Что такое оптический коммутатор
8.3 ОПТИЧЕСКИЕ КОММУТАТОРЫ
Оптическая коммутация принципиально отличается от механической коммутации потоков. При механической коммутации время срабатывания составляет десятки миллисекунд (в среднем от 20 до 50мс). При оптической коммутации время срабатывания определяется переходными процессами в электрической цепи управления оптического коммутатора и обычно на несколько порядков меньше.
Оптический коммутатор – это один из наиболее важных элементов полностью оптической сети, без которого невозможно строить масштабируемые архитектуры. Большинство основных конструкций оптических коммутаторов должно иметь, по крайней мере, два выхода. Основными параметрами коммутатора являются:
В настоящее время используются разнообразные типы оптических коммутаторов:
В основе работы оптического коммутатора используется линейный электрооптический эффект Поккельса, который заключается в изменении показателя преломления материала пропорционально напряжённости приложенного электрического поля.
Устройства мультиплексирования/демультиплексирования систем с уплотнением по длинам волн – волновые фильтры и оптические коммутаторы – имеют одну общую деталь: в основе их работы лежат в той или иной степени интерференционные эффекты. Основные принципы работы легче рассмотреть на простейшем четырёхполюснике – разветвителе-коммутаторе. Схема сплавного разветвителя Х-типа показана на рисунке 8.2.
Рисунок 8.2 – Схема разветвителя-коммутатора Х-типа
Излучение интенсивности I1, введённое в один волновод, проникает в другой (I0) за счёт связи двух волноводов. Погонный коэффициент связи k зависит от параметров волновода (разности показателей преломления сердцевины n1 и оболочки n2), длины волны λ и ширины зазора g между волноводами. Разветвитель характеризуется разностью постоянных распространения двух волноводов длиной L
где n1, n2 – эффективные показатели преломления сердцевины и оболочки.
Прикладывая электрическое напряжение U к электродам, расположенным по бокам или сверху, или снизу волноводов, можно регулировать фазовую расстройку за счёт линейного электрооптического эффекта (эффекта Поккельса).
Еще одна реализация разветвителя-коммутатора 2х2, состоящая из двух последовательных Х-разветвителей представлена на рисунке 8.3.
Рисунок 8.3 – Схема двухплечевого оптического разветвителя-коммутатора
Оптические сигналы после прохождения по разным плечам интерферируют во втором разветвителе. Путём изменения напряжения U на электродах, охватывающих одно из плеч, можно регулировать разность фаз между приходящими во второй разветвитель сигналами и тем самым влиять на характер интерференции.
Анализ показывает, что при определенных условиях интерференции, т.е. когда сигналы приходят в фазе, сигнал идёт по одному каналу, когда же в противофазе – по другому каналу.
Наряду с электрооптичесим эффектом, для осуществления коммутации также широко используется акустооптический эффект.
Имеется ряд технических реализаций пространственных коммутаторов 2х2 на основе полупроводниковых оптических усилителей.
На основе простых оптических разветвителей-коммутаторов 2х2 – элементов – строятся более сложные оптические коммутаторы nxn. Поскольку составные элементы 2х2 принимают на входные полюса сигналы одной и той же длины волны, то и весь коммутатор nxn изготавливается для работы с поступающими оптическими сигналами одной и той же заданной длиной волны. Другими важными характеристиками коммутатора, кроме рабочей длины волны, являются максимальные вносимые потери и перекрестные помехи на выходных полюсах.
Зачем нужны и какие бывают оптические коммутаторы + 7 критериев выбора
Что такое оптические коммутаторы, кому они нужны и чем отличаются от обычных, объясняет EServer. https://e-server.com.ua/ Эксперты рассказывают о принципах работы и видах таких свитчей, делятся ключевыми критериями выбора.
Что такое оптические коммутаторы и где они пригодятся
Это обычный коммутатор, который оснащен SFP портами для оптоволоконных линий. Такие свитчи используют в полностью оптических сетях. Эти устройства не только контролируют поток данных и управляют им, но и преобразовывают среду их передачи. Другими словами, они могут играть роль медиаконвертера.
Принцип работы оптического свитча
Чтобы понять, как работают такие модели, нужно рассмотреть схему их подключения.
Для вывода сигнала и организации его приема на другой стороне линии, используют определенные приемопередатчики. Их встраивают в SFP-модули. К разъемам этих модулей подключаются оптоволоконные патч-корды, другой же конец шнура подсоединяется к разъему кросса. В него входит магистральное волокно, которое и идет до другой точки коммутации.
Таким образом, оптические свитчи пригодятся для организации оптоволоконных сетей.
Виды оптических свитчей
Как и обычные, эти модели бывают:
Помимо этих видов девайсов, существует еще два подвида свитчей:
Ключевые параметры оптических коммутаторов
Чтобы выбрать подходящий свитч с SFP, нужно обращать внимание на такие характеристики:
Как видно, не так уж трудно выбрать подходящий оптический коммутатор. Для начала следует подобрать подходящий вид модели — неуправляемый, настраиваемый или управляемый. Затем решить, сколько нужно портов. Лучше выбирать с запасом. Потом — обратить внимание на другие характеристики, ведь от них зависит качество работы аппарата и комфорт его использования.
Наглядный обзор оптических передатчиков
Часто у знакомых системных администраторов, не сталкивавшихся раньше с оптическим волокном, возникают вопросы, как и какое оборудование необходимо для организации соединения. Немного почитав, становится понятно, что нужен оптический трансивер. В этой обзорной статье я напишу основные характеристики оптических модулей для приема/передачи информации, расскажу основные моменты, связанные с их использованием, и приложу много наглядных изображений с ними. Осторожно, под катом много трафика, делал кучу своих собственных фотографий.
Что и зачем
Сегодня практически любое сетевое оборудование для передачи данных в сетях Ethernet, предоставляющее возможность подключения через оптическое волокно, имеет оптические порты. В них устанавливаются оптические модули, в которые уже может подключаться волокно. В каждый модуль встроен оптический передатчик (лазер) и приемник (фотоприемник). При классической передаче данных с их использованием предполагается использовать два оптических волокна — одно для приема, другое для передачи. На изображении снизу представлен коммутатор с оптическими портами и установленными модулями.
Вот об этих маленьких электронных штуковинах дальше и пойдет речь.
Виды оптических модулей
Периодически возникают вопросы, какой же оптический приемопередатчик нужен в конкретной ситуации. Если перед глазами оказывается прайслист какой-либо, то просто разбегаются глаза от обилия всевозможных наименований. Попробую прояснить, что же значат различные буквы и цифры в названии модулей и что же из них вам может понадобиться. Оптические модули различаются формфактором (GBIC, SFP, X2. ), типом технологии («прямые», CWDM, WDM, DWDM. ), мощностью (в дицебелах), разъемами (FC, LC, SC).
Различные формфакторы
В первую очередь модули различаются своими формфакторами. Немного расскажу про различные варианты.
GigaBit Interface Converter, активно использовался в 2000-х. Самый первый промышленно стандартизованный формат модулей. Очень часто применялся при передачи через многомодовые волокна. Сейчас же практически не используется в силу своих размеров. У меня осталась одна старая циска 3500, еще без поддержки CEF, в которой можно воспользоваться данными модулями. На изображении снизу два GBIC-модуля 1000Base-LX и 1000Base-T:
Small Form-factor Pluggable, наследник GBIC. Наверно самый распространенный на сегодняшний день формат, гораздо удобнее в силу меньших размеров. Такой формфактор позволил значительно увеличить плотность портов на сетевом оборудовании. Благодаря таким размерам стало возможно реализовать до 52 оптических портов на одной железке в один юнит. Используется для передачи данных на скоростях 100Mbits, 1000Mbits. На изображении снизу коммутатор с оптическими портами и пара модулей 1000Base-LX и 1000Base-T.
Enhanced Small Form-factor Pluggable. Имеют идеентичный SFP размер. Схожий размер позволил сделать оборудование с портами, поддерживающими обычные SFP и SFP+. Такие порты могут работать в режимах 1000Base/10GBase. Лишь дальнобойные CWDM-модули имеют большую длину из-за радиатора. Используются для передачи данных на скоростях 10 Gbits. Малые размеры придали некоторые особенности — для дальнобойных модулей бывают случаи слишком сильного нагрева. Поэтому для передачи более чем на 80 км таких модулей пока нет. На картинке снизу два модуля SFP+ — CWDM и обычный 10GEBase-LR:
10 Gigabit Small Form Factor Pluggable. Также, как и SFP+, используются для передачи данных на скоростях 10 Gbits. Но в отличии от предыдущих, немного шире. Увеличенный размер позволил использовать их для прострела на большие расстояние по стравнению с SFP+. Снизу дополнительная плата для Huawei с установленными XFP и пара таких модулей.
XENPAK
Модули, используемые преимущественно в оборудовании Cisco. Используются для передачи данных на скоростях 10 Gbits. Сейчас уже изредка можно найти им применение, изредка можно встретить в старых линейках маршрутизаторов. Также такие модули бывают для подключения медного провода 10GBase-CX4. К сожалению, у меня нашелся лишь один XENPAK-модуль 10GEBase-LR и старая Cisco-вская плата WS-X6704-10GE под них.
Дальнейшее развитие модулей формата XENPAK. Часто в разъемы X2 можно установить модуль TwinGig, в который уже можно установить два модуля SFP… Это нужно в случае, если на оборудовании нет 1GE оптических портов. В основном X2-формфактор использует Cisco. В продаже существуют адаптеры X2-SFP+ (XENPACK-to-SFP+). Интересно, что такой комплект (адаптер+SFP+ модуль) выходит дешевле одного X2 модуля.
К сожалению, на руках у меня нашелся только адаптер, но чтобы понять, как выглядят эти модули и какого они размера этого вполне хватит. На рисунке снизу адаптер X2-SFP+ со вставленным SFP+ модулем.
Но если кому интересно, вот здесь можно посмотреть больше картинок и возможностей этого разъема.
Да, я не затрагивал относительно новые формфакторы (QSFP, QSFP+, CFP). На текущий момент они еще не очень распространены.
Различные стандарты
С использованием спектрального уплотнения
Описанные выше оптические модули передают сигнал в основном на длине волны 1310 нм или 1550 нм на двух волокнах (одно для передачи, другое для приема). Они имеют широкополосный фотоприемник (принимают все) и лазер, излучающий на определенной длине волны (грубо конечно). Но имеется возможность использовать уплотнение по длине волны. Это дает возможность использовать меньшее количество волокон для организации нескольких каналов тем самым увеличивая пропускную способность одного волокна.
Такие модули работают в паре, с одной стороны сигнал передается на длине волны 1310 нм, с другой 1550 нм. Это позволяет вместо двух волокон для организации одного канала использовать одно. Приемник на таких модулях так и остается широкополосным. Бывают как для 1GE, так и для 10GE. Снизу фотографии пары WDM-модулей с различными разъемами для подключения патчкордов LC и SC.
В большинстве случаев предпочтительнее использовать WDM-модули для малых расстояний. Их цена не очень большая (по 1 тыс рублей за модуль против 500 рублей за обычный). Причина — вы экономите целое волокно, на нем можно будет потом еще один такой же канал прогнать. Хотя конечно есть и другие способы экономии волокон.
Дальнейшее продолжение технологии WDM. С ее использованием можно добиться до 8 дуплексных каналов по одному волокну. Для этих целей используются CWDM-мультиплексоры (пассивные устройства с призмой внутри, позволяющей делить сигнал по цветам с шагом 20нм в диапазоне от 1270нм до 1610нм). Для этого также используют специальные CWDM-модули, в простонародье их называют «цветные», они передают сигнал на определенной длине волны. В то же время приемник на них широкополосный. Кроме того, такие оптические модули часто делают для передачи на большие расстояние (до 160 км). На рисунке ниже представлен малый комплект CWDM-SFP, на котором с использованием мультиплексоров можно поднять 2GE на одном волокне.
Как можно заметить, дужки у всех разные. В зависимости от длины волны модуль имеет свою раскраску. К сожалению, у всех производителей они разные.
Здесь появляется понятие оптический бюджет. Правда его расчет выходит за рамки этой статьи. В кратце, чем больше доступных портов, тем больше вы сможете смультиплексировать каналов, тем больше будет затухание. Кроме того, различные длины волн дают различные затухания на 1 километр передаваемого сигнала. А еще нужно учитывать тип волокна…
Можно много писать о методиках подбора таких модулей, о пересечении длин волн, о нежелательных длинах, о ADD/DROP-модулях. Но это отдельная тема.
Разъемы
Это то место, куда вы будете подключать оптический патчкорд. На оптических модулях сейчас используются преимущественно два типа раъемов — SC и LC. Грубо и жаргонно — большой и мелкий квадраты. Понятно, что имея в наличии патчкорд с разъемом SC, вы не подсоедините его к разъему LC. Нужно либо менять патчкорд, либо ставить переходник-адаптер. В большинстве случаев SFP-модули имеют разъем LC, в то время как X2/XENPAK — SC. Выше на изображениях уже были модули с различными разъемами.
Оптические патчкорды, они же оптические шнуры. Нас будут интересовать следующие характеристики: дуплекс/симплекс (количество волокон), полировка (сейчас это UPC-синие или APC-зеленые), разъем (SC, LC, FC), многомодовость и длина. Конечно, важна еще и толщина сердцевины волокна, но сейчас на многомодовые обычные шнуры используют стандартную толщину. Снизу я представил изображение с различными видами концов патчкордов.
В основном вы будете встречать следующее обозначение шнуров — ШО-2SM-SC/UPC-SC/UPC-3.0. Это расшифровывается следующим образом: Шнур Оптический Дуплексный Одномодовый (Single-Mode) с разъемами SC и полировкой UPC с одной стороны и SC-UPC с другой длиной 3.0 метра. Соответственно, например, ШО-SM-LC/APC-SC/APC-15.0 — одномодовый дуплексный шнур с разъемами LC-LC и гравировкой APC длиной 15 метров.
Неоторые особенности
Оптические модули — активное оборудование, они потребяют электроэнергию и выделяют тепло. Это следует учитывать при подключении оборудования к электросети. Также коммутатор, заполненный мощными модулями под завязку может потребовать дополнительного охлаждения.
Не стоит забывать, что в оптические модули встроены лазеры, и с ними необходимо соблюдать некоторую технику безопасности. Конечно в большинстве случаев никакой угрозы они не предоставляют в силу слабой мощности, но бывали случаи, дальнобойные мощные 10GE модули могут вполне выжечь сетчатку глаза или оставить ожог, если использовать палец в качестве аттюниатора.
Современные оптические модули имеют функцию DDM (Digital Diagnostics Monitoring) — в них встроен ряд сенсоров, через которые можно определить текущее значение некоторых параметров. Смотрится это через интерфейс оборудования, в которое установлен модуль. Самые важные параметры для вас — текущие принимаемая мощность и температура.
Ряд производителей сетевого оборудования запрещают использовать сторонние модули в их оборудовании. По крайней мере раньше Cisco не давала их запускать, они в ней просто не работали. Сейчас же в узких кругах известны команды, открывающие возможность использовать сторонние устройства, да и Cisco стала не так трепетно относиться к этому вопросу. Впрочем, при желании любые модули можно перепрошить, в продаже имеются специальные программаторы.
Порт на оборудовании (в большинстве случаев) загорается, если на модуль приходит сигнал достаточной мощности. Если соединить два двухволоконных модуля одинарным патчкордом (просто прием с передачей), с одной стороны порт загорится, но работать при этом ничего не будет.
Да, мощность может быть не только слабой. Если сигнал приходит слишком сильный, можно сжечь фотоприемник. Обычно это относится к дальнобойными мощным модулям с дистанцией > 80 км. Для уменьшения мощности используют специальные аттенюаторы. Хотя если делаем в лабораторных условиях, можно просто намотать пару витков патчкорда на какую-нибудь ручку или карандаш.
Как SFP, SFP+ и XFP делают нашу жизнь проще
Для чего нужны эти порты, трансиверы, пачткорды? Как во всем этом разобраться? И вообще, надо ли это или проще обойтись «подручными средствами» вроде «хорошо обжатого RJ45»?
Вместо предисловия
Как они надоели с этим SFP и прочими дорогими игрушками! — скажет экономный сисадмин: «И коннекторы недешёвые, и лишний «огород городить». Неужели так трудно всё порты 1GBE и 10GBE делать под старую добрую витую пару? 10 Gigabit витая пара поддерживает и вперёд!»
И правда, зачем всё это? Берём 6 категорию для соединений уровня доступа Gigabit Ethernet (мы же не жадные, заботимся о скорости и стабильности) и категорию 6А для 10 Gigabit Ethernet и радуемся жизни. Дёшево и сердито!
Но это всё хорошо, если соединение между отдельными точками не превышает 100 метров (иногда даже и меньше). На практике даже в одном здании можно запросто выйти за предел 100 метров, просто обходя все углы.
Представим себе более сложную ситуацию
У нас имеются три различных офиса, в каждом из которых работает по 20 человек. Необходимо выбрать коммутаторы, которые подходят для подключения пользователей по гигабитной сети с 10 гигабитным Uplink.
Вроде бы задача проста: нужно 3 гигабитных коммутатора уровня доступа на 24 гигабитных порта с Uplink 10 Gigabit Ethernet, и ещё один 10 гигабитный коммутатор уровня агрегации для объединения Uplink всех трёх коммутаторов в одну сеть.
Можно даже замахнуться на отказоустойчивую схему из двух коммутаторов 10GBE. В любом случае всё выглядит не так сложно.
Усложним немного задачу. Представим, что первый офис находится рядом с серверной, второй — в соседнем здании на расстоянии более 100м, и, чтобы достать туда, требуется много раз обогнуть препятствия под разным углом, а третий — вроде бы по прямой, но на расстоянии более 550 м. И что тут делать?
Вроде бы задача по-прежнему выглядит не такой сложной. Покупаем три коммутатора уровня доступа:
Один, который поставим рядом с серверной, будет с Uplink 10 Gigabit Ethernet для витой пары.
Второй коммутатор — так как общее расстояние выше — с Uplink для многомодового оптоволокна дальностью до 550 м, который за счёт своих физических свойств позволяет «обойти все углы».
И третий коммутатор с Uplink для одномодового кабеля при расстоянии свыше 550 м.
Вроде бы весело и замечательно. А теперь представьте, что для объединения их в одну сеть на следующем уровне понадобится коммутатор 10 Gigabit Ethernet с тремя различными типами портов под разные типы кабелей.
И это ещё «цветочки». Для связи этого коммутатора с «верхним уровнем» (уровнем ядра сети, например) может потребоваться Uplink для сетей 40GBE или даже 100GBE. Особенно интересная ситуация возникает, когда число таких Uplink и Downlink (Downlink — порт для соединения с нижеследующим уровнем) не удаётся предугадать раз и навсегда, и всё меняется в процессе эксплуатации…
И вот тут возникает интересный момент: а сколько таких коммутаторов нам понадобится? А если не хватит одного-двух портов одного типа, зато порты другого типа окажутся в избытке? Покупать новый? А как это отразиться на архитектуре сети? Например, если по проекту заложено, что все три офисных коммутатора уровня доступа общаются напрямую через один коммутатор уровня агрегации, не выходя на ядро сети?
Значит нужно придумать единый стандарт для разъёма, в который при помощи соответствующих переходников (трансиверов) можно подключать различные кабели.
В принципе, универсальность и взаимозаменяемость явилась главной причиной создания SFP. Данная технология, естественно, не стояла на месте и появились более поздние стандарты, такие как SFP+ и XFP. Но обо всем по порядку.
Рисунок 1. 28-портовый управляемый коммутатор 10GbE L2+ — Zyxel XS3800-28, сочетающий порты под витую пару и SFP+.
Примечание. На практике не всё обстоит так гладко. Некоторые вендоры, искусственно ограничивают применение переходников от разных производителей. Например, есть такая сисадминская примета: если нужно использовать сетевое оборудование Cisco, то лучше использовать и трансиверы этого же вендора. Возможно, это не всегда так, но рисковать никто не хочет.
Однако мир не идеален, и порой приходится поддерживать мультивендорное решение. В таких случаях лучше подбирать оборудование от более демократичных вендоров, которые не создают дополнительных ограничений.
Существует мнение, что при разработке стандарта SFP (Small Form-factor Pluggable) учитывалось требование сохранить ту же плотность портов на 1U в 19 дюймовой стойке, что и в случае с разъёмами под витую пару. То есть 48 портов для подключения устройств и минимум 2 Uplink. Небольшие размеры SFP позволили решить данную задачу.
Рисунок 2. Коммутатор L3 Zyxel XGS4600-52F на 48 портов Gigabit Ethernet SFP, с четырьмя портами Uplink 10 Gigabit Ethernet SFP+
SFP стандарт используется для поддержки следующих протоколов:
Рисунок 3. Трансивер Zyxel SFP10G-SR SFP Plus для 10 Gigabit Ethernet
Рисунок 4. Трансивер 10GbE Fiber FTLX1412D3BCL
Существует сетевое оборудование, способное принимать несколько видов трафика по одному порту, например, Ethernet и Fibre Channel с последующим разделением. Разумеется, для такого соединения нужны соответствующие сетевые карты и трансиверы, поддерживающие подобный «универсальный подход».
Особенности SFP поддержки различных типов оптики
Многие читатели знакомы с SFP трансиверами для двухволоконных патчкордов. Такие трансиверы имеют интерфейс с двумя разъёмами типа LC для подключения оптического кабеля к модулю.
Однако есть и другие модели трансиверов, например, SFP WDM, и разумеется, трансиверы с разъёмом RJ45, о которых шла речь выше.
Существует классификация SFP модулей по доступному расстоянию для передачи данных:
Выпускаются SFP модули нескольких стандартов с различными комбинациями приёмника (RX) и передатчика (TX).
Такой подход даёт возможность выбрать необходимую комбинацию для заданного соединения, исходя из используемого типа оптоволоконного кабеля: многомодовое (MM) или одномодовое (SM).
Помимо деления по типу оптоволокна, есть разделение по количеству используемых волокон. Есть SFP модули для парных оптических проводников: многомодовые и одномодовые.
Существуют и одноволоконные модули: WDM, а также CWDM и DWDM.
SFP модули для многомодовых патчкордов используют раздельные приёмник и передатчик фиксированной длины волны 850нм (собственно, для этого и нужно два оптических проводника в одном патчкорде).
В таких патчкордах используется крестообразное соединение от передатчика к приёмнику. (TX1\ RX2, RX1\ TX2).
Преимуществом многомодового оптоволокна является невосприимчивость к изгибам (до определённого разумного предела), что позволяет использовать, например, при монтаже стоечного оборудования, когда излишки длины патчкорда можно убрать в органайзер.
Как было уже указано выше, ограничением для многомодового оптоволокна является сравнительно небольшая длина (до 550м).
SFP модули для парных одномодовых соединений имеют раздельные приёмник и передатчик фиксированной длины волны либо 1310нм, либо 1550нм. Подключение делается по той же крестообразной схеме. Применение одномодовых SFP модулей делает возможным передачу данных на расстояния до 120км.
Однако не во всех случаях можно использовать парные оптоволоконные кабели. В некоторых случаях гораздо удобнее передавать сигнал в обе стороны по одному оптическому световоду.
SFP WDM — сокращение от Wavelength Division Multiplexing (спектральное уплотнение каналов). В данном случае модули (они же WDM Bi‑Directional, или Bi‑Di) используют совмещённый приёмопередатчик и работают в парах. Пара состоит из двух модулей с разной длиной волны: 1310нм и 1550нм.
В первом случае используется передатчик с длиной волны 1550нм и приёмник с длиной волны 1310нм.
Во втором случае: наоборот, передатчик с длиной волны 1310нм и приёмник с длиной волны 1550нм.
Расстояние между двумя этими каналами составляет 240нм, что достаточно для того, чтобы различать эти два сигнала без специальных средств детектирования, и позволяет объединить эти два сигнала в одном световоде.
Благодаря совмещению каналов для соединения таких модулей нужна только одна оптоволоконная жила. Стандартные SFP WDM модули имеют разъём типа SC для одножильного соединения.
SFP CWDM — Coarse WDM — что дословно значит «грубый» WDM — это более поздняя реализация WDM с раздельными приёмником и передатчиком. SFPCWDM отличаются, в первую очередь, диапазоном каналов передачи, который варьируется от 1270нм до 1610нм:
2 дополнительных канала 1270нм и 1290нм;
16 основных (1310нм — 1610нм с шагом 20нм).
Данные модули имеют широкополосный приёмник, что позволяет 2 модулям с любыми длинами волн передачи работать в паре. Но для работы в паре такие модули использовать нерационально, более оптимально использовать 16 каналов с разными длинами волн, подключёнными к мультиплексору. Мультиплексор «собирает» свет разных длин волн, который излучают передатчики модулей, «объединяет» собранное в единый световой пучок и направляет по единственному одномодовому волокну далее. При приёме данных производится обратная процедура.
Рассказывая о кабелях и стандартах, стоит также упомянуть 10 гигабитный Direct Attached Cable (DAC) SFP+, работающий по стандарту 10GBASE и совместимый со стандартами 10G Ethernet, 8/10G Fibre Channel. Такие кабели стоят относительно недорого и чаще всего применяются на небольших расстояниях, например, для подключения СХД, серверов и других устройств к скоростной сети.
Рисунок 5. DAC10G-3M кабель Direct Attach
Отличия SFP от SFP+
SFP модуль всем хорош, одна неприятность — не поддерживает высоких скоростей. А технический прогресс требовал перехода на сети 10 Gigabit. И появились новые стандарты, одним из которых стал SFP+
Как часто бывает с родственными технологиями и стандартами — SFP+ совместим с SFP сверху вниз. То есть в порт SFP+, можно подключить более старые трансиверы SFP, а вот наоборот — включить может и получится, но работать они не будут.
Однако возможны неприятные исключения. В оборудовании некоторых производителей (к счастью, Zyxel в их число не входит) совместимость сверху вниз не поддерживается. Всегда лучше на всякий случай уточнить у продавца, будет ли работать данный трансивер с данным портом на данном оборудовании.
Особенности стандарта XFP
Стандарт XFP был разработан группой XFP MSA (Multi Source Agreement). Скорость работы начинается от 10G и может использоваться с оптоволоконным кабелем для высокоскоростной сети.
Рабочая длина волны: 850нм, 1310нм или 1550нм, при этом трансиверы XFP не зависят от протокола и полностью поддерживают конвергентность для стандартов:
Примечание. При плотном трафике модули SFP+ были замечены за непристойным занятием — они нагревались до достаточно высокой температуры. Виной тому малые размеры и высокая плотность портов — в принципе, то, зачем SFP и создавался. Разумеется, повышение температуры оборудования создаёт риск при длительной работе. Это факт вынуждает в некоторых случаях использовать другой стандарт для подключения трансиверов (также небольших, хоть и не таких миниатюрных как SFP+) — XFP.
Можно ли соединять устройство с портом XFP и другое устройство с SFP+
Теоретически такое соединение возможно, необходимо использовать оптические кабели, подходящие для обоих трансиверов.
Например, XFP‑10G-SR и SFP‑10G-SR — это многомодовые модули на основе LC разъёмов, поэтому применение многорежимного оптического кабеля LC по идее позволит получить работающее соединение.
На практике лучше заглянуть в соответствующие спецификации и при любом сомнении — уточнить у представителей вендора (дилера, системного интегратора и т. д.) соответствующие детали.
Заключение
Унифицированный подход и стандартизация упрощают нашу жизнь.
Разумеется, не существует единого идеального решения. В любом стандарте, в любой технологии есть плюсы и минусы. И не всегда они касаются технических аспектов.
Немаловажную роль при выборе той или иной технологии играет цена вопроса, внешние ограничения (например, расстояние), а также особенности эксплуатации.