Что такое падлок в авиации
Что такое падлок в авиации
Словарь авиационных терминов
1. Авария — авиационное происшествие без человеческих жертв, при котором произошло разрушение воздушного судна.
2. АДП — аэродромный диспетчерский пункт.
3. Акселерометр —прибор, показывающий величину вертикальной перегрузки.
4. Амортстойка — нога шасси, снабженная амортизирующим устройством.
5. АРК (автоматический радиокомпас) — радиоприемник, вращающаяся антенна которого автоматически поворачивается, а связанная с ней стрелка на приборе показывает направление на приводную радиостанцию, на частоту которой он настроен.
6. АУАСП — комбинированный прибор, показывающий текущий угол атаки, критический угол атаки и вертикальную перегрузку.
7. Вертикальная перегрузка — отношение подъемной силы к весу (во сколько раз «как бы увеличивается» вес).
8. Вертикальная скорость — скорость подъема или спуска в метрах в секунду (в отличие от поступательной направлена вверх или вниз).
9. ВЛП — весенне-летний период.
10. Воздухозаборник — входное отверстие, через которое воздух попадает в двигатель.
11. ВПП — взлетно-посадочная полоса.
12. ВПР (высота принятия решения) — минимальная высота, на которой должен быть начат уход на второй круг, если пилот не установил надежного визуального контакта с землей. Для самолета Ту-154 обычно — 60 м.
13. Выдерживание — этап посадки самолета после выравнивания, на котором пилот постепенно уменьшает скорость до посадочной.
14. Гироагрегат — агрегат, в котором используется работа гироскопа.
15. Гирокомпас — компас, показывающий курс относительно неподвижной оси гироскопа.
16. Глиссада — предпосадочная наклонная прямая.
17. Директорные стрелки — стрелки на командно-пилотажном приборе, помогающие пилоту правильно выдерживать посадочный курс и глиссаду на предпосадочной прямой.
18. Деселерометр — прибор, показывающий интенсивность торможения (используется при замере коэффициента сцепления на ВПП).
19. ДИСС (доплеровский измеритель скорости и сноса) — система, выдающая экипажу в полете значения угла сноса и путевой скорости.
20. Закрылки — отклоняемая вниз задняя часть крыла, служащая для уменьшения скорости отрыва самолета и посадочной скорости.
21. Запас по сваливанию — разница между текущим и критическим углами атаки, определяемая по указателю АУАСП.
22. Засветка — изображение на экране радиолокатора границ грозового облака, видимое как светлое пятно на темном фоне.
23. Изобарическая поверхность — условная поверхность, на которой атмосферное давление во всех её точках одинаково.
24. Инверсия — увеличение температуры окружающего воздуха с высотой.
25. Интервал — расстояние между летящими воздушными судами по вертикали.
26. Интерцепторы — воздушные тормоза на верхней поверхности крыла.
27. Истинная скорость — скорость относительно воздуха без учета ветра.
28. Кабрирование — вращение самолета вокруг поперечной оси с подъемом носа.
29. Катастрофа — авиационное происшествие, при котором произошло разрушение воздушного судна и имеются человеческие жертвы.
30. Качество аэродинамическое — отношение подъемной силы к лобовому сопротивлению самолета. Практически — это расстояние в километрах, которое самолет может пролететь с выключенными двигателями с высоты один километр. Для Ту-154 — примерно 15 км.
31. «Козел» — повторное отделение самолета от ВПП после приземления.
32. Контрольная карта обязательных проверок — перечень вопросов и ответов членов экипажа на определенных этапах полета, зачитываемый с целью не забыть выполнить жизненно важные процедуры.
33. Конфигурация воздушного судна — положение механизации крыла и хвостового оперения (отклонение на определенный угол закрылков, предкрылков и стабилизатора). Бывает взлетная, полетная и посадочная.
34. «Коробочка» — схема полетов в районе аэродрома, представляющая собой обычно прямоугольный маршрут.
35. Коэффициент сцепления — величина, показывающая «скользкость» взлетно-посадочной полосы. Минимально допустимый Ксц = 0,3.
СЛОВАРЬ АВИАЦИОННЫХ ТЕРМИНОВ (для непосвящённых)
СЛОВАРЬ АВИАЦИОННЫХ ТЕРМИНОВ
1. Авария — авиационное происшествие без человеческих жертв, при котором произошло разрушение воздушного судна.
2. АДП — аэродромный диспетчерский пункт.
3. Акселерометр — прибор, показывающий величину вертикальной перегрузки.
4. Амортстойка — нога шасси, снабжённая амортизирующим устройством.
5.АРК (автоматический радиокомпас) — радиоприёмник, вращающаяся антенна которого автоматически поворачивается, а связанная с ней стрелка на приборе показывает направление на приводную радиостанцию, на частоту которой он настроен.
6. АУАСП — комбинированный прибор, показывающий текущий угол атаки, критический угол атаки и вертикальную перегрузку.
7. Вертикальная перегрузка — отношение подъёмной силы к весу (во сколько раз «как бы увеличивается» вес).
8. Вертикальная скорость — скорость подъёма или спуска в метрах в секунду (в отличие от поступательной направлена вверх или вниз).
9. ВЛП — весенне-летний период.
10. Воздухозаборник — входное отверстие, через которое воздух попадает в двигатель.
11. ВПП — взлётно-посадочная полоса.
12. ВПР (высота принятия решения) — минимальная высота, на которой должен быть начат уход на второй круг, если пилот не установил надёжного визуального контакта с землёй. Для самолёта Ту-154 обычно — 60 м.
13. Выдерживание — этап посадки самолёта после выравнивания, на котором пилот постепенно уменьшает скорость до посадочной.
14. Гироагрегат — агрегат, в котором используется работа гироскопа.
15. Гирокомпас — компас, показывающий курс относительно неподвижной оси гироскопа.
16. Глиссада — предпосадочная наклонная прямая.
17. Директорные стрелки — стрелки на командно-пилотажном приборе, помогающие пилоту правильно выдерживать посадочный курс и глиссаду на предпосадочной прямой.
18. Деселерометр — прибор, показывающий интенсивность торможения (используется при замере коэффициента сцепления на ВПП).
19. ДИСС (допплеровский измеритель скорости и сноса) — система, выдающая экипажу в полёте значения угла сноса и путевой скорости.
20. Закрылки — отклоняемая вниз задняя часть крыла, служащая для уменьшения скорости отрыва самолёта и посадочной скорости.
21. Запас по сваливанию — разница между текущим и критическим углами атаки, определяемая по указателю АУАСП.
22. Засветка — изображение на экране радиолокатора границ грозового облака, видимое как светлое пятно на тёмном фоне.
23. Изобарическая поверхность — условная поверхность, на которой атмосферное давление во всех её точках одинаково.
24. Инверсия — увеличение температуры окружающего воздуха с высотой.
25. Интервал — расстояние между летящими воздушными судами по вертикали.
26. Интерцепторы — воздушные тормоза на верхней поверхности крыла.
27. Истинная скорость — скорость относительно воздуха без учёта ветра.
28. Кабрирование — вращение самолёта вокруг поперечной оси с подъёмом носа.
29. Катастрофа — авиационное происшествие, при котором произошло разрушение воздушного судна и имеются человеческие жертвы.
30. Качество аэродинамическое — отношение подъёмной силы к лобовому сопротивлению самолёта. Практически — это расстояние в километрах, которое самолёт может пролететь с выключенными двигателями с высоты один километр. Для Ту-154 — примерно 15 км.
31. «Козёл» — повторное отделение самолёта от ВПП после приземления.
32. Контрольная карта обязательных проверок — перечень вопросов и ответов членов экипажа на определённых этапах полёта, зачитываемый с целью не забыть выполнить жизненно важные процедуры.
33. Конфигурация воздушного судна — положение механизации крыла и хвостового оперения (отклонение на определённый угол закрылков, предкрылков и стабилизатора). Бывает взлётная, полётная и посадочная.
34. «Коробочка» — схема полётов в районе аэродрома, представляющая собой обычно прямоугольный маршрут.
35. Коэффициент сцепления — величина, показывающая «скользкость» взлётно-посадочной полосы. Минимально допустимый Ксц = 0,3.
36. Критический угол атаки — угол атаки, на котором наступает срыв потока с крыла, сопровождающийся резким падением подъёмной силы (сваливание).
37. КУЛП — курс учебно-лётной подготовки на воздушном судне (для курсантов).
38. Курс — угол, заключённый между направлением на север и продольной осью самолёта. Измеряется в градусах, от 0 до 360 (север — 0; восток — 90; юг — 180; запад — 270 градусов).
39. Курсовая система — система, выдающая экипажу курс воздушного судна (точный компас).
40. Курсо-глиссадная система — система, дающая экипажу при заходе на посадку информацию о положении самолёта относительно линии посадочного курса и глиссады.
41. Место самолёта — где находится самолёт в данный момент полёта.
42. Механизация крыла — закрылки, предкрылки и интерцепторы.
43. НВУ — навигационно-вычислительное устройство, позволяющее точно определять место самолёта.
44. ОВИ — огни высокой интенсивности, предназначенные для установления визуального контакта пилота с землёй в сложных метеорологических условиях.
45. Однотипный — самолёт того же типа, что и Ваш.
46. ОЗП — осенне-зимний период.
47. Окклюзия — слияние холодного и тёплого фронтов в заполняющемся циклоне.
48. ПДСП — производственно-диспетчерская служба порта.
49. Оси самолёта (продольная, поперечная, вертикальная) — условные оси, проходящие через центр тяжести, вокруг которых происходит вращение самолёта в полёте.
50. Пикирование — вращение самолёта вокруг поперечной оси с опусканием носа.
51. «Подрыв» — преждевременное отделение пилотом самолёта от ВПП на разбеге.
52.Помпаж — нарушение газодинамической устойчивости работы турбореактивного двигателя, сопровождающееся хлопками и падением тяги.
53. Поперечный канал управления самолётом — управление кренами (вокруг продольной оси).
54. Посадочный курс — направление залегания взлётно-посадочной полосы.
55. Поступательная скорость — скорость движения самолёта вперёд в километрах в час (в отличие от вертикальной).
56. Предкрылки — кромка крыла, отклоняемая вперёд таким образом, чтобы воздух, затекая в образовавшуюся щель, препятствовал срыву потока с верхней поверхности крыла.
57. Приборная скорость — скорость, которую показывает прибор, по которому пилотируют самолёт. На больших высотах значительно отличается от истинной скорости. Так, для Ту-154 при полёте на эшелоне10600 м истинная скорость — 900 км/час, а приборная — примерно 550.
58.Приводная радиостанция — установленный на аэродроме всенаправленный радиомаяк, на который настраивается радиокомпас.
59. Приёмистость двигателя — способность быстро увеличивать обороты с малого газа до взлётного режима.
60. Продольный канал управления самолётом — управление тангажом (вокруг поперечной оси).
61. Просадка самолёта — отклонение вниз от расчётной траектории набора высоты или снижения. Опасна на малой высоте.
62. Путевая скорость — скорость самолёта относительно земли с учётом ветра.
63. Равносигнальная зона курсо-глиссадной системы — зона, обеспечивающая точное движение самолёта по курсу и глиссаде.
64.Радиовысотомер — точный высотомер, работающий по принципу радиолокации и обеспечивающий отсчёт высоты над поверхностью на малых высотах с точностью до одного метра.
65. Реверс тяги — создание двигателем тяги, направленной против движения самолёта, для быстрого торможения на пробеге.
66.Режим работы двигателей — скорость вращения турбокомпрессора двигателя, измеряемая в процентах от максимальной. Устанавливается при помощи РУД (аналогично даче «газа» на автомобиле).
67.РЛЭ — Руководство по лётной эксплуатации воздушного судна (главный документ, цифровые параметры которого обязательны к строгому исполнению в полёте).
68.РП (руководитель полётов) — главный диспетчер воздушного движения на аэродроме, указания которого обязательны для всех участников воздушного движения и лиц, обслуживающих полёты.
69. РУД — рычаг управления двигателем (аналогичен педали «газа» на автомобиле).
70. Самолётовождение — искусство воздушной навигации.
71. Санитарная норма — предельно допустимая по медицинским показаниям норма налёта экипажа за день, месяц, год.
72.Скольжение самолёта — перемещение самолёта в воздухе, при котором поток набегает под углом к продольной оси самолёта и лобовое сопротивление увеличивается.
73. Спаренный разворот — разворот на 180 градусов, состоящий из двух следующих один за другим разворотов на 90 градусов.
74. ССОС — система сигнализации опасного сближения самолёта с землёй.
75. Стабилизатор — горизонтальная поверхность хвостового оперения («задние крылья»), на задней кромке которого находится руль высоты. В полёте обеспечивает продольную устойчивость самолёта. Может отклоняться для создания необходимой конфигурации самолёта.
76.Створ ВПП — продолжающая ось взлётно-посадочной полосы линия, на которой установлены дальняя и ближняя приводные радиостанции.
77. Стратосфера — слой земной атмосферы, расположенный выше тропосферы.
78. Тангаж (угол тангажа) — угол между продольной осью самолёта и горизонтальной плоскостью.
79. Торец ВПП (порог) — начало взлётно-посадочной полосы, обозначается зелёными входными огнями.
80. Траверз — сбоку под 90 градусов.
81.Триммер руля — устройство, позволяющее снимать нагрузку с отклонённого органа управления (чтоб все время не давить или тянуть).
82. Тропопауза — тонкий нестабильный слой атмосферы между тропосферой и стратосферой.
83. Тяговооруженность — отношение максимальной тяги двигателей к весу воздушного судна, измеряется в процентах. У самолёта Ту-154 тяговооруженность — 30%.
84. Угол атаки — угол, под которым встречный поток набегает на крыло. Чем больше угол атаки, тем больше подъёмная сила (но тем ближе к сваливанию).
85. Угол сноса — угол между продольной осью самолёта и вектором путевой скорости, показывающим, куда действительно движется самолёт под воздействием ветра.
86. Фюзеляж — корпус самолёта.
87. Центровка — положение центра тяжести самолёта, измеряется в процентах средней аэродинамической хорды крыла.
88. «Чистое» крыло — крыло в полётной конфигурации, когда вся механизация убрана.
89. Шаг винта — угол установки лопастей воздушного винта, который можно изменять в полёте с целью достижения наивысшего коэффициента полезного действия.
90. Эшелон полёта — регламентированная руководящими документами высота для полёта в определённом направлении, установленная с целью выдерживания определённых интервалов между самолётами. Полёты тяжёлых самолётов выполняются строго на эшелонах.
Читайте также
Словарь терминов
Словарь терминов Атаман — предводитель казаков.Боевые холопы — рабы, несшие военную службу в свите бояр.Боярская дума — совет высших лиц государства (думных людей) при монархе, высший орган государства.Вогуличи — племена манси, обитавшие на Урале и в Сибири.Воровство —
Словарь терминов
Словарь терминов БЕНТОС. Совокупность живых существ, живущих на дне (океана или пресных водоемов). Некоторые бентические виды живут в толще донных осадков (многочисленные черви). Другие прикрепляются ко дну — мидии.Третьи свободно передвигаются по дну (морские звезды и
Словарь терминов
Словарь терминов Агнозия — «потеря знания»: неспособность сознательно распознавать объекты или явления определенного рода. При этом в остальном сенсорные проводящие пути функционируют нормально. Например, агнозия глубины, агнозия движения, агнозия цвета и
Словарь терминов
Словарь терминов Адаптер. См. Карта расширения.Американская лига радиолюбителей (ARRL). Общенациональная ассоциация радиооператоров-любителей. Согласно официальному сайту ARRL (www.arrl.org), в США начали выдавать лицензии радистам-любителям в 1912 году.Аналоговый. До цифровых
Словарь авиационных терминов
Словарь авиационных терминов
Словарь авиационных терминов
Словарь авиационных терминов Авария – авиационное происшествие без человеческих жертв, при котором произошло разрушение воздушного судна.АДП – аэродромный диспетчерский пункт.Акселерометр – прибор, показывающий величину вертикальной перегрузки.Амортстойка – нога
Словарь специальных терминов
Словарь специальных терминов Агар-агар. Вещество, содержащееся в морских водорослях и применяемое в бактериологии для приготовления твердых или полужидких питательных сред для выращивания микробов.Анатоксины. Микробные токсины, лишенные токсичности под действием
Словарь некоторых авиационных терминов, встречающихся в книге
Словарь некоторых авиационных терминов, встречающихся в книге Аэротермоупругость — аэроупругость с учетом нагрева конструкции от трения воздуха о поверхность самолета при больших скоростях полета.Аэроупругость — раздел механики, в котором изучаются деформации
Словарь авиационных терминов
Словарь авиационных терминов
Словарь авиационных терминов Авария – авиационное происшествие без человеческих жертв, при котором произошло разрушение воздушного судна.АДП – аэродромный диспетчерский пункт.Акселерометр – прибор, показывающий величину вертикальной перегрузки.Амортстойка – нога
3. СЛОВАРЬ ТЕРМИНОВ И СОКРАЩЕНИЙ
3. СЛОВАРЬ ТЕРМИНОВ И СОКРАЩЕНИЙ Авиагоризонт — гироскопический прибор для измерения и индикации экипажу углов крена и тангажа, соответствующих пространственному положению самолёта относительно горизонта.АРК — автоматический радиокомпас, предназначенный для
Словарь терминов ЛаВея
Словарь терминов ЛаВея Аутоэротические барабаны возбуждения — замкнутые полости, в которых человек может кувыркаться и крутиться без последствий для здоровья, разряжая таким образом избыток энергии и снимая напряжение, происходящее от подавленных сексуальных
Словарь терминов
Словарь терминов Алгебраическая топология — область математики, раздел топологии, изучающий топологические пространства путем сопоставления им алгебраических объектов, а также поведение этих объектов под действием различных топологических операций. Применение
Словарь морских терминов
Словарь морских терминов Абордаж — сцепка двух судов, случайно или в битве.Абордажная сетка, связанная из веревок в палец толщиной; поднимается при сцепке судов вдоль всего борта стеною, чтобы затруднить приступ.Бак — часть верхней палубы, от передней (фок) мачты до
«А про посадку читайте в следующем номере…» — так вот он, этот номер
Заход на посадку и уход на второй круг — по статистике самые опасные этапы полёта.
Давайте разбираться, как это работает, и пользуясь моментом, посмотрим как устроена электронная система управления современным самолётом.
Но перед тем, как мы начнем, я вынужден обозначить эдакий дисклеймер: я действующий пилот Airbus семейства 320, который является самолетом 4-го поколения (отличительный признак которого — наличие технологии Fly-by-Wire). Соответственно, многие специфические системы и процедуры, описываемые в посте, будут привязаны к данному типу. На других типах (например Boeing 737 Classic/NG/MAX, которые являются самолетами предыдущего, 3-го поколения без технологии Fly-by-Wire) процедуры и логика построения и работы систем может значительно различаться. И да, я не имею отношения к инженерно-авиационной службе и службе ОрВД (организации воздушного движения), поэтому уж простите возможные огрехи в описании матчасти.
Краткий ликбез по 4 поколению самолетов (Fly-by-Wire)
Наверное, многие из вас наслышаны о технологии Fly-by-Wire (ЭДСУ или электродистанционная система управления по-нашему). Если кратко пробежаться по истории развития систем управления самолетом, то это выглядело примерно так:
Здесь много интересной информации по теме Fly-by-Wire
В отличии от классической схемы, где прямая механическая связь (пусть даже через отдельные преобразователи) является правилом, в случае Fly-by-Wire данная связь отсутствует (сейчас опустим тонкости типа управления RUDDER’ом или HORIZONTAL STABILIZER’ом напрямую в режиме MECHANICAL BACKUP, это точно тема для отдельной статьи). Т.е. управляющее воздействие на сайдстик (Airbus) или штурвал (Boeing 777) оцифровывается и передается на FLIGHT COMPUTERS. Кстати, в Airbus их – аж целых 7: 2 ELAC’а (Elevator Aileron Computer), 3 SEC’а (Spoilers Elevator Computer), 2 FAC’а (Flight Augmentation Computer). Далее, исходя из закона управления (FLIGHT CONTROL LAW в терминологии Airbus) и множества других параметров полета, компьютеры выдают сигнал на отработку соответствующих гидроприводов, через которые управляющее воздействие передается аэродинамическим поверхностям.
Так в итоге, зачем была придумана система Fly-by-wire? Как ни странно, в первую очередь для повышения безопасности полетов. Но первыми здесь как обычно были военные, которые преследовали несколько иные цели – например создание аэродинамически неустойчивых сверхманевренных самолетов (у нас одним из первых самолетов с ЭДСУ был Су-27, который на дозвуковых скоростях является аэродинамически неустойчивым). Для гражданской авиации – это позволило ввести дополнительную «защиту от дурака» в виде защит (PROTECTIONS в терминологии Airbus), которые обеспечивают дополнительную защиту от попыток вывода самолета из «нормальных» параметров/режимов полета. По своей сути – набор PROTECTIONS это часть закона управления, который является активным в данное время:
PROTECTIONS в NORMAL LAW собственной персоной
Плюс немаловажный момент: сайдстиком в продольном канале пилот задает перегрузку, а в поперечном – угловую скорость разворота (а не крен и тангаж, как в классической схеме управления). При этом самолет будет самостоятельно выдерживать заданные пилотом параметры, сайдстик можно смело отпустить. Это проявление второй причины внедрения fly-by-wire: гарантированная стабильность и управляемость самолета во всем диапазоне «нормальных» параметров полета. Автотриммирование и отсутствие нагрузок на сайдстике/штурвале — это тоже следствие использования технологии fly-by-wire (хотя, если честно — мне лично отсутствие усилий было сначала крайне непривычно).
При выходе за «нормальные» параметры полета (например, при попадании в сложное пространственное положение из-за неправильного обхода засветки) есть закон управления, называемый ABNORMAL ATTITUDE LAW. При этом отключается часть PROTECTIONS (например, нет защиты по перегрузке), уходит автотриммирование, но это сделано для того, чтобы пилот мог максимально эффективно вернуть самолет в «нормальный» режим полета.
Если говорить о Airbus, то в случае наступления отказов разнообразных систем самолета законы управления последовательно деградируют: NORMAL LAW-> ALTERNATE LAW-> DIRECT LAW (здесь самолет из Fly-by-Wire превращается в «классический» самолет предыдущего поколения без защит и автотриммирования, а отклонения управляющих аэродинамических поверхностей прямо пропорциональны отклонению сайдстика)-> MECHANICAL BACKUP (а здесь – остается только прямое управление рулем направления и горизонтальным стабилизатором, но этот режим является скорее «переходным» и не совсем предназначенным для выполнения посадки). Так же и последовательно уменьшается число защит (PROTECTIONS): если в NORMAL LAW самолет имеет защиту по углу тангажа, перегрузке, максимальной скорости полета, углу атаки и углу крена, то данные защиты будут отключаться по мере возникновения отказов систем и деградации законов управления.
К чему я это все рассказал: посадка на самолетах с Fly-by-Wire по технике выполнения очень похожа на то, что мы делаем на классических самолетах, но она имеет определенные особенности, о которых необходимо знать. Более подробно мы все это затронем ниже.
Интересные факты
Подготовка к посадке на эшелоне
Итак, мы летим на крейсерском эшелоне, при подлете к аэродрому назначения примерно за 200 с небольшим миль по VHF радиостанции можно услышать информацию ATIS (Automatic Terminal Information Service) аэродрома назначения. Принимаем погоду, далее с помощью специального программного обеспечения от Airbus, размещенного на бортовых iPad’ах (они же EFB — Electronic Flight Bag), проверяем погоду на предмет соответствия нашим landing performance, в частности соответствия расчетной посадочной дистанции располагаемой длине полосы с учетом текущих погодных условий и коэффициента сцепления на полосе и имеющихся отказов оборудования. Airbus 320 семейства имеет ограничения как по попутному ветру для взлета/посадки, так и по боковому. При этом боковая составляющая ветра с учетом порывов не должна превышать значения, внесенные в AFM (Aircraft Flight Manual, оно же РЛЭ – Руководство по летной эксплуатации) при сертификации самолета. Кроме этого, могут быть дополнительные ограничения в аэропорту назначения/запасным, которые находятся в NOTAM’ах (NOTice To AirMan) – эдакая пачка бумаги, которая обязательно выдается перед вылетом экипажу.
Кроме этого, погодные условия на аэродроме должны соответствовать минимуму самолета, экипажа и аэродрома. Если говорить простым языком, то минимум это минимально допустимые значения дальности видимости на полосе и высота облачности над ней (профессионалы, молчать!) Кому интересно – на том же SKYbrary есть очень много статей, рассказывающих про минимумы и их применение.
Если с учетом всех имеющихся ограничений погодные условия позволяют выполнить посадку, а минимум с учетом этих ограничений «проходит» – то экипажем принимается соответствующее решение и начинается подготовка к посадке.
Сама подготовка включает в себя внесение в FMGS (Flight Management Guidance System, на Airbus их 2) через мини-клавиатуру с дисплеем MCDU (Multipurpose Control and Display Unit) схем прибытия (STAR, STandard ARrival) и самого захода (Approach, обычно это одна из инструментальных схем захода – например заход по ILS, Instrument Landing system), погоду в аэропорту назначения (давление QNH, температура, ветер) и минимума для соответствующего типа захода.
MCDU
При этом схема захода берется автоматически из базы FMGS (которая обновляется техническим составом раз в 24 дня на каждом самолете) и обязательно полностью проверяется на соответствие аэронавигационным сборникам. Наша авиакомпания использует сборники фирмы Jeppesen, которые также размещены в электронном виде на бортовых EFB:
iPad, прибитый к самолету
Или более жесткий вариант. Спасибо lx_photos
После того, как один из пилотов внес данную информацию, второй проводит проверку внесенных в FMGS данных (crosscheck – это одно из основных правил в авиации). Далее пилот, проводивший подготовку к посадке, зачитывает брифинг. Основная задача брифинга – рассказать об особенностях захода на посадку и ее выполнения, схемы руления после посадки, уход на второй круг. Особое внимание – при категорированных заходах по CAT II/CAT III (заходах с очень низкими минимумами, требующих выполнения специальных процедур) и действиям в случае отказа бортового оборудования в процессе захода или имеющихся отказах на борту самолета. NOTAM’ы со всеми ограничениями разбираются здесь же. После разбора всех имеющихся вопросов мы готовы к посадке, осталось дождаться подхода к точке начала снижения, которая также рассчитывается автоматически исходя из внесенных в FMGS данных.
Интересные факты
Тот самый принтер (справа внизу)
Снижение и заход на посадку
По своей сути весь процесс полета – это процесс управления энергией. Химическая энергия топлива преобразуется через тягу двигателей и подъемную силу в кинетическую энергию движения самолета и его потенциальную энергию по мере набора высоты, что в сумме дает общую энергию. При снижении – мы наблюдаем обратный процесс, когда вся накопленная энергия расходуется через аэродинамику и снижение высоты таким образом, чтобы получить посадочную скорость и заданную высоту к моменту пролета торца полосы. Исходя из вышесказанного и с учетом отдельных ограничений по скорости/высоте пролета отдельных точек на схеме STAR, ветра, FMGS вычисляет TOD (Top Of Descend, точка начала снижения).
При подходе к TOD пилот, ведущий радиосвязь, информирует об этом диспетчера и запрашивает снижение. Учитывая сложность структуры воздушного пространства и наличие отдельных секторов с разбивкой по высотам/географии процесс снижения обычно состоит из отдельных «ступенек» — каждый диспетчер дает разрешение на снижение в пределах своего сектора с последующим переводом на частоту следующего.
Снижение на самолетах семейства Airbus может выполняться в двух режимах: MANAGED и SELECTED. В первом режиме самолет при помощи автопилота (AP, Autopilot) и автомата тяги (A/THR, Autothrust) сам пытается выдержать профиль снижения с учетом всех ограничений выбранной схемы прибытия, пилоты только контролируют то, что делает автоматика. Это не всегда удается, так как кроме профиля и скоростей, посчитанных FMGS, есть параметры, задаваемые диспетчером. Но в любом случае задание высот и перевод самолета на снижение – это ответственность PF. Для этого в самолете есть FCU (Flight Control Unit) – эдакая панель управления автопилотом самолета:
FCU с красивой подсветкой. Второй автопилот и автомат тяги включен
В режиме SELECTED – пилоты сами управляют автопилотом задавая режимы его работы. Типичные параметры – задача вертикальных и поступательных скоростей, так же довольно часто используется векторение (полет по курсу, заданному диспечером).
При этом в нашей авиакомпании (да и во многих других) не запрещено и даже поощряется понижать уровень автоматизации – например отключать автопилот, автомат тяги, директора и выполнять заход полностью на руках. Для примера, вы можете идти в режиме MANAGED с отключенным автопилотом/автоматом тяги или в режиме SELECTED полностью в автомате, или полностью уйти от директоров, включить режим FPV (Flight Path Vector, она же «птичка»). Т.е. пилотирующий пилот всегда может использовать почти любую комбинацию режимов/автоматики. Но важно при этом понимать, что нагрузка на пилотирующего пилота резко возрастает, а пилот, осуществляющий мониторинг, так же тратит ощутимо больше времени на контроль всего происходящего. Поэтому, обычно подобные полеты без автоматики выполняются в незагруженных портах с низким трафиком, дабы не создавать себе проблем на ровном месте.
Что касается ручного пилотирования: при нормальном законе управления (NORMAL LAW) все защиты (PROTECTIONS) будут работать и ограничивать пилотов в попытках выйти за заложенные в систему ограничения. При наличии каких-то отказов, данные PROTECTIONS имеют свойство деградировать, последовательно отключаюсь. Все это обсуждается ранее, на брифинге. При возникновении отказов оборудования – задача пилотов полностью «обработать» данный отказ, выполнив необходимые процедуры используя ECAM (Electronic Centralized Aircraft Monitor, это когда текст процедуры виден непосредственно на одном из дисплеев самолета) и/или QRH и при необходимости повторно принять решение о заходе на посадку с учетом появившихся ограничений.
Грозовые очаги, как их видят пилоты на ND (Navigation display)
При полетах в горной местности используется система EGPWS (Enhanced Ground Proximity Warning System, система предупреждения о близости земли). Она благодаря наличию встроенной базы подстилающей поверхности позволяет дополнительно контролировать пилотам пролет препятствий. Данная система включается отдельной кнопкой в кокпите (TERRAIN on ND) и отрисовывает на ND поверхность земли различными цветами — от зеленого до красного. При наличии опасного сближения с землей – самолет дурниной будет орать «PULL UP!» с соответствующей визуальной и звуковой индикацией.
При наличии множества самолетов вокруг в высоконагруженных хабах пилотам может помочь система TCAS (Traffic Collision Avoidance System, она же БСПС – бортовая система предотвращения столкновений). Если пилоты и/или диспетчер допустят потенциально опасное сближение двух самолетов в воздухе, данная система выдаст RA (Resolution Advisory) – команду на изменение/сохранение высоты, которую пилоты выполняют в ручном режиме. Притом, срабатывание системы происходит одновременно на двух самолетах, один обычно уходит в набор, второй – в снижение. Опять же, самолет начинает истошно кричать пилотам: «CLIMB! CLIMB NOW!» или «DESCEND! DESCEND NOW!» в зависимости от сработавшего RA. Если же пилоты следовать командам не будут – то возможны катастрофы как печально известная катастрофа над Боденским озером. Один из ее сопутствующих факторов – противоречивые команды TCAS и диспетчера (один – в набор, второй – в снижение) и нормативные документы, которые требовали приоритета команд диспетчера над командами TCAS. Сейчас же – явно прописан приоритет TCAS над командами диспетчера.
Буквально несколько слов о процедурах в процессе снижения (а Airbus – это самолет в первую очередь процедурный, заточенный под выполнение полета в двухчленном экипаже). При проходе эшелона полета 100, выполняется определенный комплекс процедур. Далее, при проходе эшелона перехода выполняется перестановка давления с «стандартного» — 1013 hPa, оно же Standard (давление, по которому осуществляется полет выше высоты перехода) на давление QNH — давление, приведенное к уровню моря, полученное в ATIS. Ниже эшелона перехода мы летаем только по QNH, никаких QFE как в старые добрые времена. Здесь можно было бы начать очередной небольшой холивар на тему QFE и QNH, но оставим это кому-нибудь другому. Далее, crosscheck установленного давления и APPROACH чеклист. Что касается чеклистов – на Airbus они сделаны не по принципу «read and do» как на некоторых других типах самолетах, а по принципу контроля уже выполненных стандартных процедур (SOP, Standard Operating Procedures). Назначение чек-листа – это не «упустить» процедуры, которые непосредственно влияют на безопасность полета.
Интересные факты
Выполнение посадки
Самолет медленно (со скоростью порядка 250-200 узлов) приближается к точке входа в глиссаду/точку начала снижения. Теперь задача пилотов – обеспечить плавное гашение самолета до посадочных скоростей (порядка 130-140 узлов для A320) с постепенным выпуском механизации и шасси. Пятиминутка аэродинамики: самолет имеет SLATS (предкрылки) и FLAPS (закрылки). Первые нужны чтобы самолет мог лететь на более низкой скорости (и на более большом угле атаки) без срабатывания соответствующего PROTECTION, а вторые – для увеличения подъемной силы ценой увеличения лобового сопротивления (позволяют не увеличивать угол атаки на более низких скоростях для компенсации недостаточной подъемной силы). Без всего этого добра – посадочные скорости были бы порядка 200 узлов, вертикальные – тоже ощутимо выше. Что – небезопасно (времени на исправление ошибки гораздо меньше, а риски если «что-то пошло не так» — выше).
Еще небольшое лирическое отступление касательно систем захода на посадку: они бывают точные (в первую очередь это ILS, GLS — GBAS Landing System) – это заходы с вертикальным наведением и неточные (NDB – Non Directional Beacon, он же заход по приводам, VOR, RNAV и т.д.) – это заходы без такового наведения. Для каждого из типа захода на посадку есть т.н. GUIDANCE MODE — по сути режим работы FMGS, который обеспечивает заход самолета на посадку с учетом выбранного типа захода. При этом GUIDANCE MODE может обеспечивать точное наведение самолета по курсу и глиссаде (режимы LOG GS или FINAL APP) так и наведение только в одной плоскости (режимы LOC FPA или NAV FPA) или полностью ручное наведение самолета по заданному курсу/углу снижения (режим TRK FPA). Если суммировать сказанное, то точные заходы — более просты с точки зрения поддержки бортовой автоматикой, неточные — требуют дополнительного контроля как профиля, так и курса захода на посадку, что так же требует дополнительных усилий при заходе. Точные заходы позволяют осуществлять посадку при более низких минимумах, чем неточные.
В свою очередь, точные заходы делятся по так называемым категориям: CAT I, CAT II, CAT III A/B/C с соответствующим минимумом. На бывшей территории Советского Союза наличие ILS в аэропортах было раньше непозволительной роскошью, что не позволяло осуществлять заходы при более низких минимумах (чем точнее система захода – тем ниже минимум аэропорта). Но сейчас почти все большие аэропорты севернее Томска имеют ILS. Заход по приводам на старой технике это было еще то искусство полета… Для примера: если взять всю маршрутную нашей авиакомпании в России – только 22 аэропорта оборудованы системой ILS для захода по II категории и только 5 – для захода по IIIA.
Итак, самолет начинает постепенно гасить скорость и «расчехлять» все вышеописанное добро в виде механизации для захода на посадку. По технике выполнения захода есть две методики: DECELERATED/EARLY STABILIZED APPROACH. В первом случае, который обычно используется при точном заходе и высоких высотах входа в глиссаду (пламенный привет людям, кто делает эту высоту в 300-400 метров) – самолет проходит точку входа в глиссаду с выпущенными SLATS и начинает в процессе снижения постепенное гашение скорости с дальнейшим выпуском SLATS/FLAPS в посадочное положение (не забываем про шасси). Во втором случае (неточный заход) – мы полностью стабилизируемся к точке начала снижения на минимальной скорости в посадочной конфигурации и выполняем дальнейшие снижение. Опять же, все эти процедуры могут быть выполнены как полностью в автоматическом, так и в ручном режиме.
Переводим самолет на снижение, зачитываем LANDING чеклист, получаем от диспетчера разрешение на выполнение посадки. При этом диспетчер обязательно сообщит текущий ветер, если он выходит за наши ограничения – то уходим на второй круг. Почти любое срабатывание сигнализации об отказах ниже 1000 футов над полосой в отсутствии визуального контакта с полосой – тоже уход на второй круг.
Далее, если все хорошо, пролетаем торец полосы и приступаем к выполнению посадки. Теоретически – все просто: «на высоте около 30 футов выполните выравнивание с последующей установкой малого газа и выполните посадку» — примерно так написано в FCOM. FCTM (Flight Crew Technique Manual) уделяет буквально 2 странички данному процессу. Если же попробовать кратко сформулировать, что там описано, то получим:
В 99% в нашей авиакомпании посадка выполняется в ручном режиме. Исключения: категорированные заходы при низких минимумах (CAT II/CAT III), где автоматический заход желателен/необходим. Так же все самолеты семейства Airbus 320 умеют выполнять процедуру Autoland с последующим rollout’ом (автоматическая посадка с последующей остановкой на полосе, с выдерживанием направления пробега используя курсовой маяк системы ILS). Для выполнения данной процедуры еще более жесткие ограничения по ветру, состоянию ВПП, работоспособности бортовых и наземных систем. Как это выглядит вживую:
После того, как самолет снизил скорость до TAXI SPEED и, если не было дополнительных указаний диспетчера, самолет освобождает ВПП по ближайшей рулежке. Они бывают двух типов: HST (High Speed Taxiway), находятся под небольшим углом к ВПП и позволяют освобождать ВПП на больших (обычно до 45 узлов, но бывает и до 60) скоростях и «обычные» рулежки – здесь допустимая скорость руления не более 20 узлов.
Буквально три слова про уход на второй круг – в реальной жизни это бывает не так часто, но из-за редкости выполнения и скоротечности самого процесса требует повышенного внимания со стороны экипажа и особенно PM’a. Самое главное здесь – выдержать все ограничения по скоростям, высотам и тангажу при уходе с небольших высот – риск tailstrike высок как никогда. В зависимости от причины ухода на второй круг можно выполнить либо повторный заход, либо уйти на запасной аэродром.
Интересные факты
После посадки и до выключения на стоянке
А вот именно здесь, экипаж отдышавшись после выполнения посадки и освобождения полосы, выполнив необходимые процедуры с последующим AFTER LANDING чеклистом, переходит на частоту руления и узнает дальнейший маршрут движения по аэродрому. Обычно это длинная тирада с номерами рулежек, пересечений иногда с частотами для перехода и командами на ожидание в определенных местах. Главное здесь – все записать, повторить всю эту тираду диспетчеру и найти на схеме аэродрома, где находятся все эти рулежки.
Вот здесь на видео с 6 минуты видно, что из себя представляет схема руления в приложении Jeppesen Mobile Flight Deck:
Так же все рулежки, полосы и и.д. в аэропорту имеют специальную разметку, которая позволяет ориентироваться как в дневное, так и в ночное время. Самое главное здесь – контролировать маршрут руления по всем этим знакам и в случае малейших сомнений – переспрашивать диспетчера. Самолет заднего хода не имеет, поэтому если вы заблокируете рулежку или выедете на рабочую полосу без разрешения диспетчера (Runway Incrusion, что само по себе является серьёзным авиационным инцидентом) то вас просто не поймут.
Подъезжаем к гейту, здесь обычно нас встречает либо система типа SafeDock (моя любимая и наверное, самая распространенная), либо специально обученный человек в оранжевой/зеленой жилетке, который при помощи жезлов заводит нас на стоянку.
«Все, приехали, голубчики»
Процесс заруливания в исполнении системы SafeDock
Скажу сразу, используемые маршалом сигналы являются стандартными во всем мире и описаны в одном из документов ICAO. Таким образом мы (пилоты) можем понять, что от нас хотят с земли.