Что такое оптический усилитель
EDFA усилители
Оптические усилители (optical amplifier) – активные устройства, обеспечивающие увеличение мощности (амплитуды) оптического сигнала без оптоэлектронного преобразования. В современных волоконно-оптических линиях связи применяются три основных вида усилителей:
В данной статье будут рассмотрены только оптические усилители на основе оптического волокна легированного эрбием (Erbium Doped Fibre Amplifier, сокращенно EDFA) получившие в настоящее время наибольшую популярность за счёт низкой стоимости и простоты производства.
Что такое оптические EDFA усилители
Оптический усилитель на основе волокна легированного эрбием (от англ. Erbium Doped Fibre Amplifier, сокращенно EDFA) – это активное оптическое устройство обеспечивающее увеличение оптической мощности (амплитуды) входящего в него одиночного или группового (без необходимости предварительного демультиплексирования) оптических сигналов, без оптоэлектронного преобразования. Оптические усилители EDFA являются базовыми компонентами протяжённых линий связи, таких как: системы спектрального уплотнения DWDM; сети передачи КТВ.
Принцип работы EDFA усилителей
Принцип действия усилителей на основе волокна, легированного эрбием схож с принципом действия твердотельных лазеров с объёмными активными элементами, он построен на эффекте вынужденного испускания излучения ионами редкоземельных металлов. В волокне, легированном ионами, при помощи оптической накачки на длине волны 980 нм или 1490 нм создается инверсия населённости ионов, которая запускает процесс вынужденного испускания излучения, за счет которого происходит усиление подаваемого вместе с накачкой полезного сигнала.
Оптический усилитель EDFA состоит из следующих компонентов:
Следует заметить, что лазер накачки (на англ. Pump laser, сокращенно PUMP), может устанавливаться как по направлению распространения полезного сигнала – сонаправленная накачка, так и против него – противонаправленная накачка. В двухступенчатых усилителях используются оба типа накачки как сонаправленная, так и противонаправленная для получения преимуществ обоих типов.
Принцип современных однокаскадных оптических усилителей прост:
Описанный принцип работы эрбиевого усилителя называется «усилитель с обратной связью», так как в зависимости от выходного сигнала, управляющая плата усилителя может корректировать работу лазера накачки через подаваемый на него ток (параметр BIAS).
Основные параметры EDFA усилителей
Основными параметрами EDFA усилителей, применяемых на сегодняшний день в ВОЛС, принято считать:
Спектральная ширина полосы усиления оказывает определяющее влияние на число спектральных каналов в системах DWDM. Она определяется спектром излучения ионов эрбия, которыми легирован отрезок волокна являющееся неотъемлемым компонентом EDFA. Под действием молекул окружения, уровни энергии ионов эрбия расщепляются на подуровни. Величина расщепления определяет ширину полосы излучения. Чем шире полоса излучения, тем более широкого спектра усиления нужно от оптического усилителя.
Коэффициент усиления представляет собой экспоненциальную функцию, зависящую от длины волны и мощности входного сигнала. Рассчитывается по формуле:
Где PSout и PSin— мощности (полезных) сигналов на входе и выходе усилителя. Зависимость от длины волны определяется формой энергетических уровней легированных атомов эрбия, их концентрацией, распределением, длиной волны лазера накачки и многими другими параметрами.
Зависимость коэффициента усиления от мощности входного сигнала для длины волны 1550 нм приведена на графике ниже.
Динамический диапазон (SNR) определяется как диапазон входной мощности оптического сигнала, при котором коэффициент усиления остаётся постоянным. SNR связан с другим важным параметром – коэффициентом шума.
Основным источником шума в усилителе на волокне, легированном эрбием, является спонтанное излучение. Это спонтанное излучение усиливается и повторно поглощается по всей длине усилителя. Для характеристики качества оптического усилителя используется параметр, получивший название шум-фактор (noise figure). Величина шум-фактора является мерой ухудшения отношения сигнал/шум входного когерентного сигнала при прохождении через оптический усилитель. Рассчитывается по формуле:
Где OSNRin – это соотношение сигнал-шум на входе, OSNRout – соотношение сигнал-шум на выходе.
Уровень шума при использовании накачки на длине волны 1480 нм выше, чем при использовании накачки на длине волны 980 нм.
Типы эрбиевых усилителей
В зависимости от размещения усилителей на трассе их можно разделить на три основных типа:
Сферы применения
В современных телекоммуникационных системах можно выделить две основные сферы применения оптических усилителей на эрбиевом волокне:
При разговоре про протяжённые системы передачи данных первое, что приходит на ум это системы спектрального уплотнения DWDM. В них могут применяться все виды оптических усилителей, но в основной все протяжённые линии DWDM так или иначе сводятся к топологии «точка-точка», из-за чего наибольшей популярностью пользуются EDFA бустеры и предусилители. Линейные же усилители применяются в сложных, разветвлённых системах уплотнения с количеством узлов связи более трёх.
Кроме DWDM систем актуальной сферой применения EDFA усилителей являются протяжённые линии SDH. На сегодняшний день этот сегмент весьма узкий в связи с непопулярностью SDH-систем, но в нем востребованы те же типы оптических усилителей, которые применяются в DWDM. Единственным кардинальным отличием SDH усилителей от DWDM усилителей является ширина спектра усиления. В SDH применяются так называемые Single Lambda EDFA (усилители, рассчитанные на усиление одного сигнала), в то время как в DWDM используются широкополосные усилители, рассчитанные на работу с длинами волн C-диапазона или L-диапазона.
Оптические усилители, применяемые в КТВ сетях, схожи по принципу с усилителями, используемыми в SDH, так как они тоже усиливают один сигнал. Спектральная ширина полосы усиления в КТВ EDFA составляет всего ≈20 нм в диапазоне 1540-1560 нм, в то время как оптические усилители для DWDM усиливают сигналы во всем С-диапазоне (1529-1565 нм) или L-диапазоне. Такая ширина спектра усиления в CATV усилителях связана с тем, что передаваемый КТВ сигнал представляет собой спектр 1550±5 нм. Другим важным отличием оптических усилителей для КТВ является выходная мощность, которая может достигать 41 дБм, в то время как DWDM EDFA ограничиваются выходной мощностью в 24 дБм. Так же в качестве отличий можно указать специфическую архитектуру КТВ EDFA усилителей, которая может включать в себя оптические делители на выходном порту и широкополосные WDM фильтры, но это является всего лишь необходимой для отросли модификацией, а не отличием.
Оптические усилители
Эти устройства обеспечивают внутреннее усиление оптического сигнала без его преобразования в электрическую форму. Они используют принцип индуцированного излучения, аналогично лазерам. Существует пять типов оптических усилителей, см. табл. 4.5.
Таблиц 4.5. Типы и области применения оптических усилителей
1. Усилители Фабри-Перо. Усилители оснащаются плоским резонатором с зеркальными полупрозрачными стенками. Они обеспечивают высокий коэффициент усиления (до25 дБ) в очень узком (1,5 ГГц), но широко перестраиваемом (800 ГГц) спектральном диапазоне. Кроме этого, эти устройства не чувствительны к поляризации сигнала и характеризуются сильным подавлением боковых составляющих (ослабление на 20 дБ за пределами интервала в 5 ГГц). В силу своих характеристик, усилители Фабри-Перо идеально подходят для работы в качестве демультиплексоррв, поскольку они могут всегда быть перестроены для усиления только одной определенной длины волны одного канала из входного многоканального WDM сигнала.
2. Усилители на волокне, использующие бриллюэновское рассеяние. Стимулированное бриллюэновское рассеяние — это нелинейный эффект, возникающий в кремниевом волокне, когда Энергия от оптической волны на частоте, скажем, f1 переходит в энергию новой волны на смещенной частоте f2.
Если мощная накачка производится на частоте f1, стимулированное бриллюэновское рассеяние способно усиливать слабый входной сигнал на частоте f2. Выходной сигнал сосредоточен в узком диапазоне, что позволяет выбирать канал с погрешностью 1,5 ГГц.
3. Усилители на волокне, использующие рамановское рассеяние. Стимулированное рамановское рассеяние — также нелинейный эффект, который подобно бриллюэновскому рассеянию может использоваться для преобразования части энергии из мощной волны накачки в слабую сигнальную волну. Однако, при рамановском рассеянии частотный сдвиг между сигнальной волной и волной накачки (|f2-f1|) больше, а выходной спектральный диапазон усиления шире, что допускает усиление сразу нескольких каналов в WDM сигнале. Большие переходные помехи между усиливаемыми каналами представляют основную проблему при разработке таких усилителей.
4. Полупроводниковые лазерные усилители (ППЛУ). Основу ППЛУ составляет активная среда, аналогичная той, которая используется в полупроводниковых лазерах. В ППЛУ отсутствуют зеркальные резонаторы, характерные для полупроводниковых лазеров. Для уменьшения френелевского отражения с обеих сторон активной среды наносится специальное покрытие толщиной λ/4 с согласованным показателем преломления, рис. 4.13.
Рис. 4.13. Полупроводниковый лазерный усилитель
Полупроводниковые лазерные усилители не получили столь широкого распространения, как усилители на примесном волокне. Дело в том, что ППЛУ свойственны два существенных недостатка.
Светоизлучающий активный слой имеет поперечный размер несколько микрон, но толщину в пределах одного микрона, что много меньше, чем диаметр светонесущей части оптического волокна (
9 мкм — для одномодового волокна). Вследствие этого большая часть светового потока из входящего волокна не попадает в активную область и теряется, что уменьшает КПД усилителя. Увеличить КПД можно, поставив между входящим волокном и активной средой линзу, но это приводит к усложнению конструкции.
Два приведенных недостатка нивелируются в тех случаях, когда ППЛУ интегрирован с другими оптическими устройствами. И именно так преимущественно используются ППЛУ. Одна из возможностей — производство совмещенного с вето излучающего лазерного диода, непосредственно на выходе которого устанавливается ППЛУ.
На рис. 4.14 показана еще одна реализация источника мультиплексного многоволнового излучения, в котором ППЛУ используются в качестве широкополосного усилителя. Несколько узкополосных полупроводниковых лазеров на разных длинах волн генерируют световые сигналы, которые мультиплексируются и размножаются посредством оптического разветвителя. ППЛУ устанавливаются на конечном участке, чтобы усилить ослабленные после разветвления оптические мультиплексные сигналы.
Рис. 4.14. Источник мультиплексного излучения, (полупроводниковые лазерные усилители интегрированы с массивом лазерных светодиодов и оптическим разветвителем)
5. Усилители на примесном волокне. Этот тип оптического усилителя наиболее широко распространен и является ключевым элементом в технологии полностью оптических сетей, поскольку он позволяет усиливать сигнал в широком спектральном диапазоне].
На рис. 4.15 приведена схема усилителя на примесном волокне. Слабый входной оптический сигнал (1) проходит через оптический изолятор (2), который пропускает свет в прямом направлении — слева направо, но не пропускает рассеянный свет в обратном направлении, далее проходит через блок фильтров (3), которые блокируют световой поток на длине волны накачки, но прозрачны к длине волны сигнала. Затем сигнал попадает в катушку с волокном, легированным примесью из редкоземельных элементов (4). Длина такого участка волокна составляет несколько метров. Этот участок волокна подвергается сильному непрерывному излучению полупроводникового лазера (5), установленного с противоположенной стороны, с более короткой длиной волны накачки. Свет от лазера накачки — волна накачки (б) — возбуждает атомы примесей. Возбужденные состояния имеют большое время релаксации, чтобы спонтанно перейти в основное состояние. Однако при наличии слабого сигнала происходит индуцированный переход атомов примесей из возбужденного состояния в основное с излучением света на той же длине волны и с той же самой фазой, что и повлекший это сигнал. Селективный разветвитель (7) перенаправляет усиленный полезный сигнал (8) в выходное волокно (9). Дополнительный оптический изолятор на выходе (10) предотвращает попадание обратного рассеянного сигнала из выходного сегмента в активную область оптического усилителя.
Рис 4.15 — Оптический усилитель на примесном волокне
Активной средой усилителя является одномодовое волокно, сердцевина которого легируется примесями редкоземельных элементов с целью создания трехуровневой атомной системы, рис. 4.16. Лазер накачки возбуждает электронную подсистему примесных атомов. В результате чего электроны с основного состояния (уровень А) переходят в возбужденное состояние (уровень В). Далее происходит релаксация электронов с уровня В на промежуточный уровень С. Когда заселенность уровня С становится достаточно высокой, так что образуется инверсная заселенность уровней А и С, то такая система способна индуцировано усиливать входной оптический сигнал в определенном диапазоне длин волн. Если же входной сигнал не нулевой, то происходит спонтанное излучение возбужденных атомов примесей, приводящее к шуму.
Рис 4.16 — Энергетическая диаграмма уровней атомной системы улилителя нп примесном
Усиление в другом окне прозрачности 1300 нм можно реализовать с использованием примесей празеодимия, однако такие оптические усилители не получили большого распространения.
Коэффициент усиления сигнала зависит от его входной амплитуды и длины волны. При малых входных сигналах амплитуда выходного сигнала линейно растет с ростом входного сигнала, коэффициент усиления достигает при этом своего максимального значения. Например, если входной сигнал 1 мкВт (-30 дБм), то выходной сигнал может быть на уровне 1 мВт (0 дБм), что соответствует усилению в 30 дБ. Но при большом входном сигнале сигнал на выходе достигает своего насыщения, что приводит к падению коэффициента усиления. Например, на той же длине волны входной сигнал 1 мВт приведет к генерации выходного сигнала 20 мВт в режиме насыщения, что будет соответствовать коэффициенту усиления всего лишь 13 дБ.
На рис. 4.17 показано, как ведет себя коэффициент усиления К для EDFA в зависимости от длины волны и при различных значениях мощности входного сигнала. Уменьшение К при Рщ = 1 мВт связано с насыщением усилителя. На кривой зависимости К от длины волны при малых значениях мощности входного сигнала заметны минимумы и максимумы. Отсутствие плато в широком диапазоне длин волн (от 1530 до 1560 нм) заставляет дополнительно на линии из каскада оптических усилителей устанавливать эквалайзеры с целью выравнивания амплитуд мультиплексных сигналов разных длин волн. В то же время ведутся интенсивные исследования по выравниванию кривой усиления. Следует подчеркнуть, что построение усилителей с такими характеристиками не является непреодолимой задачей, но скорее требует тщательно отработанной технологии производства всех элементов усилителя.
Рис. 4.17. Коэффициент усиления кремниевого EDFA при различных значениях мощности входного оптического сигнала (по материалам фирмы
Corning)
Характерным для оптических усилителей является широкополосный собственный шум, рис. 4.18 Этот шум, которого избежать невозможно, главным образом связан со спонтанным излучением инверсно-заселенных уровней на примесных атомах.
Рис. 4.18. Мощность выходного сигнала и шума в EDFA
Усиление оптических сигналов
Технологии спектрального уплотнения, в частности CWDM и DWDM, позволили провайдерам и операторам связи расширить пропускную способность имеющихся сетей и избавили от необходимости финансировать расширение инфраструктуры ВОЛС. В сегментах сети, в которых расстояния между узлами небольшие, доминирующее положение заняли пассивные системы спектрального уплотнения. Мощности передатчиков и чувствительности приемников в оптических трансиверах достаточно для обеспечения работоспособности системы и компенсации затухания в волокне и на компонентах сети.
Но если возникает задача спектрального уплотнения линии большой протяженности, то без оптических усилителей или регенераторов решения она не имеет. При выборе способа усиления сигнала (безусловно, при существовании возможности выбора) предпочтение отдается оптическим усилителям: они не осуществляют оптоэлектронных преобразований сигнала и достаточно просты в исполнении.
Большую популярность в оптических сетях получили усилители EDFA (Erbium-Doped Fiber Amplifier: оптический усилитель, легированный эрбием). Длины волн, усиливаемых простыми EDFA оптических сигналов, лежат в диапазоне от 1525 до 1565 нм, что идеально подходит для усиления мощности излучения в «С-диапазоне» DWDM-систем. Для усиления сигналов из «L-диапазона» используются LWEDFA (Long Wavelength EDFA: длинноволновые EDFA), работающие в диапазоне от 1570 до 1605 нм. Использование усилителей EDFA для увеличения мощности сигнала в системах DWDM позволило конструктивно упростить эти системы и снизить общую стоимость комплекса оборудование DWDM.
Основные характеристики усилителей EDFA
Принцип работы усилителей EDFA
Принцип работы эрбиевого усилителя основывается на способности волокна, легированного эрбием, усиливать сигналы за счет внешнего излучения, формируемого «лазерами накачки» (именно развитие схем «накачки» позволило создать усилители LWEDFA).
В усилителях EDFA могут использоваться волокна на кварцевой или на фторидной основе. Использование волокон на фторидной основе позволяет обеспечить более насыщенное легирование эрбием и добиться более равномерного усиления сигналов на всех длинах волн. Усилители EDFA на базе оптических волокон c кварцевой основой обладают меньшим уровнем шума.
Излучение на длинах волн 1480 и 980 нм отлично поглощается активной средой усилителя — одномодового волокна, сердцевина которого легируется примесями редкоземельных элементов с целью создания трехуровневой атомной системы. Лазер накачки возбуждает электронную подсистему примесных атомов. В результате чего электроны с основного состояния (уровень 1) переходят в возбужденное состояние (уровень 2). Далее происходит релаксация электронов с уровня 2 на промежуточный уровень 3. Когда заселенность промежуточного уровня 3 становится достаточно высокой, так что образуется инверсная заселенность уровней 1 и 3, система начинает индуцировано усиливать входной оптический сигнал в определенном диапазоне длин волн.
Слабый входной оптический сигнал проходит через оптический изолятор, пропускающий свет в прямом направлении и предотвращающий распространение обратного рассеянного излучения. Сигнал проходит через блок фильтров, которые блокируют световой поток на длине волны накачки и пропускают остальное излучение. Затем сигнал попадает в катушку с волокном, легированным примесью из редкоземельных элементов, в случае усилителей EDFA — эрбий. Длина такого участка волокна составляет несколько метров. Этот участок волокна подвергается сильному непрерывному излучению одного или нескольких полупроводниковых лазеров накачки. Излучение лазера накачки возбуждает атомы примеси, которые в возбужденном состояния имеют большое время релаксации, для спонтанного перехода в основное состояние. При наличии слабого сигнала происходит индуцированный переход атомов примесей из возбужденного состояния в основное с излучением света на той же длине волны и с той же самой фазой, что и повлекший это сигнал. Далее разветвитель перенаправляет усиленный полезный сигнал в выходное волокно. Оптический изолятор на выходе усилителя предотвращает попадание обратного рассеянного сигнала из выходного сегмента в активную область оптического усилителя.
Лазеры накачки
Вернемся к лазерам накачки – источникам энергии усиления. Стандартно в EDFA используются лазеры с длинами волн 980 и 1480 нм.
Рисунок 1. Схемы накачки
Лазеры накачки с длиной волны 980 нм имеют низкий коэффициент шума, а лазеры 1480 нм позволяют добиться большего коэффициента усиления. Исходя из этих фактов, лазеры накачки 980 нм используются для предусилителей и систем с большим количеством каналов, а лазеры 1480 нм применяются для более мощных усилителей. Компромиссом в данной ситуации служит схема двойной накачки обоими типами лазеров. Мощность лазера накачки теоретически равномерно распределяется между всеми каналами, потому чем больше каналов в системе, тем мощнее должен быть лазер накачки или каскад накачки.
Существует несколько схем накачки:
При использовании двух лазеров накачки с разными длинами волн, лазер 1480 нм подключается в обратном направлении, а накачку на 980 нм – в прямом (3). Высокая квантовая эффективность лазера 1480 нм с высоким уровнем шума в сочетании с малошумящим лазером 980 нм позволяют добиться высоких показателей для коэффициента усиления и выходной мощности излучения. Применение компенсаторов дисперсии в схемах с двумя лазерами (4) позволяет еще лучших результатов, однако увеличивает стоимость усилителя EDFA.
Типы усилителей EDFA
В зависимости от применения различают:
Рисунок 2. Типы усилителей
Усилители мощности (бустеры) устанавливаются непосредственно после лазерных передатчиков и предназначены для дополнительного усиления сигнала до уровня, который не может быть достигнут на основе лазерного диода. Бустеры могут также устанавливаться перед оптическим разветвителем (например, при передаче нисходящего трафика в гибридных волоконно-коаксиальных архитектурах кабельного телевидения).
Предварительные усилители (предусилители) используются непосредственно перед приёмником сигнала и способствуют увеличению отношения сигнал/шум на выходе электронного каскада усиления в оптоэлектронном приёмнике. Оптические предусилители часто используются в качестве замены сложных и дорогих когерентных оптических приёмников.
Линейные усилители устанавливаются в промежуточных точках протяженных линий связи между регенераторами или на выходе оптических разветвителей с целью компенсации ослабления сигнала, которое происходит из-за затухания в оптическом волокне или из-за разветвления в оптических разветвителях, ответвителях, мультиплексорах xWDM. Линейные усилители заменяют оптоэлектронные повторители и регенераторы в тех случаях, когда нет необходимости в точном восстановлении сигнала.
Изменение характеристик усилителей EDFA в зависимости от типа
Параметр | Предусилитель | Линейный усилитель | Усилитель мощности |
Коэффициент усиления (G) | высокий | средний | низкий |
Коэффициент шума (NF) | низкий | средний | низкий |
Мощность насыщения (Pout sut) | низкая | средняя | высокая |
Нелинейность | низкая | низкая | низкая |
Зона усиления | узкая | широкая | широкая |
Области применения EDFA
Усилители EDFA являются протоколонезависимыми устройствами, что также делает их незаменимыми в системах DWDM, в которых часто организуются каналы с различными протоколами передачи данных. Стоит отметить, что усилители EDFA увеличивают уровень мощности несущих волн в диапазоне, поэтому эти устройства работают как с цифровыми, так и с аналоговыми сигналами. Последний тип сигналов используется в сетях кабельного телевидения, поэтому EDFA усилители широко применяются в таких сетях.
Технология FTTH подразумевает отсутствие необходимости использования дорогостоящего оборудования на стороне клиента и для снижения стоимости абонентских устройств в них используются приемники с низкой чувствительностью. Поэтому сигнал у клиента должен быть достаточно сильным. А пассивные оптические сети (PON) — с большим числом абонентов, со сложной структурой делителей и огромными потерями, но при этом экономически эффективные — сложно представить без оптических усилителей.