Что такое пептиды в вакцине
«ЭпиВакКорона». Чем вакцина от COVID-19 Центра «Вектор» лучше остальных
МОСКВА, 3 июл — РИА Новости. Вакцина «ЭпиВакКорона» против коронавирусной инфекции разработана в новосибирском наукограде Кольцово, в гражданском обороте — с декабря прошлого года. Препарат не содержит вируса, его частей и генетического аппарата, практически не дает побочных эффектов. Это очень безопасная вакцина. По состоянию на июнь произведено более трех миллионов доз.
Состав вакцины «ЭпиВакКорона»
«ЭпиВакКорона» содержит пептидные антигены — короткие куски белков коронавируса SARS-CoV-2, которые способствуют выработке антител в организме. Три пептида имитируют эпитопы шиповидного белка коронавируса (S-белка), то есть участки, сильнее всего активирующие иммунный ответ.
Эти пептиды синтезированы искусственно и объединены в единую молекулу с белком-носителем, который наработан биотехнологическим способом. Белок-носитель представляет собой оболочечный белок SARS-CoV-2 (N-белок).
Для усиления иммунного ответа в композицию добавлен адъювант — гидроксид алюминия. Есть также несколько вспомогательных веществ.
Принцип действия и отличия от других вакцин
Разработка Государственного научного центра вирусологии и биотехнологии «Вектор» Роспотребнадзора относится к классу пептидных вакцин. По сути, это коктейль из коротких белковых последовательностей — пептидов.
В отличие от «Спутника V» и «КовиВак», в препарате нет вируса, ДНК, РНК. Все пептиды синтетические. Они имитируют маленькие участки белков реального коронавируса, вызывающие выработку защитных антител.
Из-за того, что организму предъявляют не весь вирус, иммунный ответ на «ЭпиВакКорону» слабее. В крови вырабатываются только специфические вируснейтрализующие антитела.
В «Векторе» поясняют, что их разработка эффективна против различных штаммов коронавируса, поскольку содержит консервативные, то есть редко изменяющиеся, эпитопы.
Пептидная вакцина «ЭпиВакКорона» продуцирует антитела против коронавируса. Для этого в ее молекуле содержатся В- и Т-эпитопы S-белка SARS-CoV-2, направленные на активацию разных иммунных клеток. Пептиды вместе с белком-носителем попадают в В-лимфоцит в виде эндосомы, там они расщепляются на части и вместе с белками главного комплекса гистосовместимости II класса выставляются на поверхности для распознания.
Инструкция по применению
Подготовка к вакцинации
В инструкции по применению к «ЭпиВакКороне» не оговаривается необходимость как-то специально готовиться к вакцинации. Ранее один из разработчиков, заведующий отделом зоонозных инфекций и гриппа «Вектора» Александр Рыжиков рекомендовал делать прививку в относительно здоровом состоянии, чтобы «дать организму возможность сосредоточиться на антигенах вакцины».
В Минздраве заявили, что тест на наличие антител к SARS-CoV-2 перед вакцинацией не обязателен, также как и ПЦР-теста на наличие РНК коронавируса.
Как делается прививка «ЭпиВакКороной»
Перед прививкой пациента осматривает врач, чтобы исключить заболевания в острой стадии, измеряет температуру.
Ампулу с препаратом выдерживают несколько минут при комнатной температуре, поскольку она хранится замороженной. Встряхивают, набирают в одноразовый шприц дозу 0,5 миллилитра. Укол делают в дельтовидную мышцу плеча либо латеральную широкую мышцу бедра. После введения необходимо в течение получаса находится под наблюдением медицинских работников.
С недавних пор «ЭпиВакКорона» доступна в шприц-дозах, что значительно облегчает процесс иммунизации.
Уже после первой дозы пациент получает бумажный сертификат, где указаны тип введенной вакцины и дата второй прививки. Информация о процедуре появляется в личном кабинете на сайте «Госуслуги».
Упаковка шприц-доз вакцины «ЭпиВакКорона» для профилактики COVID-19, произведенной на предприятии «Вектор-БиАльгам» в Новосибирске.
Что нельзя делать после прививки
В последующие дни после вакцинации необходимо избегать переохлаждения, перегрева.
Минздрав при проведении вакцинации против COVID-19 не рекомендует мочить место укола в течение трех дней, посещать баню, сауну, принимать алкоголь, испытывать тяжелые физические нагрузки.
Интервал между прививками
Вакцинация проходит в два этапа, интервал между первой и второй прививками составляет не менее 14-21 дня. «ЭпиВакКорона» — однокомпонентная вакцина, то есть состав и объем обеих доз одинаков.
Когда появятся антитела к коронавирусу
Согласно результатам I-II фазы клинических исследований, опубликованным в журнале «Инфекция и иммунитет», наибольшая концентрация антител к пептидным антигенам вакцины «ЭпиВакКорона» наблюдалась на 42 день после введения первой дозы.
Иммунологическая эффективность вакцины близка к ста процентам. По сообщению Александра Рыжикова, антительный ответ формируется у 90 процентов людей. В силу особенностей организма антитела могут образоваться не у всех.
Из-за особенностей действия вакцины антительный ответ не выявляется большинством коммерческих тест-систем, они не достаточно чувствительны. «Вектор» разработал собственную ИФА тест-систему «SARS-CoV-2-IgG-Вектор»для определения иммунного ответа у привитых «ЭпиВакКороной».
Побочные эффекты от вакцины «ЭпиВакКорона»
Во время I-II фазы клинических испытаний «ЭпиВакКороны» волонтеры отмечали небольшую боль в месте укола, которая держалась максимум день-два. Никаких аллергических реакций на вакцину не зафиксировано.
Также не было связанных с вакциной гриппоподобных симптомов, включающих головную боль, миалгию, лихорадку, астению. Разработчики оценивают препарат как «низко реактогенный, безопасный и хорошо переносимый». В то же время в описании к «ЭпиВакКороне» говорится, что возможно кратковременное повышение температуры тела не более 38,5 градуса.
Продолжительность действия
Ученые смогли предварительно оценить продолжительность иммунитета у приматов, которым ввели «ЭпиВакКорону» весной прошлого года. У животных до сих пор обнаруживаются антитела. В тоже время для усиления защитного эффекта им потребовалось ввести третью дозу вакцины.
Ученые продолжают наблюдать за привитыми добровольцами. Согласно текущим данным, антитела присутствуют в крови и спустя девять месяцев. Ожидается, что они сохраняют защитные функции год. Точная длительность иммунитета, которую дает «ЭпиВакКорона», будет известна после завершения III фазы клинических исследований на трех тысячах добровольцах.
Противопоказания для вакцинации
В целом для всех вакцин существуют общие противопоказания — острые инфекции, обострение хронических болезней, жизнеугрожающие и неотложные состояния. Прививку проводят через месяц после выздоровления, а в случае нетяжелых ОРВИ, острых инфекционных заболеваний ЖКТ — после снижения температуры.
Согласно рекомендациям оперштаба Москвы, вакцинацию не проводят перенесшим COVID-19 менее полугода назад.
Наличие антител к SARS-CoV-2 не входит в число противопоказаний.
В инструкции к «ЭпиВакКороне» перечислены особые противопоказания, такие как гиперчувствительность к гидроксиду алюминия и другим компонентам препарата, тяжелые аллергии, реакции на предыдущие введения вакцины, первичный иммунодефицит, злокачественные заболевания крови и новообразования.
Есть также ряд состояний, при которых прививку делают с осторожностью, включая хронические заболевания печени и почек, сахарный диабет II типа, тяжелые заболеваниях системы кроветворения, эпилепсии, инсульты.
В настоящее время «ЭпиВакКорону» не делают беременным, кормящим материям и детям до 18 лет, поскольку клинические испытания вакцины на этой категории граждан еще не проведены.
Ревакцинация
По словам генерального директора «Вектора» Рината Максютова, вакцина «ЭпиВакКорона» подходит для ревакцинации. Сейчас ученые работают над трехкратной системой вакцинации. Еще одну дозу можно будет вводить через шесть, девять или двенадцать месяцев после второй.
Отзывы врачей и привитых «ЭпиВакКороной»
Разработчики испытали «ЭпиВакКорону» на себе в числе первых. Так, по словам Александра Рыжикова, после нескольких вакцинаций у него сохраняется хороший титр антител.
Среди привитых «ЭпиВакКороной» еще осенью прошлого года — глава Роспотребнадзора, главный санитарный врач России Анна Попова и вице-премьер Татьяна Голикова. Они отмечали хорошее самочувствие после вакцинации.
«В условиях эпидпроцесса, который сейчас идет, эта вакцина показана для предупреждения коронавируса для категории лиц, которые имеют хронические заболевания, для старшего поколения, потому что на нее реакция минимальна», — такое мнение высказал врач-инфекционист Евгений Тимаков.
Где можно привиться «ЭпиВакКороной»
Вакцинация «ЭпиВакКороной», как и двумя другими российскими вакцинами от коронавируса, бесплатна. Препарат поставляют в медицинские учреждения всех регионов России и прививочные пункты. Уточнить его наличие можно по телефону горячей линии регионального органа здравоохранения.
«ЭпиВакКорона»: что мы знаем и чего не знаем
С декабря 2020 года вне рамок клинических испытаний началась вакцинация «ЭпиВакКороной» — препаратом, разработанным предприятием ГНЦ «Вектор» [1], — а в феврале планируется массовая вакцинация [2]. Сообщается, что у препарата 100-процентная иммунологическая эффективность [3]. Что это значит? Независимым экспертам или врачам про эту вакцину известно мало. Научных публикаций нет никаких. Вместо заявленной 100-процентной эффективности мы пока что имеем большую научную непрозрачность.
Итак, по порядку: что мы все-таки знаем? Роспотребнадзор сообщает [4]: «Вакцина представляет собой химически синтезированные пептидные антигены трех фрагментов S-белка вируса SARS-CoV-2, конъюгированные с белком-носителем и адсорбированные на алюминий-содержащем адъюванте».
S-белок — это шиповидный белок, он же спайк (spike-protein; в разных текстах его называют по-разному). Пептид — это фрагмент белка. В существующем патенте [5] описано семь пептидов шиповидного белка и несколько возможных белков-носителей. В интервью для СМИ разработчики сообщают, что в качестве носителя в вакцинной разработке используется вирусный нуклеокапсидный белок, продукт экспрессии в кишечной палочке [6]. Полный список пептидов шиповидного белка, их координаты, а также названия доменов и субъединиц, в которых они находятся, приведен в таблице ниже.
Пептиды шиповидного белка, представленные в патенте [5]
ID | Координаты в белке | Аминокислотная последовательность | Домен | Название домена | Субъединица |
---|---|---|---|---|---|
NO: 1 | 34–53 | RGVYYPDKVFRSSVLHSTQD | NTD | N-концевой | S1 |
NO: 2 | 166–187 | CTFEYVSQPFLMDLEGKQGNFK | NTD | ||
NO: 3 | 403–428 | RGDEVRQIAPGQTGKIADYNYKLPDD | RBD | Рецептор, связывающий домен | |
NO: 4 | 454–477 | RLFRKSNLKPFERDISTEIYQAGS | RBD | ||
NO: 5 | 626–644 | DQLTPTWRVYSTGSNVFQTR | SD1 | Субдомен 1 | |
NO: 6 | 1189–1209 | KNLNESLIDLQELGKYEQYIK | HR2 | Гепта-повтор 2 | S2 |
NO: 7 | 1179–1209 | KEIDRLNEVAKNLNESLIDLQELGKYEQYIK | HR2 | Гепта-повтор 2 |
Какие три пептида из списка вошли в разработку «ЭпиВакКороны», неизвестно. Как сообщают РИА Новости, цитируя разработчиков, «вакцинные пептиды содержат прежде всего В-клеточные эпитопы, основным источником Т-клеточных эпитопов служит нуклеокапсидный белок» [6].
Что это значит? Попробуем разобраться. Прежде всего стоит объяснить, что эпитоп (он же антигенная детерминанта) — это часть макромолекулы (в нашем случае — вирусного белка или белка из вакцинного материала), которая распознаётся иммунными клетками. То есть это как раз то, что видит иммунная система, и то, что ей помогает понять, какие «приметы» можно различить у «чужеродного агента» (вируса). Не все части макромолекулы «видны» иммунной системе — к каким-то частям макромолекул она «слепа». С этим связана трудность создания пептидных вакцин: пептиды, используемые в качестве антигенных детерминант, не должны располагаться в областях вирусного белка, невидимых иммунному надзору.
Рис. 1. Схема вирусной частицы и вирусных антигенов, которые находятся в «ЭпиВакКороне». В образе трех драконов представлен тример шиповидного белка; только этот белок торчит наружу из вирусной частицы в такой степени, что с ним могут взаимодействовать антитела, которые «цепляют» вирус. Все остальные белки находятся или внутри, полностью под липидной оболочкой вириона, или частично интегрированы в нее. Антитела на эти, другие белки все-таки образуются у переболевших ковидом, но не обладают защитными функциями
Вирус SARS-CoV-2 устроен так, что нейтрализовать его могут только антитела к шиповидному белку. Антитела к нуклеокапсидному белку этого сделать не могут: этот белок находится внутри вирусной частицы, и антитела не могут с ним провзаимодействовать [7]; следовательно, он недоступен для антител в интактном вирусе. Тем не менее нуклеокапсидный белок в качестве антигена (чужеродного вещества) может помочь иммунному ответу (см. ниже). Рис. 1 схематично показывает состав вакцины «ЭпиВакКорона».
Таким образом, первостепенная задача пептидов шиповидного белка из вакцины «ЭпиВакКорона» — стимулировать выработку антител, способных опознать вирус и не дать ему заразить клетку; то есть в пептидах должны находиться видимые для иммунной системы «приметы врага» (вируса) — вирусные антигенные детерминанты. Другие разработчики вакцин решают эту проблему, используя полноразмерный шиповидный белок как антиген: в нем гораздо больше антигенных детерминант [8].
Многочисленные экспериментальные работы [9, 10, 11, 12] показывают, что только небольшая часть пептидов из вирусного шиповидного белка «видна» иммунной системе человека и может вызывать образование нейтрализующих антител. Эти области белка тщательно откартированы.
В интервью СМИ разработчики сообщают, что пептиды «ЭпиВакКороны» содержат В-клеточные эпитопы [6, 13]. Однако вышеописанные работы показывают, что шесть пептидов, описанных в патенте, расположены во фрагментах шиповидного белка, которые практически невидимы для иммунной системы человека, не могут являться В-клеточными эпитопами и не могут провоцировать производство нейтрализующих антител.
Поэтому к разработчикам вакцины возникают следующие вопросы: у какого процента людей каждый конкретный пептид из вакцины «Вектора» вызывает производство не просто антител, а именно нейтрализующих антител? У какого процента волонтеров, участников первой и второй фаз испытаний, возникают нейтрализующие антитела к каждому конкретному пептиду или хотя бы к одному из набора? Все ли пептиды из трех способны провоцировать выработку нейтрализующих антител? Проводились ли такие исследования по индивидуальным пептидам у людей, а не у кроликов? Нет ли среди трех пептидов, выбранных для производства вакцины, таких, которые представляют собой балласт и не работают ни у одного человека?
Согласно данным экспериментов, описанным в патенте [5], иммуногенность каждого отдельного пептида проверялась при иммунизации кроликов конъюгатом индивидуального пептида с белком-носителем. Однако в настоящий момент уже показано, что то, что в вирусном шиповидном белке лучше видно иммунной системе кролика [14], почти не видно иммунной системе человека [9, 10, 11, 12].
На вирусные белки в организме человека вырабатывается масса разных антител, однако лишь небольшая их часть способна нейтрализовать вирус. В то же время некоторые ненейтрализующие антитела всё же полезны в борьбе с инфекцией. Есть разные механизмы их вовлечения в процесс элиминации как вирусов, так и зараженных ими клеток из организма. Тем не менее именно способность вакцины вызывать производство нейтрализующих антител часто используется как первый (хотя и грубый) критерий оценки ее эффективности. Поэтому хотелось бы знать, каковы титры антител на шиповидный белок у добровольцев — участников клинических испытаний. Пока что эти участники жалуются на отсутствие или на очень маленький титр выявляемых антител (см. ниже).
Стоит заметить, что у вируса SARS-CoV-2, как и у многих других вирусов, есть способ защиты от антител — он заключается в использовании гликанового щита, т. е. молекул полисахаридов, присоединенных к шиповидному белку. Такое присоединение называется гликозилированием: антителам трудно подобраться к участкам белка с присоединенными полисахаридами — их просто не пускает гликановый щит. Хочется заметить, что три пептида из описанных в патенте попадают в «опасную зону» гликозилирования [15]. Так, в белке гликозилируется 165-я аминокислота, а пептид ID NO: 2 начинается со 166-й аминокислоты — это рядом! Кроме того, в шиповидном белке гликозилируется 1194-я аминокислота, которая находится прямо в середине пептидов ID NO: 6 и ID NO: 7. Иными словами, даже если пептиды ID NO: 2, ID NO: 6, ID NO: 7 и спровоцируют выработку антител, то эти антитела, скорее всего, «упрутся» в гликановый щит, при этом они вряд ли смогут нейтрализовать вирус или причинить ему вред другим путем.
Кроме пептидов шиповидного белка, в «ЭпиВакКорону» входит химера вирусного нуклеокапсидного и бактериального белка, связывающего сахар мальтозу. По замыслу разработчиков такой химерный белок должен провоцировать Т-клеточный ответ. Действительно, из литературы [16] известно, что вирусный нуклеокапсидный белок способен стимулировать образование Т-лимфоцитов, распознающих в нем многие эпитопы.
Разработчики заявляют: «Через 5–6 недель после вакцинации у большей части добровольцев, привитых вакциной. наблюдалась индукция выраженного специфического Т-клеточного иммунного ответа, что было обнаружено при анализе клеток крови добровольцев при стимуляции вирусными антигенами в экспериментах ex vivo». Будем надеяться, что разработчики не ограничатся заявлениями, а опубликуют соответствующие наблюдения.
Теперь посмотрим, что происходит с преклиническими и клиническими исследованиями. Краткая схема, суммирующая информацию о сроках проведения этих исследований, показана на рис. 2.
Увы, тут можно только посетовать: вакцина уже введена в гражданский оборот, а публикаций нет никаких, первая и вторая фазы испытаний не закончены. В настоящее время идет третья фаза испытаний, планируется участие трех тысяч человек. При этом трудно представить, как на такой небольшой выборке можно будет оценить протективность вакцины, а именно разницу в заболеваемости между теми, кто получил прививку, и теми, кто получил плацебо.
Увы, маленький размер группы добровольцев — это только одна из проблем третьей фазы испытаний «ЭпиВакКороны». Есть и другие. Добровольцы — участники испытаний объединились в группу [17] и написали коллективное открытое письмо, адресованное Минздраву, Роспотребнадзору и другим ведомствам [18]. Я цитирую:
«Мы самостоятельно и за свой счет проверяем у себя уровень антител, однако все полученные результаты ниже референсного значения. „Вектор“ утверждает, что определить нужные антитела можно только их тест-системой, но держит ее в тайне. В такой ситуации возникают сомнения в эффективности вакцины у многих участников исследования и у тех, кто уже успел получить вакцину в рамках гражданской вакцинации. 33% от числа документально подтвердивших свое участие в исследовании сдали такие тесты, и у всех получены отрицательные анализы на антитела (против коронавируса)».
На это письмо уже был получен ответ [19], в котором к использованию рекомендуются тест-системы для иммуноферментного выявления антител к белкам коронавируса SARS-CoV-2 [20]. В письме также говорится: «. проведение. клинических исследований в условиях получения рядом вакцинных препаратов разрешения на применение в Российской Федерации в рамках гражданского оборота создает сложную этическую и научную проблему продолжения контролируемых слепых рандомизированных исследований».
С вышеизложенными утверждениями в ответе Роспотребнадзора трудно не согласиться. У «ЭпиВакКороны» на пути к тому, чтобы стать высококачественным препаратом, хорошо защищающим от вирусной инфекции и вызывающим доверие у специалистов, много серьезных препятствий и проблем, требующих нетривиальных решений. Всё же хотелось бы надеяться, что соответствующая вакцинная разработка станет прозрачнее для общественной и научной экспертизы, а разработчикам удастся в ближайшее время не только опубликовать результаты своих наработок, но и найти надежный способ оценки протективной эффективности этой вакцины против COVID-19 у людей.
Благодарность
Автор выражает глубокую благодарность кандидатам биологических наук Елене Кудрявцевой и Алексею Вольфсону за внимательное прочтение текста и конструктивную критику.
Пептидные вакцины: ЭпиВакКорона и другие
Пептидная платформа – одна из нескольких, на которых в теории можно делать вакцины. Ее суть заключается в том, чтобы взять белковый фрагмент патогена (бактерии, вируса, раковой опухоли) – пептид, и доставить его в организм. После встречи с пептидом иммунная система должна научиться бороться с ним. Столкнувшись с реальным патогеном, содержащим этот пептид в виде фрагмента белка, иммунитет защитит организм от болезни – или, по крайней мере, от самых неприятных последствий заболевания.
На тех же принципах работают и другие вакцины, разница только в размерах «платформы»: в цельновирионных препаратах – против оспы, клещевого энцефалита, в отечественном КовиВаке и китайских вакцинах от коронавируса – используют патоген целиком. В субъединичных вакцинах – к их числу относится большая часть вакцин от гриппа – используются крупные фрагменты патогена. Новые технологии позволяют использовать не сам патоген и не его фрагменты, а генетическую информацию для производства отдельных частей патогенов внутри наших клеток: так устроены мРНК-вакцины Pfitzer и Moderna, а также Спутник V.
Пептидная платформа подразумевает использование очень маленького фрагмента патогена, размерами сильно уступающего и целому, и белкам, и их субъединицам. Пептид – это короткая цепочка аминокислот, от нескольких штук до сотни. Для сравнения, шиповидный белок коронавируса состоит из 1273 аминокислот. Пептидные вакцины давно кажутся хорошей идеей. Во-первых, пептиды легко производить. Для этого не нужно работать с активными патогенами – а значит, не нужно соблюдать строгие меры безопасности, которые усложняют производство цельновирионных вакцин.
Пептиды можно собирать методами обычного химического синтеза, в то время как для производства белков нужны живые организмы – бактерии, такие как кишечная палочка. Вставив в ее геном соответствующую последовательность ДНК, можно заставить бактерию производить нужные белки; этот метод широко применяется для синтеза лекарств, но у него есть недостатки. Бактерии работают медленно; кроме того, в промышленном реакторе они живут – а значит, эволюционируют и обмениваются генетической информацией, – что может приводить к мутациям и ошибкам синтеза.
Во-вторых, пептиды (по крайней мере в теории) безопаснее белков. Последние, как правило, ядовиты: многие специфические белки раковых клеток и бактерий – опасные токсины, шиповидный белок коронавируса – тоже очень вредное вещество, способное повреждать нервные и мышечные клетки. В отличие от них, пептиды в организме быстро распадаются на отдельные аминокислоты, и навредить не успевают. Наконец, крупные фрагменты патогенов и белки запускают не один, а несколько видов иммунного ответа; эти реакции могут приводить к нежелательным эффектам. Маленький пептид должен вызывать всего один, предсказуемый тип иммунного ответа. А для большей эффективности можно использовать в одной вакцине несколько пептидов.
Давно разработана и принципиальная схема разработки и производства пептидной вакцины: на этот счет ВОЗ выпустила руководство еще в 1999 году. Но до 2020 года ни одна такая вакцина не применялась – и неспроста: разработать ее очень сложно. При помощи нескольких экспертов – некоторые из которых пожелали остаться анонимными – мы разобрались, как это может быть сделано, и как это могло быть сделано в «Векторе».
Выбираем пептид
Чтобы получить эффективную вакцину, нужно правильно подобрать пептиды. Искать их нужно в тех частях патогена, с которыми «работает» иммунная система. Казалось бы, самые заметные для нее части патогенов – обычно это поверхностные белки – состоят из сотен или тысяч аминокислот, а значит – десятков и сотен пептидов, и что-нибудь обязательно найдется. Но не все так просто. Белки – это сложно организованные клубки аминокислотных нитей. Подчиняясь законам физики, они скручиваются в причудливые структуры, для каждого белка разные. В такой структуре часть белковой нити скрывается в глубине клубка, а часть образует ее поверхность, где даже удаленные участки последовательности могут оказаться рядом.
Именно к поверхности крепятся антитела, на нее реагируют другие виды иммунной защиты. Антителам без разницы, как устроено место, к которому они крепятся, но нам, – разработчикам пептидной вакцины, – это важно. Если место крепления антитела (эпитоп) образовано несколькими удачно сложившимися изгибами, воссоздать его мы не сможем. Нам нужны такие части поверхности белка, которые состоят из единых участков белковой нити – линейные эпитопы. Для того, чтобы найти их, нам нужно внимательно рассмотреть белок или его 3D-модель.
Как это сделано в ЭпиВакКороне?
Создатели ЭпиВакКороны выбрали три пептида шиповидного белка коронавируса Sars-Cov-2. В опубликованной в журнале «Инфекции и иммунитет» статье не описывается методика выбора пептидов. Но судить об их положении в шиповидном белке можно по имеющимся 3D-моделям. Ниже приведена одна из них; красным цветом показан один из пептидов, входящих в состав ЭпиВакКороны. На изображении видно, что пептид находится не на поверхности белка; некоторые его участки скрыты другими частями молекулы.
Предположим, что мы нашли несколько линейных эпитопов. Теперь нужно проверить, к каким из них вырабатываются антитела. Все люди разные, и одни и те же фрагменты патогена могут вызывать ответ у одних, но не срабатывать у других. Мы хотим сделать вакцину, которая защитит большинство людей, поэтому эпитопы будем выбирать те, антитела к которым вырабатываются у 70, 80, а лучше 90% населения. Такие эпитопы называются иммунодоминантными.
Чтобы выяснить, к каким участкам белка антитела вырабатываются, а к каким – нет, ученые закрепляют отдельные пептиды S-белка на подложке и наливают на нее плазму крови переболевших ковидом. Через некоторое время находят те пептиды, с которыми связались антитела – так делается первичное картирование. У разных людей находятся разные пептиды. Чаще всего на один и тот же пептид реагируют антитела не больше чем у 20% переболевших ковидом людей. Но есть «горячие точки» – пептиды, с которыми реагируют антитела у 70% переболевших.
Затем избранные пептиды проверяют на способность помешать антителам связывать настоящий вирус и определяют самые эффективные. Этот метод позволяет составить «карту» иммунодоминатных линейных эпитопов белка, и найти пептиды, которые с большей вероятностью могут провоцировать выработку нейтрализующих вирус антител у человека.
Как это сделано в ЭпиВакКороне?
В начале 2020 года, когда разработчики ЭпиВакКороны приступали к работе, экспериментальное картирование иммунодоминатных линейных эпитопов вирусного S-белка коронавируса еще не было выполнено. Однако позднее как минимум шесть лабораторий в разных странах провели эту работу. Ни один из выявленных иммунодоминантных фрагментов вирусного белка не совпал с пептидами, вошедшими в состав ЭпиВакКороны.
Итак, «правильный» пептид должен быть линейным эпитопом, целиком расположенным на поверхности белка. При этом антитела, выработанные на этот пептид, должны уметь связываться с вирусным белком и должны уметь нейтрализовать вирус. Однако недостаточно просто синтезировать такой пептид и вставить в вакцину. Важно еще и стабилизировать его в той геометрической форме, которую он имеет в природном белке. Отделенный от основной цепочки, пептид может изменить форму: то, что было петлей, станет нитью, спиралью и т.п. Потеря формы в биохимии означает потерю функции: тщательно выбранный пептид может оказаться бесполезным в своей новой геометрии.
И еще один важный момент: выбранный пептид (или соответствующий ему эпитоп) в белке должен быть одинаковым у большей части вариантов патогена. Бактерии и вирусы быстро эволюционируют, и аминокислотны, последовательность, а также структура их белков (особенно тех, что часто подвергаются атаке иммунитета) меняется от штамма к штамму. Для вакцины нужно выбрать консервативные участки, которые с большой вероятностью будут идентичны у разных штаммов бактерии, вируса или у разных вариантов раковой клетки.
Как это сделано в ЭпиВакКороне?
В публикации исследователей из центра «Вектор» нет описания трехмерной структуры пептидов – ни в составе шиповидного белка, ни в свободной форме, ни в форме, которую пептиды приобретают, связываясь с белком-носителем. Собеседники «ПМ» считают, что создатели ЭпиВакКороны не исследовали трехмерную структуру пептидов ни в каком варианте.
Создатели ЭпиВакКороны неоднократно заявляли, что с самого начала ставили цель подобрать консервативные участки шиповидного белка – так, чтобы вакцина не теряла эффективность по мере появления новых штаммов коронавируса. Парадоксальным образом эта стратегия могла исключить из кандидатов в пептиды иммуногенные участки белка – те, к которым с большой вероятностью образуются антитела. Ольга Матвеева, молекулярный биолог и основатель биотехнологической компании Sendai Viralytics, а также другие консультанты «ПМ», считают, что создатели ЭпиВакКороны выбрали действительно консервативные участки. Они очень редко меняются, но с антителами взаимодействовать, скорее всего, не могут – а значит, вряд ли способны защитить от коронавируса.
Подключаем средство доставки
Эксперимент продолжается. Мы нашли на поверхности патогена консервативные, линейные, иммунодоминантные эпитопы, которые вне белка сохраняют функциональную форму (или мы научились стабилизировать их в нужной форме). Можно ли просто взять и впрыснуть эти молекулы в организм? Увы. Ферменты, странствующие в межклеточной среде, быстро расщепят их на отдельные аминокислоты. К тому же пептиды слишком малы, и иммунные клетки плохо «видят» их.
Пептиды нужно модифицировать так, чтобы продлить им жизнь и сделать их крупнее. Есть много вариантов: можно посадить пептиды в липидную каплю или на другую наночастицу, можно защитить от ферментов химической модификацией, удлинить их, связав между собой, или прикрепить к белку-носителю. С некоторыми из этих методов могут возникнуть сложности: удлиненные молекулы могут не дать правильного иммунного ответа, а белок-носитель может привести к появлению антител к нему самому, никакого отношения к защите от настоящего патогена не имеющие. Выбор не из легких.
Как это сделано в ЭпиВакКороне?
Каждый из трех пептидов, входящих в состав ЭпиВакКороны, закреплен на основании из модифицированного нуклеокапсидного белка коронавируса (N-белка). Вирусный N-белок, по имеющимся на середину 2021 года данным, не провоцирует выработку нейтрализующих антител (с этим согласны и создатели ЭпиВакКороны). Однако нецелевые, балластные антитела к нему вырабатываться могут. Собеседники «ПМ» считают, что именно антитела к этому белку в крови привитых ЭпиВакКороной составляют основной массив антител, детектируемых специальной тест-системой, разработанной в центре «Вектор». Тот факт, что коммерческие тест-системы не обнаруживают антител в крови привитых этой вакциной, также объясняется наличием антител к белку-носителю.
Проверяем на иммуногенность
Ура! Пептидная вакцина почти готова. Осталось ее протестировать. В самом общем виде нам нужно проверить препарат на три параметра: безопасность, иммуногенность и протективность. Иммуногенность – это способность вызывать иммунный ответ. Протективность – это способность защитить от заражения или некоторых вариантов течения заболевания. Вакцина может быть иммуногенной, но не протективной, но без иммуногенности о защите от заболевания говорить, конечно, нельзя.
Проверку на иммуногенность начинают с животных. Им вводят вакцину – в нашем случае пептиды, соединенные с носителем, – выжидают время, за которое должны появиться антитела, затем забирают кровь и исследуют ее. Обыкновенного анализа на антитела здесь будет мало, потому что они бывают разные. Нам нужно проверить, получилось ли у нас вакцинацией заставить организм животных вырабатывать нейтрализующие антитела – именно те, что способны обезвредить патоген.
Поэтому для эксперимента нам понадобится сам вирус. Работать с живыми патогенами, вызывающими опасные заболевания, сложно и дорого, поэтому иногда можно обойтись и целевыми фрагментами – например, теми белками, из которых мы отобрали свои пептиды. Но и здесь важно помнить о том, что патоген или его части должны быть точно такими же, как у активного вируса или живой бактерии. Добиться этого не всегда просто: белки легко меняют форму (денатурируют) от химической обработки, повышения или падения температуры.
Денатурированный белок теряет структуру и обнажает ранее недоступные эпитопы, с которыми могут связаться антитела из крови наших подопытных животных. Качественные реагенты – залог успеха. Лишь после прохождения этого этапа мы можем приступить к исследованию на людях. После вакцинации добровольцев нужно будет повторить тесты на наличие нейтрализующих антител в крови, проверив их активным патогеном.
Как это сделано в ЭпиВакКороне?
В статье создателей вакцины содержится прямое указание на то, что для исследования плазмы крови подопытных животных использовался шиповидный белок коронавируса, который до эксперимента был денатурирован специальным раствором. По мнению Ольги Матвеевой, использование частично денатурированного белка даже после последующей ренатурации могло исказить результаты эксперимента и привести к ложному заключению разработчиков вакцины о способности антител вакцинированных животных связываться с белком коронавируса и, соответственно, с самим вирусом.
Добровольцы, участвовавшие в третьей фазе клинического исследования ЭпиВакКороны, самостоятельно сдавали анализы в коммерческих лабораториях и не обнаружили у себя антител. Они решили, что попали в группу плацебо; но когда отрицательных результатов стало много, инициативная группа ученых, сформировавшаяся из группы добровольцев при участии вирусолога Александра Чепурнова, провела собственный эксперимент для определения не только уровня антител к вирусу, но и уровня именно защитных антител, в том числе способных нейтрализовать вирус.
Инициативная группа добровольцев собрала плазму крови людей, вакцинированных ЭпиВакКороной, Спутником V, а также переболевших Covid-19, и отправили их в зашифрованном виде в лабораторию класса BSL3, аккредитованную для работы с опасными патогенами. Там с образцами провели реакцию нейтрализации коронавируса. Нейтрализующие коронавирус антитела обнаружились у переболевших и привитых Спутником V людей, но только у одного человека, привитого ЭпиВакКороной – как выяснилось позднее, все же переболевшего перед забором крови. Эти результаты заставляют усомниться в иммуногенности вакцины, в ее способности провоцировать выработку нейтрализующих вирус антител – а значит, и в ее способности защищать людей от болезни.
Есть ли будущее у пептидных вакцин?
Собеседник «ПМ» из структуры Минздрава полагает, что пептиды – плохие кандидаты для вакцины, которая должна стимулировать выработку антител. Слишком сложно соблюсти все условия: найти у патогена консервативные линейные эпитопы, к которым у большинства людей могут вырабатываются антитела, стабилизировать их на частице-носителе – да так, чтобы иммунные клетки правильно распознали пептид и в ответ смогли бы синтезировать нейтрализующие антитела, не реагируя на сам носитель.
Разработки пептидных вакцин, ориентированных на формирование клеточного иммунитета, ведутся не только и не столько по коронавирусу. Гораздо раньше их начали создавать для борьбы с некоторыми видами рака и малярией. Над созданием такой вакцины от Covid-19 сейчас работают иммунологи из университета Тюбингена; недавно она вошла в первую стадию клинических исследований.
Неизвестно, станет ли такая вакцина эффективным средством борьбы с текущей пандемией. По некоторым данным, клеточный иммунитет не способен надежно защитить от Covid-19 – к такому выводу пришла группа российских ученых, хотя результаты этой работы еще не опубликованы. Это не значит, что работать над пептидными вакцинами не нужно. Патогены бывают разные, и борьба с ними тем эффективнее, чем больше разных способов мы сможем применить. Новые вакцинные платформы появляются и проходят проверку; не все вакцины оказываются удачными, и это нормально.