) гаметы. При анизогамии гаметы разделяются на мужские и женские и обладают разным типом спаривания. У многих организмов различается меньшая по размеру микрогамета, которая считается мужской, и большая, менее активно двигающаяся — женская. Характерна для различных зелёных водорослей, мхов.
Зооспо́ра (др.-греч. ζῷον — животное и σπορά — посев, семя), или зоогони́дий, или бродя́жка — стадия жизненного цикла многих водорослей и некоторых низших грибов. Представляют собой жгутиконосцев, перемещающихся в жидкой среде с помощью биения одного или нескольких жгутиков. Многие водоросли на этой стадии обладают хроматофором, стигмой и сократительными вакуолями. Зооспоры некоторых желто-зелёных водорослей обладают многочисленными ядрами и несколькими парами жгутиков (синзооспоры).
Гаметы, или половые клетки, — репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие, в частности, в половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, произведших гаметы.
Жгутиковые — простейшие, передвигающиеся с помощью одного или нескольких жгутиков. Некоторые из них способны выпускать ложноножки. Среди них есть одноклеточные моноэнергидные и полиэнергидные формы, а также колониальные (например, Eudorina) и многоклеточные (Volvox) формы. В целом для жгутиконосцев характерна тенденция к мелким размерам клеток и осмотрофному питанию, хотя среди них встречаются также очень крупные фаготрофные формы.
Псевдопо́дии, или ложноно́жки, — цитоплазматические выросты у одноклеточных организмов и некоторых видов клеток многоклеточных. Используются клетками для передвижения (амёбоидное движение) и ловли крупных частиц (например, пищи или материала для строительства раковины). В зависимости от особенностей строения (например, организации цитоскелета) псевдоподии разделяют на лобоподии, филоподии, аксоподии и ретикулоподии.
Огамия
Отрывок, характеризующий Гомогамия (биология)
– Да, вот с таким человеком поговорить приятно, не то, что у нас, в провинции, – говорил он.В Орле жило несколько пленных французских офицеров, и доктор привел одного из них, молодого итальянского офицера.Офицер этот стал ходить к Пьеру, и княжна смеялась над теми нежными чувствами, которые выражал итальянец к Пьеру.Итальянец, видимо, был счастлив только тогда, когда он мог приходить к Пьеру и разговаривать и рассказывать ему про свое прошедшее, про свою домашнюю жизнь, про свою любовь и изливать ему свое негодование на французов, и в особенности на Наполеона.– Ежели все русские хотя немного похожи на вас, – говорил он Пьеру, – c’est un sacrilege que de faire la guerre a un peuple comme le votre. Вы, пострадавшие столько от французов, вы даже злобы не имеете против них.И страстную любовь итальянца Пьер теперь заслужил только тем, что он вызывал в нем лучшие стороны его души и любовался ими.Последнее время пребывания Пьера в Орле к нему приехал его старый знакомый масон – граф Вилларский, – тот самый, который вводил его в ложу в 1807 году. Вилларский был женат на богатой русской, имевшей большие имения в Орловской губернии, и занимал в городе временное место по продовольственной части.Узнав, что Безухов в Орле, Вилларский, хотя и никогда не был коротко знаком с ним, приехал к нему с теми заявлениями дружбы и близости, которые выражают обыкновенно друг другу люди, встречаясь в пустыне. Вилларский скучал в Орле и был счастлив, встретив человека одного с собой круга и с одинаковыми, как он полагал, интересами.
Огамия — тип анизогамии (гетерогамии) — форма полового размножения, при которой женская гамета (например, яйцеклетка) значительно больше, чем мужская гамета (сперматозоид), и является не подвижной. Мужские гаметы, как правило, очень подвижны и обычно преодолевают весь путь для сближения с женской гаметой. Распространенность оогамии у высших животных наводит на мысль, что такая специализация гамет приводит к тому, что они выполняют свои соответствующие задачи лучше и эффективнее, чем их могли бы выполнять изогаметы, в частности способностью концентрировать высокоэнергетические вещества в меньшем количестве ооцитов (яйцеклеток).
Огамия преимущественно встречается у животных, но также может наблюдаться у многих протистов, некоторых отрядах водорослей (охрофиты и харофиты) и растений, таких как мохообразные, папоротники и голосеменные, такие как саговниковидные и гинкго. У некоторых водорослей, большинства голосеменных и всех покрытосеменных, существует разновидность оогамии, при которой сперматозоиды (мужские гаметы) также не подвижны.
Скорее всего, изогамия являлась первоначальной формой полового размножения у живых организмов. В нескольких эволюционных линиях, изогамия независимо развилась до анизогамии с половыми клетками мужского и женского типов и оогамии с большими, неподвижными женскими гаметами, а также относительно небольшими и подвижными мужскими гаметами. Существует мнение, что такая эволюция форм размножения была обусловлена физическими ограничениями на способы, с помощью которых две гаметы объединяются вместе при половом размножении.
Типы полового размножения растений (изогамия, гетерогамия, оогамия)
Половой процесс заключается в слиянии половых клеток — мужской и женской, называемых гаметами.
Образующаяся от слияния двух гамет клетка называется зиготой. При дальнейшем развитии она дает начало новому организму. В растительном мире различают три типа полового процесса, представляющие три ступени его совершенствования.
Наиболее простым типом является изогамный половой процесс (изогамия). В этом случае обе гаметы подвижны, совершенно одинаковы по величине и внешнему виду. При слиянии они сохраняют подвижность, обладая жгутиками на переднем конце округлого или грушевидного тельца. Изогамия имеет место у низших растений — у водорослей, грибов (рис. 132. 1).
Следующей ступенью является гетерогамный половой процесс (гетерогамия). При гетерогамии обе гаметы подвижны, имеют жгутики, но различаются величиной. Одна из них, меньших размеров, отличается большей подвижностью и считается мужской гаметой. Другая, несколько более крупная, менее подвижная. В плазме ее содержится некоторое количество запасных питательных веществ. Она считается женской гаметой.
Гетерогамия имеет место только у низших растений, например у некоторых зеленых водорослей (Chlamydomonas Braunii) и бурых водорослей (например, у Ectocarpus) (рис. 132, 2).
Гаметы обычно образуются в особых клетках, иногда не отличающихся от обычных вегетативных клеток растения, чаще же имеющих отличную от последних характерную форму. Клетки, производящие гаметы, называются гаметангиями.
Рис. 132. Различные виды полового процесса у зеленых водорослей: 1 — изогамия у Ulothrix; 2 — гетерогамия у Gonium; 3 — оогамия у Sphaeroplea: а — сперматозоиды; б — яйцеклетки
Следующей ступенью является оогамный половой процесс (оогамия). В этом случае гаметы резко различны по форме, величине и характеру. Одна из них — мужская — очень мелкая, ее протопласт представлен главным образом ядром и тонким слоем цитоплазмы; в передней части ее можно видеть небольшое количество плазмы, от которой отходят жгутики. Мужская гамета активно подвижна и носит здесь специальное название сперматозоида. Женская гамета лишена подвижности. Она называется яйцеклеткой. Ее крупный протопласт имеет крупное ядро. В цитоплазме содержится большое количество питательных веществ (рис. 132, 3). Материал с сайта http://worldofschool.ru
Оогамия имеет место у всех высших растений и у громадного большинства низших растений. Мужские органы, в которых развиваются сперматозоиды, называются антеридиями; женские же, в которых образуются яйцеклетки, у низших растений называются оогониями, у высших растений — архегониями. Оогоний всегда является одноклеточным образованием; архегоний представляет собой уже многоклеточное тело, имеющее сложное строение.
У цветковых растений, как и некоторых голосеменных (Gnetum и Welwitschia), архегонии, как и женские заростки, сильно редуцированы.
На этой странице материал по темам:
Самоопыление растений
Гомогамия используется как определение одновременного созревание рыльца и пыльников у обоеполого, то есть, имеющего гермафродитизм цветка. В растительном мире ситуация самооплодотворения встречается у многих видов грибов, водорослей и цветковых растений (самоопыление у самофертильных растений).
>Передача одинаковых комбинаций генов
Гомогамия является термином обозначающим передачу одинаковых комбинаций генов как от особей мужского, так и женского пола.
>Напишите отзыв о статье «Гомогамия (биология)»
О природе мужского и женского, или от конъюгации к оогамии
Я продолжаю серию «половых» колонок, точнее — колонок об эволюции рекомбинации. Эта — уже восьмая по счету, а вот — первая). После того как я объяснил, почему предполагаю, что половое размножение могло возникать у гермафродитов, я хочу обсудить теорию, которая создаёт серьёзные проблемы для таких представлений. Меня спрашивали, почему я «молчал» (не писал новые колонки) две недели. Не мог уложить в голове, как то, что я изложу здесь, сочетается с тем, о чем писал раньше. Вопрос для меня остаётся открытым. Решение, которое я нашёл, таково: здесь я изложу существенные для меня факты, которые сделают для читателей более понятным разнообразие форм полового процесса, а с главными выводами, которые я пытаюсь сформулировать, повременю.
Я начну с истин из разряда тех, которые излагают в учебниках. Половой процесс связан с оплодотворением — слиянием наследственного материала двух клеток. Как я писал во второй колонке из «половой серии», в типичном случае оплодотворение состоит из двух этапов — слияния двух клеток (сингамии) и слияния их ядер (кариогамии). Что это за клетки, которые сливаются? Это могут быть неспециализированные клетки, представляющие часть тела или все тело одноклеточного организма, — и такой случай можно назвать соматогамией. Чаще всего понятие «соматогамия» применяют только к грибам, у которых могут соединяться клетки из разных гиф, но в более широком смысле его можно применить и ко многим другим случаям, когда для оплодотворения используются клетки, которые выполняют и иные функции. В этой, широкой трактовке самым распространённым типом соматогамии является конъюгация. При ней клетки двух организмов (одноклеточных или многоклеточных) соединяются мостиками, через которые передаются мигрирующие ядра (иногда — вместе со всем клеточным содержимым). При конъюгации информация может передаваться в обе стороны (например, у инфузории туфельки) или только в одну (например, у водоросли спирогиры). Естественно, первый случай аналогичен перекрёстному гермафродитизму, а второй — раздельнополости.
Конъюгация (и другие формы соматогамии в широком смысле слова) кажется вам примитивным, архаичным решением? Давайте я расскажу, как она происходит у самых сложных по своему строению клеток, созданных земной эволюцией. Я говорю о наиболее высокоорганизованных одноклеточных — об инфузориях, таких как «школьная» инфузория туфелька.
Размножаются (делятся) инфузории, перешнуровываясь поперёк своей длинной оси. А при конъюгации две инфузории прижимаются друг к другу длинными сторонами.
Размножение происходит без полового процесса, а половой процесс — без размножения. Другое дело, что после полового процесса инфузории становятся, по сути, новыми индивидами, которые в дальнейшем переходят к делению — клональному размножению. Как ни удивительно, состоящий из многих поколений клеток клон проходит через стадии незрелости, взросления, зрелости и старости. После окончания периода незрелости (в течение которого сменяется некое количество поколений клеток, размножающихся делением; у туфельки он длится около месяца) клон оказывается способен к конъюгации. Она возможна с генетически иными клонами, которые относятся к другому типу спаривания (некоему аналогу пола). Количество типов спаривания у разных инфузорий может быть разным: 2, 4, 6, 7, 8, 10…
Толчком для перехода к половому процессу могут стать ухудшение (с точки зрения инфузории) условий обитания. Пока все идёт хорошо, инфузории делятся, сохраняя соответствующий (раз для его обладателя все идёт хорошо) условиям жизни генотип. Однако если инфузория делилась много сотен раз и при этом не проходила через половое «обновление», то со временем она утрачивает способность к дальнейшим делениям и гибнет.
Представьте себе: в культуре растёт и развивается стареющий клон инфузорий. Раз все индивиды принадлежат к одному клону, они обладают и одним типом спаривания. Начиная с какого-то времени вся экспериментальная популяция оказывается обречена: составляющие её особи не могут найти партнёров для полового процесса. Клон состарился: инфузории живут, делятся, но при любом развитии событий через некое количество поколений их размножение остановится… Парадокс? Безусловно. Здесь проявляется какой-то механизм, не дающий инфузориям отказаться от периодического полового процесса.
Клетка инфузории очень сложна, и необходимые для её жизнедеятельности гены многократно копируются в одном из двух ядер инфузории — большом ядре, макронуклеусе. Перед конъюгацией макронуклеус разрушается, а микронуклеус, малое ядро, проходит через мейоз, делясь на четыре уникальных ядра с уменьшенным вдвое количеством генетической информации. Три из четырёх ядер гибнут, а одно делится ещё раз с помощью митоза, образуя стационарное («женское») и мигрирующее («мужское») ядра. Две инфузории обмениваются мигрирующими ядрами, которые сливаются со стационарными ядрами инфузории-партнёра, образуя новые микронуклеусы. В результате получается два генетически идентичных индивида-эксконъюгата…
Перейдём ко второму, намного более распространённому типу полового процесса — с использованием специализированных половых клеток, гамет. Этот тип полового процесса называется гаметогамией. Гаметы могут производить как одноклеточные, так и многоклеточные организмы. Известны три основные формы гаметогамии. При изогамии гаметы, которые сливаются друг с другом, имеют одинаковый размер. Это подвижные клетки, которые интенсивно ищут друг друга. Эти клетки могут быть совершенно одинаковыми внешне, но при этом они все равно несут биохимические маркеры, обеспечивающие слияние (сингамию) различных клеток. О поле здесь говорить не приходится, разные типы гамет можно обозначить, к примеру, знаками «+» и «—». При анизогамии подвижные гаметы оказываются принадлежащими к двум типам — крупному и мелкому. В данном случае понятно, что крупные гаметы соответствуют женскому полу, а мелкие — мужскому. Логичным завершением этой эволюции оказывается оогамия. Женская гамета теряет активную подвижность и называется яйцеклеткой; её поиск — задача мелких и подвижных гамет, которые называются сперматозоидами.
Вероятно, самым простым вариантом гаметогамии является изогамия. Как кажется, этот способ размножения является самым «логичным» и простым. Почему же тогда у большинства высокоорганизованных видов мы наблюдаем оогамию?
Вспомните колонку, в которой я рассказывал о возможном механизме перехода от гермафродитизма к раздельнополости. Успешность того или иного решения зависит не от его оптимальности, а от его устойчивости (или неустойчивости). Изогамия оказывается неустойчивой.
Возможность такого механизма перехода от изогамии к анизогамии, о котором я буду говорить, осознана уже давно. Первая публикация об этом относится к 1972 году (Parker, G. A., Baker, R. R. and Smith, V. G. F. The origin and evolution of gamete dimorphism and the male-female phenomenon. Journal of Theoretical Biology, 1972, v. 36, p. 529–553). Эту концепцию принято называть PBS-теорией, по первым буквам фамилий трёх её авторов. Со времени создания этой теории моделирование взаимодействия гамет разного размера превратилось в отдельную отрасль науки.
Я опишу основную мысль, пользуясь своей моделью, намного более примитивной, чем наилучшие образцы, созданные для изучения этой проблемы. Модель можно скачать с моего сайта: или версию для Excel-2013, с которой я и работал, или немного упрощённый вариант для Excel-2003.
Рассмотрим популяцию организмов, которые выбрасывают гаметы в воду. Начальное состояние — типичная изогамия. Организмы, относящиеся к обоим типам скрещивания (1 и 2), производят одинаковые по размеру гаметы. В том случае, который показан на рисунке, размер всех гамет составляет 12,5% от максимально возможного.
Гаметы встречаются в толще воды, сливаются и образуют зиготу. С вероятностью в 50% особь принадлежит к первому или второму типу. Она будет производить такие же по размеру гаметы, которые производил её родитель, относящийся к её типу скрещивания, с небольшим уточнением. С небольшой вероятностью d (в показанном примере d=0,005) особь переходит к производству гамет соседнего размерного класса: в 2 раза крупнее или в 2 раза мельче. Все особи вкладывают в производство гамет одно и то же количество энергии, и поэтому те особи, которые производят вдвое более мелкие гаметы, выбросят в воду в 2 раза большее их количество.
Последнее, что нужно пояснить перед обсуждением результатов, — то, что вероятность выживания зигот зависит от количества энергии, полученной ими от гамет (попросту от размера). Самый простой вариант зависимости — прямая пропорциональность размера зиготы и её шансов на выживание. Посмотрим, что получится.
Оба «пола» уменьшают размеры своих гамет. Почему — легко понять. При постоянстве размера половых клеток партнёра та особь, которая уменьшит свои гаметы вдвое, вдвое же увеличит количество своих потомков, а их выживаемость сократится только на 75% (запас энергии зиготы зависит от размера обеих гамет). В этой ситуации оба «пола» сокращают размер своих половых клеток. Это происходит до предела, при котором выживаемость зигот становится угрожающе низкой.
Реалистичны ли использованные мной условия? Не вполне. Вероятно, зигота, которая мельче некоего минимального размера, вообще не имеет шансов на выживание. Жизнеспособность зиготы в таком случае должна быть пропорциональна разнице между её размером и этим минимумом.
Стоит перейти с первого варианта зависимости шансов на выживание зиготы ко второму, поведение модели кардинально меняется. Увеличение размеров гамет тоже оказывается выгодной стратегией (приглядитесь: события на картинке внизу начинаются с того, что «пол», показанный пунктиром, переходит к производству более крупных половых клеток).
При этих условиях модель быстро переходит к состоянию, где один пол производит самые крупные из возможных гамет, а второй — самые мелкие. Какой именно пол окажется «крупногаметным», а какой — «мелкогаметным», решает случай.
Как видите, в нашей модели мы наблюдали переход от изогамии к анизогамии.
Как я уже сказал, для изучения этого перехода разработаны весьма изощрённые модели, которые учитывают и иные факторы. Например, очевидно, что вероятность встречи гамет зависит от эффективности их плавания, которая, в свою очередь, зависит от их размеров (в частности, влияющих на число Рейнольдса — величину, определяющую характер движения обтекающей гамету жидкости). Учёт таких факторов приводит к более сложным зависимостям, которые, тем не менее, подтверждают общую закономерность: изогамия относительно неустойчива и с большой вероятностью вытесняется анизогамией.
И знаете, что мы в конце концов получили? Раздельнополость! Дело в том, что самцы — это пол, который производит много мелких половых клеток, а самки — пол, который производит немного крупных. Все прочие несовпадения между самками и самцами являются следствиями этого первичного различия!
Теперь, как мне кажется, внимательным читателям восьми «половых» колонок предоставлены ключевые факты и предположения, на основе которых можно судить о возможных сценариях возникновения полового размножения. Этим вопросом мы в следующий раз и займёмся.
Строение водорослей
Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.
Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).
Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.
Жизненный цикл водорослей
Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).
Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.
При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.
Типы половых процессов
Значение водорослей
В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.