Что такое осмотическое давление крови простыми словами
Что такое осмотическое давление крови простыми словами
Поддержание адекватного объема одной или обеих (внутри- и внеклеточной) жидких сред организма является частой проблемой при лечении тяжелобольных. Распределение внеклеточной жидкости между плазмой и межклеточным пространством в основном зависит от уравновешивания сил гидростатического и коллоидно-осмотического давления, которые действуют на мембрану капилляров.
Распределение жидкости между внутри- и внеклеточной средами в основном определяется осмотическими силами мелких молекул растворенных веществ, преимущественно натрия, хлора и других электролитов, действующих по разные стороны мембраны. Причина этого распределения обусловлена свойствами мембран, проницаемость которых для воды высока, а для ионов даже очень небольшого диаметра, таких как натрий и хлор, практически равна нулю. Следовательно, вода быстро проникает через мембрану, а внутриклеточная жидкость, тем не менее, остается изотоничной по отношению к внеклеточной.
В следующем разделе рассмотрим взаимосвязь между внутри- и внеклеточной жидкостями и причины осмотического характера, способные влиять на перенос жидкости между этими средами.
В статье мы рассмотрим только наиболее важные теоретические положения, касающиеся регуляции объемов жидкости.
Теоретические основы осмоса и осмотического давления
Основы осмоса и осмотического давления изложены в отдельной статье на сайте (просим вас пользоваться формой поиска выше). В этой статье мы рассмотрим только наиболее важные теоретические положения, касающиеся регуляции объемов жидкости.
Осмос — процесс диффузии воды через полупроницаемую мембрану. Он происходит из области с высокой концентрацией воды в область с ее низкой концентрацией. Растворение вещества в воде приводит к снижению концентрации воды в данном растворе. Следовательно, чем больше концентрация вещества в растворе, тем ниже в нем содержание воды. Кроме того, вода диффундирует из области с низкой концентрацией вещества (высоким содержанием воды) в область с высокой концентрацией вещества (низким содержанием воды).
Поскольку проницаемость мембраны клеток избирательна (она относительно низка для большинства растворенных веществ, но высока для воды), то при повышении концентрации вещества с одной стороны мембраны вода проникает в эту область путем диффузии. Если растворенное вещество, такое как NaCl, добавить во внеклеточную жидкость, вода будет быстро выходить из клетки до тех пор, пока концентрации молекул воды по обе стороны мембраны не уравняются. Если, напротив, концентрация NaCl во внеклеточной жидкости снизится, вода из внеклеточной жидкости устремится в клетки. Интенсивность, с которой вода диффундирует в клетку, называют осмотической силой.
а) Соотношение молей и осмолей. Поскольку концентрация воды в растворе зависит от количества в нем частиц вещества, под термином «концентрация вещества» (независимо от его химического состава) понимают общее число частиц вещества в растворе. Это число измеряют в осмолях. Один осмоль (осм) соответствует одному молю (1 моль, 6,02×10 23 ) частиц растворенного вещества. Следовательно, каждый литр раствора, содержащий 1 моль глюкозы, соответствует концентрации 1 осм/л. Если молекула диссоциирует на 2 иона, т.е. возникают две частицы (например, NaCl распадается на ионы Na+ и Сl-), то одномолярный раствор (1 моль/л) будет иметь осмолярность 2 осм/л. Аналогично раствор, содержащий 1 моль вещества, которое диссоциирует на 3 иона, например сульфат натрия Na2SО4, будет содержать 3 осм/л. Поэтому термин «осмоль» определяют, ориентируясь не на молярную концентрацию вещества, а на число растворенных частиц.
В целом осмоль — слишком большая величина, чтобы использовать ее в качестве единицы измерения осмотической активности жидких сред организма. Обычно используют 1/1000 осмоли — миллиосмолъ (моем).
б) Осмоляльность и осмолярность. Осмолялъностью называют осмоляльную концентрацию вещества в растворе, которая выражается в количестве осмолей на килограмм растворителя. Когда же речь идет о количестве осмолей в литре раствора, эту концентрацию называют осмолярностью. Для сильно разведенных растворов, которыми являются жидкие среды организма, справедливо использовать оба термина, т.к. разница значений невелика. Во многих случаях сведения о жидких средах организма легче выражать в литрах, чем в килограммах, поэтому в большинстве расчетов, используемых в клинике, а также в следующих главах, за основу принята не осмоляльность, а осмолярность.
в) Осмотическое давление. Осмос молекул воды через избирательно проницаемую мембрану может быть уравновешен силой, приложенной в направлении, обратном осмосу. Величину давления, необходимую для прекращения осмоса, называют осмотическим давлением. Таким образом, осмотическое давление является непрямой характеристикой содержания воды и концентрации веществ в растворе. Чем оно выше, тем меньше в растворе содержание воды и выше концентрация растворенного вещества.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Осмотическое давление
Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.
Мера градиента осмотического давления, то есть различия водного потенциала двух растворов, разделённых полупроницаемой мембраной, называется тоничность. Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.
Осмотическое давление может быть весьма значительным. В дереве, например, под действием осмотического давления растительный сок (вода с растворёнными в ней минеральными веществами) поднимается по ксилеме от корней до самой верхушки. Одни только капиллярные явления не способны создать достаточную подъёмную силу — например, секвойям требуется доставлять раствор на высоту до 100 метров. При этом в дереве движение концентрированного раствора, каким является растительный сок, ничем не ограничено.
Если же подобный раствор находится в замкнутом пространстве, например, в клетке крови, то осмотическое давление может привести к разрыву клеточной мембраны. Именно по этой причине лекарства, предназначенные для введения в кровь, растворяют в изотоническом растворе, содержащем столько хлорида натрия (поваренной соли), сколько нужно, чтобы уравновесить создаваемое клеточной жидкостью осмотическое давление. Если бы вводимые лекарственные препараты были изготовлены на воде или очень сильно разбавленном (гипотоническом по отношению к цитоплазме) растворе, осмотическое давление, заставляя воду проникать в клетки крови, приводило бы к их разрыву. Если же ввести в кровь слишком концентрированный раствор хлорида натрия (3-5-10 %, гипертонические растворы), то вода из клеток будет выходить наружу, и они сожмутся. В случае растительных клеток происходит отрыв протопласта от клеточной оболочки, что называется плазмолизом. Обратный же процесс, происходящий при помещении сжавшихся клеток в более разбавленный раствор, — соответственно, деплазмолизом.
Величина осмотического давления, создаваемая раствором, зависит от количества, а не от химической природы растворенных в нём веществ (или ионов, если молекулы вещества диссоциируют), следовательно, осмотическое давление является коллигативным свойством раствора. Чем больше концентрация вещества в растворе, тем больше создаваемое им осмотическое давление. Это правило, носящее название закона осмотического давления, выражается простой формулой, очень похожей на некий закон идеального газа:
,
Это показывает также схожесть свойств частиц растворённого вещества в вязкой среде растворителя с частицами идеального газа в воздухе. Правомерность этой точки зрения подтверждают опыты Ж. Б. Перрена (1906): распределение частичек эмульсии смолы гуммигута в толще воды в общем подчинялось закону Больцмана.
Осмотическое давление, которое зависит от содержания в растворе белков, называется онкотическим (0,03 — 0,04 атм.). При длительном голодании, болезни почек концентрация белков в крови уменьшается, онкотическое давление в крови снижается и возникают онкотические отёки: вода переходит из сосудов в ткани, где πОНК больше. При гнойных процессах πОНК в очаге воспаления возрастает в 2-3 раза, так как увеличивается число частиц из-за разрушения белков. В организме осмотическое давление должно быть постоянным (≈ 7,7 атм.). Поэтому пациентам вводят изотонические растворы (растворы, осмотическое давление которых равно πПЛАЗМЫ ≈ 7,7 атм. (0,9 % NaCl — физиологический раствор, 5 % раствор глюкозы). Гипертонические растворы, у которых π больше, чем πПЛАЗМЫ, применяются в медицине для очистки ран от гноя (10 % NaCl), для удаления аллергических отёков (10 % CaCl2, 20 % глюкоза), в качестве слабительных лекарств (Na2SO4∙10H2O, MgSO4∙7H2O).
Закон осмотического давления можно использовать для расчёта молекулярной массы данного вещества (при известных дополнительных данных).
Избранные вопросы молекулярной патологии для клинических ординаторов 2020
Вода и электролиты
Растворителем, в котором работают почти все известные живые системы, служит окись водорода, или вода (H 2O). В молекуле воды атом кислорода соединен с двумя атомами водорода одинарными ковалентными связями. Чтобы понять, почему это важно и на что это влияет, нам придется ввести несколько дополнительных понятий из общей химии.
Электроотрицательность — сила, с которой атом в составе молекулы оттягивает на себя общие с другим атомом электроны, образующие ковалентную связь. Это понятие ввел Лайнус Полинг (Linus Carl Pauling). Самый электроотрицательный элемент — фтор, за ним на шкале электроотрицательности следует кислород. Иными словами, кислород превосходит по электроотрицательности все другие атомы, за исключением фтора (который в биологической химии практически не встречается). Запомним этот факт.
Электроотрицательность одинаковых атомов по определению равна. Если между двумя одинаковыми атомами есть ковалентная связь, то образующие ее электроны никуда не смещены (в рамках старинной планетарной модели атома можно сказать, что они находятся точно посредине между атомами, как на картинке). Такая ковалентная связь называется неполярной.
Если ковалентную связь образуют два разных атома, то общие электроны смещаются к тому из них, у которого выше электроотрицательность. Такая связь называется полярной. При очень большой разнице в электроотрицательности она может даже стать ионной — это случится, если один атом полностью “отберет” у другого общую пару электронов.
Связь между водородом и кислородом в молекуле воды — типичный пример ковалентной полярной связи. Электроотрицательность кислорода намного выше, поэтому общие электроны смещены к нему. В результате на кислороде возникает маленький отрицательный заряд, а на водороде маленький положительный; эти заряды принято обозначать буквой δ (“дельта”).
Связи кислорода с водородом или углеродом (H-O или C-O) — всегда полярные. Молекулы, в которых много таких связей, несут многочисленные частичные заряды, отрицательные на кислороде и положительные на водороде или углероде. В то же время связь между углеродом и водородом (C-H) считается неполярной: разница в электроотрицательности между этими элементами так мала, что смещение электронов незаметно. Например, молекулы углеводородов в силу этого полностью неполярны, они не несут никаких частичных зарядов ни на каких атомах.
При наличии полярных связей между водородом и кислородом частичные заряды на этих атомах (отрицательные на кислороде и положительные на водороде) притягиваются друг к другу, образуя водородные связи. Эти связи гораздо слабее ковалентных, но могут давать сильный эффект, если их много. Например, именно из-за колоссального количества водородных связей у воды очень высокая теплоемкость — ее трудно нагреть и трудно остудить. Строго говоря, водородная связь может образоваться не только с кислородом, но и с другими электроотрицательными атомами (например, с азотом или фтором).
Любые заряженные частицы в водном растворе гидратируются, то есть окружаются молекулами воды — конечно, по-разному ориентированными в зависимости от того, положительная это частица или отрицательная. Любые ионы, растворенные в воде, на самом деле присутствуют там в гидратированном состоянии, то есть с водной оболочкой. На картинке для примера показана растворенная поваренная соль (NaCl) — образец чисто ионного вещества.
Полярные молекулы (а тем более ионы) хорошо взаимодействуют с водой, образуя с ней водородные связи и (или) подвергаясь гидратации. Такие вещества хорошо растворяются в воде и называются гидрофильными. Неполярные молекулы взаимодействуют с водой гораздо слабее, чем друг с другом. Такие вещества плохо растворяются в воде и называются гидрофобными. Типичные гидрофобные вещества — углеводороды. Типичные гидрофильные вещества — спирты, такие как этанол или показанный на картинке глицерин. Вообще кислородсодержащие соединения углерода, как правило, гидрофильны, если только в них нет совсем уж огромных углеводородных радикалов.
Могут ли подойти для жизни другие растворители, кроме воды? Ответ — да. Например, двуокись углерода (CO 2) при более высоких давлениях, чем наше атмосферное, становится жидкостью и представляет собой хороший гидрофильный растворитель, в котором успешно идут многие биохимические реакции. В этом растворителе могут жить даже земные микроорганизмы: например, на дне Окинавского желоба в Восточно-Китайском море обнаружено целое озеро жидкой углекислоты, в котором постоянно живут довольно разнообразные бактерии (Inagaki et al., 2006).
Некоторые исследователи предполагают, что океаны жидкой двуокиси углерода могут существовать на планетах-“суперземлях” с массой, в несколько раз превосходящей массу Земли (Budisa, Schulze-Makuch, 2014). На картинке — художественное изображение планеты GJ1214b в созвездии Змееносца.
На крупнейшем спутнике Сатурна — Титане — есть углеводородные озера и даже моря, состоящие из метана (CH 4), этана (C 2H 6) и пропана (C 3H 8). Это гидрофобный растворитель, в котором тоже иногда предполагают существование жизни, хотя прямых подтверждений тому пока нет. На картине — пейзаж Титана. Жидкой воды на поверхности Титана нет, там слишком холодно.
Аммиак (NH 3) — гидрофильный растворитель, образующий много водородных связей, в данном случае между водородом и азотом, и напоминающий воду по физико-химическим свойствам. На более холодных планетах, чем Земля, аммиак находится в жидком состоянии и вполне может быть средой для жизни.
Теоретически возможно существование холодных землеподобных планет с аммиачными океанами (на картинке художественное изображение такой планеты). Есть ли там жизнь, никто не знает. Но почему бы и нет? Если насчет альтернатив углеродной жизни есть сомнения, то углеродную жизнь в неводном растворителе представить гораздо легче.
Можно придумать и другие экзотические варианты — например, океан из плавиковой кислоты (HF) на планете, описанной в фантастической повести Ивана Ефремова “Сердце Змеи”. “Люди Земли увидели лиловые волны океана из фтористого водорода, омывавшие берега черных песков, красных утесов и склонов иззубренных гор, светящихся голубым лунным сиянием…” Возвращаясь к земной биохимии, будем помнить, что она — не единственная теоретически возможная.
ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ
Осмотическое давление — давление на раствор, отделенный от чистого растворителя полупроницаемой мембраной, при к-ром прекращается осмос, т. е. переход молекул растворителя в раствор через разделяющую их полупроницаемую мембрану или переход молекул растворителя через полупроницаемую мембрану от раствора, менее концентрированного, к раствору, более концентрированному. Полупроницаемые мембраны представляют собой естественные или искусственные пленки, проницаемые только для молекул растворителя (напр., воды) и не проницаемые для молекул растворенного вещества. Осмос и Осмотическое давление играют большую роль в поддержании концентрации веществ, растворенных в жидкостях организма, на определенном, физиологически необходимом уровне, и, следовательно, в распределении воды между тканями и клетками. При изучении изолированных клеток и тканей важно, чтобы искусственная культуральная среда была изотонична естественной среде. При введении в организм различного рода жидкостей наименьшие нарушения вызывают р-ры с Осмотическим давлением, равным Осмотическому давлению жидкостей организма.
Измерение О. д. (осмометрия) находит широкое применение для определения мол. веса (массы) биологически активных высокомолекулярных веществ, таких, как белки, углеводы, нуклеиновые к-ты и др. Измерение величины О. д. производят с помощью приборов, называемых осмометрами (рис.). Число молекул воды, сталкивающихся со стороны воды с полупроницаемой мембраной, образованной железосинеродистой медью, больше числа молекул воды, сталкивающихся с этой мембраной со стороны р-ра, т. к. концентрация молекул воды в р-ре ниже, чем в чистой воде. В результате этого происходит осмос и возникает избыточное гидростатическое давление на р-р, под действием к-рого скорость перехода молекул воды через мембрану в чистую воду возрастает. Если избыточное давление на р-р достигает величины, равной О. д. р-ра, то число молекул воды, проходящих сквозь мембрану в обоих направлениях, становится одинаковым, осмос прекращается, и между р-ром и растворителем, находящимися по обе стороны полупроницаемой мембраны, устанавливается осмотическое равновесие. Т. о., осмотическое давление возникает лишь в том случае, когда р-р и растворитель отделены друг от друга полупроницаемой мембраной.
Осмотическое давление изолированных клеток или тканей наиболее просто измерить методом плазмолиза. Для этого исследуемые объекты помещают в р-ры с разными концентрациями какого-нибудь вещества, по отношению к к-рому клеточная мембрана непроницаема. Растворы с О. д. более высоким, чем О. д. содержимого клеток (гипертонические р-ры), вызывают сморщивание клеток — плазмолиз вследствие перехода воды из клетки в р-р. Растворы с О. д. более низким, чем О. д. содержимого клеток (гипотонические р-ры), вызывают увеличение объема клеток в результате перехода воды из р-ра в клетку. Р-ры с О. д., равным О. д. содержимого клеток (изотонические р-ры), не вызывают изменения объема клеток. Зная концентрацию такого р-ра, вычисляют его О. д.; такова же будет величина О. д. и содержимого клеток. Важным фактором, определяющим прохождение воды через клеточную мембрану, особенно в начальной стадии процесса, могут быть мембранные потенциалы, к-рые вызывают электроосмотическое перемещение воды через оболочку клетки, так наз. аномальный осмос (см. Электроосмос). В подобных случаях измерение О. д. методом плазмолиза является неточным.
Определение Осмотического давления р-ров, содержащих низкомолекулярные вещества, для к-рых трудно приготовить непроницаемую мембрану, производят косвенными методами, обычно посредством измерения понижения температуры замерзания р-ра (см. Криометрия).
Я. Вант-Гофф показал, что Осмотическое давление разбавленных р-ров неэлектролитов подчиняется законам, установленным для давления газов (см.), и может быть вычислено по уравнению, аналогичному уравнению Клапейрона—Менделеева для газов:
Приведенное уравнение является математическим выражением закона Вант-Гоффа: О. д. разбавленного р-ра равно давлению, к-рое производило бы растворенное вещество, находясь в газообразном состоянии и занимая объем, равный объему р-ра при той же температуре. Введя в уравнение молярную концентрацию — с = n\v получим π = c*RT.
О. д. р-ра электролита больше О. д. р-ра неэлектролита той же молярной концентрации. Это объясняется диссоциацией молекул электролита в р-ре на ионы, вследствие чего возрастает концентрация кинетически активных частиц, к-рой определяется величина О. д.
Число i, показывающее, во сколько раз О. д. (дэ) р-ра электролита больше О. д. (л) р-ра неэлектролита той же молярной концентрации, называют изотоническим коэффициентом Вант-Гоффа:
Численная величина i зависит от природы электролита и его концентрации в р-ре. Для слабых электролитов величина i может быть вычислена по формуле:
где а — степень диссоциации электролита, а N — число ионов, на к-рые распадается одна молекула электролита. Для разбавленных р-ров сильных электролитов i можно принять равным N.
Из сказанного следует, что О. д. р-ра электролита можно вычислить по уравнению:
где с — молярная концентрация.
Если в р-ре, кроме низкомолекулярных растворенных веществ, содержатся высокомолекулярные вещества (коллоиды), то О. д., обусловленное высокомолекулярными веществами, называют, по предложению Шаде (H. Schade), онкотическим, или коллоидно-осмотическим давлением.
Общее Осмотическое давление плазмы крови человека в норме равно 7,6 атм, онкотическое давление, обусловленное в основном белками плазмы, составляет только 0,03—0,04 атм. Онкотическое давление, несмотря на малую величину по сравнению с общим О. д. плазмы крови, играет большую роль в распределении воды между кровью и тканями организма.
Многие биополимеры, напр, белки, нуклеиновые к-ты и др., являясь полиэлектролитами, при диссоциации в р-ре образуют многозарядные ионы (полиионы) большого мол. веса (массы), для к-рых мембрана осмометра непроницаема, и обычные ионы малых размеров, проходящие сквозь полупроницаемую мембрану. Если в р-ре, заполняющем осмометр, содержится полиэлектролит, то низкомолекулярные ионы, диффундирующие сквозь мембрану, неравномерно распределяются по обе стороны мембраны (см. Мембранное равновесие). Наблюдаемое при этом избыточное гидростатическое давление в осмометре будет равно πБ = πБ + π1 — π2, где πБ — О. д., обусловленное биополимером, а π1 и π2 — О. д. низкомолекулярного электролита, находящегося в осмотической ячейке и во внешнем р-ре соответственно. При измерении О. д. р-ров биополимеров необходимо учитывать возможность неравномерного распределения низкомолекулярных электролитов по обе стороны полупроницаемой мембраны осмометра или проводить измерения при достаточном избытке низкомолекулярного электролита, специально вводимого в р-р биополимера. В этом случае низкомолекулярный электролит распределяется по обе стороны полупроницаемой мембраны практически равномерно, при этом = π1 = π2 и πБ = πН.
Осморегуляция
Совокупность механизмов, обеспечивающих поддержание О. д. в жидких средах организма на оптимальном для обмена веществ уровне, называют осморегуляцией. Получая информацию от рецепторных зон об изменении О. д. крови, ц. н. с. включает ряд механизмов, возвращающих систему в оптимальное для организма состояние. Включение происходит двумя путями: нервным и гуморальным. Отклонение величины О. д. от оптимального уровня улавливается в организме осморецепторами (см.), среди к-рых ведущее место занимают центральные осморецепторы, расположенные в супраоптическом и паравентрикулярном ядрах гипоталамуса (см.).
Клетки супраоптического ядра гипоталамуса способны секретировать антидиуретический гормон (АДГ), по аксонам этих клеток он перемещается в нейрогипофиз, где происходит его накопление и выведение в общий кровоток (см. Вазопрессин). АДГ влияет на реабсорбцию воды в дистальных отделах нефрона и способен вызывать сужение просвета сосудов. Афферентные сигналы, регулирующие выделение АДГ, поступают в гипоталамус от объемных рецепторов (волюморецепторов) левого предсердия, от рецепторов дуги аорты, от осморецепторов внутренней сонной артерии, от баро рецепторов и хеморецепторов каротидного синуса. Увеличение О. д. внеклеточной жидкости вызывает возрастание секреции АДГ как за счет самого осмотического давления, так и за счет уменьшения объема внеклеточной жидкости при обезвоживании организма. Т. о., на выделение АДГ влияют две системы сигнализации: сигнализация от осморецепторов и сигнализация от барорецепторов и волюморецепторов. Однако ведущим звеном в регуляции секреции АДГ все же является О. д. плазмы крови, действующее на осморецепторы гипоталамуса.
Выделение АДГ и альдостерона может регулироваться и ангиотензином (см.), очевидно путем его действия на особые рецепторы гипоталамических нейронов. Ренин-ангиотензинная система почек может выступать как волюморецепторная зона, реагирующая на изменение почечного кровотока.
На нормализацию измененного О. д. влияют также мочевыделение (см. Диурез), транскапиллярный обмен жидкости и ионов (см. Водно-солевой обмен), потоотделение (см.), выделение жидкости через легкие (с выдыхаемым воздухом в сутки теряется 350—400 мл воды) и выделение жидкости через жел.-киш. тракт (100—200 мл воды теряется с калом).
Способностью к нормализации Осмотического давления обладает и сама кровь. Она может выполнять роль осмотического буфера при всевозможных сдвигах как в сторону осмотической гипертонии, так и гипотонии. По-видимому, эта функция крови связана, во-первых, с перераспределением ионов между плазмой и эритроцитами и, во-вторых, со способностью белков плазмы крови связывать или отдавать ионы.
При уменьшении водных ресурсов организма или нарушении нормального соотношения между водой и минеральными солями (гл. обр. хлористым натрием) возникает жажда (см.), удовлетворение к-рой способствует поддержанию физиологического уровня водного баланса и электролитного равновесия в организме (см. Гомеостаз).
Библиография: Бладергрён Н. В. Физическая химия в медицине и биологии, пер. с нем., с. 102 и др., М., 1951; Вагнер Р. Г. Определение осмотического давления, в кн.: Физич. методы органической химии, под ред. А. Вайсбергера, пер. с англ., т. 1, с. 270, М., 1950, библиогр.; Гинецинский А. Г. Физиологические механизмы водно-солевого равновесия, М.—Л., 1963; Губанов Н. И. и Утепбергенов А. А. Медицинская биофизика, с. 149, М., 1978; Наточин Ю. В. Ионорегулирующая функция почки, Д., 1976; Сатпаева X. К. Внепочечные механизмы осморегуляции, Алма-Ата, 1971, библиогр.; Уильямс В. и Уильямс X. Физическая химия для биологов, пер. с англ., с. 146, М., 1976; Физиология почки, под ред. Ю. В. Наточина, Л., 1972; Andersson В. Regulation of water intake, Physiol. Rev., v. 58, p. 582, 1978, bibliogr.
В. П. Мишин; С. А. Осиповский (физ.).