Что такое период колебаний маятника

Амплитуда, период, частота колебаний.

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний.

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника.

Циклическая частота — это число колебаний, совершаемых за секунд.

Источник

Гармонические колебания

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

9 класс, 11 класс, ЕГЭ/ОГЭ

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.

Формула периода колебаний

T = t/N

N — количество колебаний [-]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [-]

Она используется в уравнении гармонических колебаний:

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

g — ускорение свободного падения [м/с^2]

На планете Земля g = 9,8 м/с2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Формула периода колебания пружинного маятника

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

Источник

Период колебаний математического маятника

Математический маятник — что это такое

Маятник — твердое тело, которое совершает под действием приложенных сил механические колебания около неподвижной точки или оси.

Простейший маятник состоит из небольшого груза массой m, подвешенного на невесомой нити или тонком стержне длиной l и совершающего колебания под воздействием земного притяжения. Если нить считать нерастяжимой, размер груза незначительным по сравнению с длиной нити, а массу нити незначительной по сравнению с массой груза, то груз можно считать материальной точкой массой m, находящейся на постоянном расстоянии l от точки подвеса. Такой маятник называют математическим.

Определение модели системы

Математические модели динамических систем часто используют для анализа самых разных технических, социально-экономических, естественнонаучных систем, в которых происходят циклические процессы.
Существуют различные классификации динамических процессов. Одна из них изображена на схеме:

Маятник Фуко

Отсюда следует, что если бы Земля не вращалась, данного эффекта просто не существовало бы. Это обстоятельство указывает на то, что причиной неинерциальности земной системы отсчета является вращение планеты.

Центробежное ускорение на экваторе равно 0,034 м/с^2. По сравнению с экваториальным ускорением свободного падения g = 9,78 м/с^2 это величина малая, но она заметно влияет на изменение веса тела на экваторе по сравнению с его весом на полюсе. Если, например, взвешивать на пружинных весах тело массой 10 кг, то уменьшение веса на экваторе за счет действия центробежной силы составит около 35 г.

Период колебаний математического маятника

Период колебаний — время, за которое происходит одно полное колебание. В СИ измеряется в секундах.

Чему равен, от чего зависит частота

Если за время t совершается N колебаний, то период, обозначаемый буквой T, равен

где v — частота колебаний. Она обратно пропорциональна периоду.
Колебания можно изобразить в виде графика:

Источник: physik.ucoz.ru.
Период колебаний математического маятника можно рассчитать по формуле

g — ускорение свободного падения. Не зависит от амплитуды колебаний и массы груза.

В случае математического маятника она определяется длиной подвеса и ускорением свободного падения:

Для физического маятника в уравнение добавляются инерция и масса подвеса:

Для пружинного маятника частоту определяет жесткость пружины k:

Уравнения движения и их решение, формулы с примерами

Математический маятник — это материальная точка, имеющая массу m и подвешенная на нити с неизменяемой длиной l. Покидая положение равновесия, подвес совершает колебательные движения по дуге.

Это дает нам дифференциальное уравнение гармонических колебаний

Из уравнения следует, что при малых углах отклонения от положения равновесия маятник будет колебаться с периодом

Из этого следует, что

Начальная фаза зависит от того, как маятник вывели из положения равновесия. Рассмотрим ситуацию, в которой маятник отклонили от положения равновесия на расстояние А и отпустили без начальной скорости. Запишем уравнение движения колеблющегося тела с учетом того факта, что в начальный момент координата тела будет равна А:

x = A × cos ω t + φ 0 ;

Уравнение движения маятника:

Если маятник толкнули, когда он находился в положении равновесия, начальная координата колеблющейся точки будет равна нулю:

Будет ли начальная координата положительной или отрицательной, определяет выбор положительного направления оси. Если направление оси совпадет с направлением начальной скорости, то в уравнении движения будет знак «плюс», если не совпадет — знак «минус».

Уравнение движения маятника:

Рассмотрим задачи, для которых требуется составлять и решать уравнения движения.

Необходимо определить амплитуду и частоту колебаний точки, если известно, что при смещении точки от положения равновесия на 5 см ее скорость равна 6 см/с, а при смещении на 3 см — 10 см/с.

Исключаем время из системы:

x 1 2 + v 1 2 ω 2 = А 2 x 2 2 + v 2 2 ω 2 = А 2

Преобразовав выражения и подставив значения, данные в условиях задачи, получаем:

Необходимо вычислить циклическую частоту колебаний точки, если известно, что при скорости 13 см/с ускорение равнялось 6 см/с^2, а при уменьшении скорости до 12 см/с произошло увеличение ускорения до 10 см/с^2.

Решение:
Координата точки меняется по закону

Запишем уравнения скорости и ускорения точки:

Преобразуем уравнение, исключив из него А, и подставим значения, данные в условиях задачи:

Практическое применение математического маятника

С помощью математического моделирования динамических систем можно обнаружить схожесть динамических процессов в реальных физических, технических, биологических, химических и социально-экономических системах. Разработка моделей, позволяющих предсказывать время и другие характеристики периодических процессов в этих системах, является эффективным способом анализировать, например, сельскохозяйственные или производственно-экономические процессы.

Источник

Период колебаний

Из Википедии — свободной энциклопедии

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

В принципе совпадает с математическим понятием периода функции, но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим, так и к ангармоническим строго периодическим колебаниям (а приближенно — с тем или иным успехом — и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием, под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Единицы измерения: секунда и, в принципе, вообще единицы измерения времени.

Период колебаний связан соотношением взаимной обратности с частотой:

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта — например, частицы — есть частота [3] колебаний его волновой функции).

Теоретическое вычисление периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно — и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы, секундомеры, частотомеры, стробоскопы, строботахометры, осциллографы. Также применяются биения, метод гетеродинирования в разных видах, используется принцип резонанса. Для волн можно померить период косвенно — через длину волны, для чего применяются интерферометры, дифракционные решётки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Источник

Математический маятник

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Содержание:

Определение

Представьте себе некую механическую систему, которая состоит из некой материальной точки (тела), которая висит на нерастяжимой невесомой нити (при этом масса нити ничтожно мала по сравнению с массой тела). Вот такая механическая система и является маятником или осциллятором, как его еще называют. Впрочем, могут быть и другие виды такого устройства. Чем же математический маятник, осциллятор интересен для нас? Дело в том, что с его помощью можно проникнуть в суть многих интересных природных явлений в физике.

Колебания

Формула периода колебания математического маятника впервые была открыта голландским ученым Гюйгенсом в далеком XVII веке. Будучи современником Исаака Ньютона, Гюйгенс был очень увлечен такими вот маятниками, увлечен настолько, что даже изобрел специальные часы с маятниковым механизмам, и часы эти были одними из самых точных для того времени.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Маятниковые часы Гюйгенса.

Появление подобного изобретения сослужило большую пользу физике, особенно в сфере физических экспериментов, где точное измерение времени является весьма важным фактором.

Но вернемся к маятнику, итак, в основе работы маятника лежат его колебания, которые можно выразить формулой, точнее следующим дифференциальным уравнением:

Где х (t) – неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); w – положительная константа, которая определяется из параметров маятника (w = √ g/L, где g – это ускорение свободного падения, а L – длина математического маятника (подвес).

Помимо, собственно колебаний маятник может пребывать и в положении равновесия, при этом сила тяжести, действующая на него, будет уравновешиваться силой натяжения нити. Обычный плоский маятник, пребывающий на нерастяжимой нити, является системой с двумя степенями свободы. Но если, к примеру, нитку заменить на стержень, тогда наш маятник станет системой лишь с одной степенью свободы, так как его движения будут двухмерными, а не трехмерными.

Но если же наш маятник все-таки пребывает на нити и при этом совершает интенсивные колебания вверх-вниз, тогда механическая система приобретает устойчивое положение, именуемое «верх тормашками», еще ее называют маятником Капицы.

Что такое период колебаний маятника. Смотреть фото Что такое период колебаний маятника. Смотреть картинку Что такое период колебаний маятника. Картинка про Что такое период колебаний маятника. Фото Что такое период колебаний маятника

Свойства

У маятника есть ряд интересных свойств, подтвержденных физическими законами. Так период колебаний всякого маятника зависит от таких факторов, как его размер, форма тела, расстояние между центром тяжести и точкой подвеса. Поэтому определение периода маятника является не простой задачей. А вот период математического маятника можно рассчитать точно по формуле, которая будет приведена ниже.

В ходе наблюдений за маятниками были выведены следующие закономерности:

Период

Период маятника – показатель, который представляет период собственно колебаний маятника, их длительность. Формулу периода математического маятника можно записать следующим образом.

Где L – длина нити математического маятника, g – ускорение свободного падения, а π – число Пи, математическая константа.

Период малых колебания математического маятника никак не зависит от массы маятника и амплитуды колебания, в этой ситуации он двигается как математический маятник с заданной длинной.

Практическое применение

Вот мы добрались и до самого интересного, зачем нужен математический маятник и какое его применение на практике в жизни. В первую очередь ускорение математического маятника используется для геологоразведки, с его помощью ищут полезные ископаемые. Как это происходит? Дело в том, что ускорение свободного падения изменяется с географической широтой, так как плотность коры в разных местах нашей планеты далеко не одинакова и там где залегают породы с большей плотностью, ускорение будет немножко больше. А значит, просто подсчитав количество колебаний маятника можно отыскать в недрах Земли руду или каменный уголь, так как они имеют большую плотность, нежели другие рыхлые горные породы.

Также математическим маятником пользовались многие выдающиеся ученые прошлого, начиная с античности, в частности Архимед, Аристотель, Платон, Плутарх. Так Архимед и вовсе использовал математический маятник во всех своих вычислениях, а некоторые люди даже верили, что маятник может влиять на судьбы людей и пытались делать с его помощью предсказания будущего.

Видео

И в завершение образовательное видео по теме нашей статьи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *