Что такое полупроводники приведите примеры

Полупроводники — что это: типы, суть, промышленность и инвестиции

Здравствуйте, уважаемые читатели проекта Тюлягин! В сегодняшней статье поговорим о полупроводниках. Вы узнаете что такое полупроводники в чем их основное значение и суть в современной промышленности, технологиях и экономике. Разберем основные типы полупроводников и их особенности. Также поговорим о нюансах при инвестировании в полупроводники и полупроводниковую промышленность, включая риски полупроводников, такие как высокий и низкий спрос на полупроводники и их дефицит.

Что такое полупроводники приведите примеры. Смотреть фото Что такое полупроводники приведите примеры. Смотреть картинку Что такое полупроводники приведите примеры. Картинка про Что такое полупроводники приведите примеры. Фото Что такое полупроводники приведите примеры

Содержание статьи:

Что такое полупроводник?

Полупроводник — это материальный продукт, обычно состоящий из кремния, который проводит электричество больше, чем изолятор, такой как стекло, но меньше, чем чистый проводник, такой как медь или алюминий. Их проводимость и другие свойства могут быть изменены путем введения примесей, называемых легированием, для удовлетворения конкретных потребностей электронного компонента, в котором он находится.

Полупроводники, также известные как чипы, можно найти в тысячах продуктов, таких как компьютеры, смартфоны, бытовая техника, игровое оборудование и медицинское оборудование.

Суть полупроводников

Полупроводниковые устройства могут демонстрировать ряд полезных свойств, таких как показывать переменное сопротивление, легче пропускать ток в одном направлении, чем в другом, и реагировать на свет и тепло. Их фактическая функция включает усиление сигналов, переключение и преобразование энергии. Таким образом, они находят широкое применение почти во всех отраслях промышленности, а компании, производящие и тестирующие их, считаются отличными индикаторами состояния экономики в целом.

Типы полупроводников

Вообще говоря, полупроводники делятся на четыре основные категории продукции:

Память

Микросхемы памяти служат временным хранилищем данных и передают информацию в мозг компьютерных устройств и из него. Консолидация рынка памяти продолжается, в результате чего цены на память настолько низки, что лишь несколько гигантов, таких как Toshiba, Samsung и NEC, могут позволить себе остаться в игре.

Микропроцессоры

Это центральные процессоры, которые содержат базовую логику для выполнения задач. Доминирование Intel в сегменте микропроцессоров вытеснило почти всех конкурентов (за исключением Advanced Micro Devices — AMD) с основного рынка в более мелкие ниши или разные сегменты в целом.

Товарная интегральная схема

Иногда их называют «стандартными чипами», они производятся огромными партиями для повседневной обработки. Этот сегмент, в котором доминируют очень крупные азиатские производители микросхем, предлагает мизерную прибыль, с которой могут конкурировать только крупнейшие полупроводниковые компании.

Комплекс SOC

«Система на кристалле» («System on a Chip» — SOC) — это, по сути, создание микросхемы интегральной схемы с возможностью использования всей системы. Рынок вращается вокруг растущего спроса на потребительские товары, сочетающие в себе новые функции и более низкие цены. Поскольку двери на рынки памяти, микропроцессоров и товарных интегральных схем плотно закрыты, сегмент SOC, пожалуй, единственный, у кого осталось достаточно возможностей для привлечения широкого круга компаний.

Полупроводниковая промышленность

Успех в полупроводниковой промышленности зависит от создания более компактных, быстрых и дешевых продуктов. Преимущество малого размера заключается в том, что на один и тот же чип можно поместить больше энергии. Чем больше транзисторов на микросхеме, тем быстрее она выполняет свою работу. Это создает жесткую конкуренцию в отрасли, а новые технологии снижают стоимость производства одного чипа, так что в течение нескольких месяцев цена нового чипа может упасть на 50%.

Это привело к закономерности, названной законом Мура, который гласит, что количество транзисторов в плотной интегральной схеме удваивается примерно каждые два года. Это наблюдение названо в честь Гордона Мура, соучредителя Fairchild Semiconductor и Intel, который написал статью с описанием этого в 1965 году. В настоящее время период удвоения часто составляет 18 месяцев — цифру, которую приводит исполнительный директор Intel Дэвид Хаус.

В результате на производителей микросхем постоянно оказывается давление, чтобы они изобрели что-то лучше и даже дешевле, чем то, что определяло современное состояние всего несколько месяцев назад. Поэтому полупроводниковым компаниям необходимо поддерживать большие бюджеты на исследования и разработки. Ассоциация исследования рынка полупроводников IC Insights сообщила, что 10 крупнейших полупроводниковых компаний потратили в среднем 13,0% продаж на НИОКР в 2017 году, в диапазоне от 5,2% до 24,0% для отдельных компаний.

Традиционно полупроводниковые компании контролировали весь производственный процесс, от проектирования до производства. Тем не менее, многие производители микросхем теперь делегируют все больше и больше продукции другим представителям отрасли. Литейные компании, единственной сферой деятельности которых является производство, в последнее время вышли на передний план, предлагая привлекательные варианты аутсорсинга. Помимо литейных заводов, ряды дизайнеров, специализирующихся на производстве, и тестировщиков микросхем начинают пополняться. Компании по производству микросхем становятся все более экономичными и эффективными. Производство чипов теперь напоминает кухню ресторана изысканной кухни, где повара выстраиваются в очередь, чтобы добавить в смесь нужные специи.

В 1980-е производители микросхем жили с доходностью (количество работающих устройств от всего произведенного) 10-30%. Сегодня некоторые производители микросхем стремятся к доходности 80–90%. Это требует очень дорогих производственных процессов. В результате многие компании, производящие полупроводники, занимаются проектированием и маркетингом, но предпочитают отдать часть или все производство на аутсорсинг. Известные как производители микросхем без фабрики, эти компании имеют высокий потенциал роста, поскольку они не обременены накладными расходами, связанными с производством или «изготовлением».

Инвестиции в полупроводниковую промышленность

Помимо инвестирования в отдельные компании, есть несколько способов контролировать инвестиционные показатели всего сектора. К ним относятся эталонный индекс PHLX Semiconductor Index, известный как SOX, а также его производные формы в биржевых фондах. Есть также индексы, которые делят сектор на производителей микросхем и производителей оборудования для микросхем. Последний разрабатывает и продает оборудование и другую продукцию, используемую для разработки и тестирования полупроводников.

Кроме того, некоторые зарубежные рынки, такие как Тайвань, Южная Корея и в меньшей степени Япония, сильно зависят от полупроводников, и поэтому их индексы также дают представление о состоянии мировой промышленности.

Особенности инвестирования в полупроводники

Если инвесторы в полупроводники должны помнить одну вещь, это должно быть то, что полупроводниковая промышленность очень циклична. Производители полупроводников часто сталкиваются с циклами «подъема и спада», основанными на базовом спросе на продукты на основе микросхем. В хорошие времена прибыль производителей микросхем может быть очень высокой, из-за высокого спроса и дефицита полупродников на рынке. Однако когда спрос падает, цены на микросхемы могут резко упасть и оказать серьезное влияние на цепочки поставок во многих отраслях.

Спрос обычно отслеживает спрос со стороны конечного рынка на персональные компьютеры, сотовые телефоны и другое электронное оборудование. В хорошие времена такие компании, как Intel и Toshiba, не могут производить микрочипы достаточно быстро, чтобы удовлетворить спрос, возникает дефицит полупроводников на рынке. Когда наступают тяжелые времена, они могут быть совершенно жестокими. Например, низкие продажи ПК могут поставить отрасль — и цены на ее акции — в штопор.

В то же время нет смысла говорить о «цикле чипа», как если бы это было событием особого характера. В то время как полупроводники по-прежнему являются сырьевым бизнесом, их конечные рынки настолько многочисленны — ПК, коммуникационная инфраструктура, автомобили, потребительские товары и т. д. — что маловероятно, что избыток производственных мощностей в одной области приведет к падению всей отрасли.

Риски цикличности

Удивительно, но цикличность отрасли может в определенной степени утешить инвесторов. В некоторых других технологических секторах, таких как телекоммуникационное оборудование, никогда нельзя быть полностью уверенным в том, является ли состояние циклическим или постоянным. Напротив, инвесторы могут быть почти уверены, что рынок в какой-то момент в не столь отдаленном будущем развернется.

Цикличность дает некоторое утешение, но также создает риск для инвесторов. Производители чипов должны регулярно участвовать в азартных играх с высокими ставками. Большой риск связан с тем, что после крупного проекта разработки компаниям может потребоваться много месяцев или даже лет, чтобы выяснить, сорвали ли они джекпот или все сорвали. Одной из причин задержки является переплетенная, но фрагментированная структура отрасли: различные секторы достигают пика и минимума в разное время.

Например, нижняя точка для литейных производств часто наступает намного раньше, чем для разработчиков микросхем. Другой причиной является длительное время выполнения заказа в отрасли: на разработку микросхемы или создание литейного цеха уходят годы, и еще больше времени, прежде чем продукты приносят прибыль.

Компании, производящие полупроводники, сталкиваются с классической загадкой: двигает ли рынок технология, или рынок движет технологией. Инвесторы должны признать, что оба случая применимы для полупроводниковой промышленности.

Поскольку компании тратят значительную часть доходов на исследования и разработки, окупаемость которых может занять несколько месяцев или даже лет — а иногда и никогда, если технология неисправна, — инвесторам следует с осторожностью относиться к заявлениям компаний, которые утверждают, что владеют новейшими и лучшими технологиями в полупроводниковой промышленности.

Популярные вопросы о полупроводниках

Чем полупроводник отличается от проводника или изолятора?

Полупроводник, по сути, функционирует как гибрид проводника и изолятора. В то время как проводники представляют собой материалы с высокой проводимостью, которые позволяют течь заряду при приложении напряжения, а изоляторы не допускают протекания тока, полупроводники поочередно действуют как изолятор и проводник там, где это необходимо.

Что такое полупроводник N-типа?

Полупроводник n-типа представляет собой полупроводник со смешанными примесями, в котором используются пятивалентные примесные атомы, такие как фосфор, мышьяк, сурьма, висмут.

Что такое полупроводник P-типа?

Полупроводник p-типа — это тип примесного полупроводника, который содержит трехвалентные примеси, такие как бор и алюминий, которые увеличивают уровень проводимости обычного полупроводника, сделанного исключительно из кремния.

Что такое собственный полупроводник?

Собственный или чистый (нелегированный) полупроводник — это полупроводник, в который не добавлены какие-либо примеси или легирующие примеси, как в случае полупроводников p-типа и n-типа. В собственных полупроводниках количество возбужденных электронов и количество дырок равны: n = p.

Резюме

А на этом сегодня все про полупроводники. Надеюсь статья оказалась для вас полезной. Делитесь статьей в социальных сетях и мессенджерах и добавляйте сайт в закладки. Успехов и до новых встреч на страницах проекта Тюлягин!

Источник

Использование и виды полупроводников. Применение полупроводников

Полупроводниковые материалы: примеры полупроводников

В нашей статье будут рассмотрены примеры полупроводников, их свойства и сферы применения. Эти материалы имеют свое место в радиотехнике и электронике. Они являются чем-то средним между диэлектриком и проводником. Кстати, простое стекло тоже можно считать полупроводником – в обычном состоянии оно ток не проводит. Зато при сильном нагреве (практически до жидкого состояния) происходит изменение свойств и стекло становится проводником. Но это исключительный пример, у других материалов все обстоит немного иначе.

Определение и свойства

Полупроводниками считают вещества, которые обладают слабовыраженными свойствами электропроницаемости металлов и изоляторов одновременно, имеется зависимость движения тока от температуры, излучений и концентрации примесей. Группа полупроводников представляется большим количеством материалов, чем металлы и диэлектрики, вместе взятые. Имеющиеся свойства веществ уникальны:

Благодаря специфическим свойствам, использование полупроводниковых материалов обширное: энергетическая микроэлектроника, промышленное изготовление машин, а некоторые виды ПП являются сырьём для строительных материалов. Существует несколько типов элементов, они имеют разное назначение и индивидуальные конструктивные особенности.

Виды и деление полупроводников

Наименований ПП много, и для удобства они классифицируются по различным признакам. Самое крупное размежевание видов полупроводников производят по составу:

По обладанию определёнными свойствами ПП разделяют на диоды, транзисторы и тиристоры. Первые включают 2 кристалла из полупроводников различной проницаемости. Исполнение делают точечным — из кремния и металлической иглы, и плоским — сплав германия и индия.

Транзисторы состоят из 3 ПП: 2 обладают равной способностью пропускать ток, а у третьего проводимость с противоположным значением. Элементы устройства называют базой, коллектором и эмиттером. Используются как усилители электрических сигналов.

Тиристоры — преобразователи движения тока. От транзисторов отличаются предназначением: изменить ток они не могут: их функция — переключать проводимость на высокую или низкую.

Основные особенности полупроводников

Показатель проводимости составляет около 1000 Ом*м (при температуре 180 градусов). Если сравнивать с металлами, то у полупроводников происходит уменьшение удельной проводимости при возрастании температуры. Такое же свойство имеется у диэлектриков. У полупроводниковых материалов имеется достаточно сильная зависимость показателя удельной проводимости от количества и типа примесей.

Что такое полупроводники приведите примеры. Смотреть фото Что такое полупроводники приведите примеры. Смотреть картинку Что такое полупроводники приведите примеры. Картинка про Что такое полупроводники приведите примеры. Фото Что такое полупроводники приведите примеры

Допустим, если ввести в чистый германий всего тысячную долю мышьяка, произойдет увеличение проводимости примерно в 10 раз. Все без исключения полупроводники чувствительны к воздействиям извне – ядерному облучению, свету, электромагнитным полям, давлению и т. д. Можно привести примеры полупроводниковых материалов – это сурьма, кремний, германий, теллур, фосфор, углерод, мышьяк, йод, бор, а также различные соединения этих веществ.

Особенности применения полупроводников

Благодаря тому, что у полупроводниковых материалов такие специфические свойства, они получили довольно широкое распространение. На их основе изготавливают диоды, транзисторы, симисторы, лазеры, тиристоры, датчики давления, магнитного поля, температуры, и т. д.

После освоения полупроводников произошло коренное преобразование в автоматике, радиотехнике, кибернетике и электротехнике. Именно при помощи использования полупроводников удалось достичь таких маленьких габаритов техники – нет нужды использовать массивные блоки питания и радиолампы размером с полуторалитровую банку.

Полупроводниковые приборы

Сразу можно привести примеры полупроводниковых приборов – это транзисторы, тиристоры, диоды, и даже микросхемы. Конечно, это далеко не полный список. Чтобы изготовить полупроводниковый прибор, нужно использовать материалы, у которых проводимость дырочная или электронная. Чтобы получить такой материал, необходимо в идеально чистый полупроводник с концентрацией примесей менее 10-11% ввести добавку (ее называют легирующей примесью).

Что такое полупроводники приведите примеры. Смотреть фото Что такое полупроводники приведите примеры. Смотреть картинку Что такое полупроводники приведите примеры. Картинка про Что такое полупроводники приведите примеры. Фото Что такое полупроводники приведите примеры

Те примеси, у которых валентность оказывается больше, чем у полупроводника, отдают свободные электроны. Эти примеси называются донорами. А вот те, у которых валентность меньше, чем у полупроводника, имеют свойство хватать и удерживать электроны. Их называют акцепторами.

Для того чтобы получился полупроводник, который будет обладать лишь проводимостью электронного типа, в исходный материал достаточно ввести вещество, у которого валентность будет всего на единицу больше. Для примера полупроводников в физике школьного курса рассматривается германий – его валентность равна 4. В него добавляется донор – фосфор или сурьма, у них валентность равна пяти. Металлов-полупроводников немного, они практически не используются в технике.

При этом 4 электрона в каждом атоме осуществляют установку четырех парных (ковалентных) связей с германием. Пятый электрон не имеет такой связи, а значит, он в свободном состоянии. И если приложить к нему напряжение, он будет образовывать электронный ток.

Термисторы

Как известно, проводимость полупроводников увеличивается с ростом температуры, так как увеличивается число носителей заряда. Приближенно, зависимость проводимости полупроводников от температуры можно представить как:

Приборы, которые основываются на зависимости величины сопротивления от температуры, называются термисторами.

Для производства термисторов применяют полупроводники, которые обладают существенной величиной отрицательного сопротивления (обычно, это оксидные полупроводники). Термисторы изготавливают в форме цилиндрических стержней, бусин или нитей, заключенных в баллончики из стекла, керамики или металла с изоляцией.

Фотосопротивления

Как нам известно, электроны в полупроводниках могут переходить в зону проводимости не только при повышении температуры, но и при поглощении фотона (внутренний фотоэффект). Существуют полупроводники энергия перехода электронов, у которых составляет десятые доли электрон — вольта, то есть на сопротивление подобных проводников оказывает влияние не только видимый свет, но даже инфракрасное излучение.

Прибор, основывающийся на изменении сопротивления полупроводников под воздействием освещенности, называют фотосопротивлением. Для видимой части спектра чаще всего используют полупроводники из селена, германия, сернистого кадмия и таллия. Для инфракрасной части спектра применяют полупроводники из сернистого, селенистого и теллуристого свинца.

Основной характеристикой подобных фотосопротивлений является зависимость фототока (I) от величины светового потока (Ф). Вольт — амперные характеристики фотосопротивлений имеют линейный характер. Фотосопротивления инерционны, это значит, что фототок достигает максимума не мгновенно, спадает он при прекращении освещения, также через некоторое время.

Фотосопротивления используются в автоматике, сортировке изделий по окраске или размерам.

Варисторы

Эмпирически доказано, что в небольших полях закон Ома для полупроводников можно считать применимым. Голден бет казино открыли свои двери для Украины!. Для разных веществ величина критического поля (напряженность поля при которой начинаются отступления от закона Ома) очень сильно отличается. Величина критического поля зависит от природы полупроводника, температуры, концентрации примесей.

Опытным путем установлено, что электропроводность полупроводника от напряженности поля определяется законом Пуля:

Полупроводники, проводимость которых существенно растет с увеличением напряженности электрического поля, называются варисторами (ограничителями перенапряжений). Варисторы из карбида кремния используют в виде дисков в разрядниках, которые защищают высоковольтные линии электропередач.

Полупроводниковые выпрямители

При контакте некоторых полупроводников иногда возникает явление, при котором ток хорошо проходит в одном направлении и почти не течет в обратном. Особенно часто возникает такой эффект, если полупроводники имеют разный тип проводимости.

Односторонняя проводимость касающихся разнородных полупроводников используется в диодах, триодах. Для их изготовления используют обычно германий и кремний. Такие диоды и триоды имеют довольно большой срок работы, малые габаритные размеры, потребляют мало энергии, коэффициент выпрямления высок.

Униполярная проводимость между проводником и металлом используется в вентильных элементах.

Термоэлементы

Из полупроводников создают термоэлементы. Они состоят из двух полупроводников, которые соединены металлической пластинкой. Полупроводники нагреваются в месте соединения, противоположные концы при этом охлаждаются (воздухом или иным способом). Свободные концы являются полюсами термоэлемента, к ним присоединяют внешнюю цепь. Из термоэлементов создают термоэлектрические батареи. Величина термоэлектрической ЭДС ($mathcal E$) определяется формулой:

Если через термоэлемент пропустить электроток, то возникает эффект Пельтье, один спай нагревается, другой охлаждается. Это явление используют в холодильниках.

Задание: С чем связано отступление от закона Ома, которое возникает у полупроводников в сильных электрических полях?

Запишем закон Ома в дифференциальной форме:

[I=sigma E left(1.1right),]

Силу тока можно определить как:

В больших полях свободный электрон получает энергию, которой хватает для ионизации атома решетки или атома примеси, что увеличивает концентрацию электронов проводимости.

Ответ: Отступление от закона Ома связано с влиянием сильных полей на подвижность электронов и их концентрацию.

Задание: Опишите процесс возникновения термоэлектродвижущей силы в полупроводниках (термоэлектрогенератор).

В полупроводниках кинетическая энергия теплового движения свободных электронов растет пропорционально абсолютной температуре. Значит, если в полупроводнике создать разность температур, то на конце с более высокой температурой концентрация электронов вырастет. Следовательно, в полупроводнике начнется диффузия свободных электронов в направлении от горячего конца к холодному.

Холодный конец полупроводника будет иметь отрицательный заряд, горячий — положительный (он потеряет часть электронов). Диффузия будет идти до момента, когда появившаяся разность потенциалов не компенсирует диффузионный поток возникшим электрическим током обратного направления. Это равновесие определит появившуюся термо ЭДС.

Использование в радиотехнике

Каждый специалист, техник, обладающий познаниями в электронике, знает, что абсолютно вся современная электроника основана на применении полупроводниковых элементов. Любой аналоговый или цифровой (дискретный) прибор имеет в своей основе схемы, построенные с применением диодов и транзисторов.

Полупроводниковый диод

Одно из первых устройств, использующих свойства полупроводимости, – это полупроводниковый диод. Конструкция заключается в соединении пары полупроводников с разными типами проводимости.

В результате физических процессов движения электронов и дырок на границе веществ возникает электрическое поле, и образуется так называемый p-n переход.

P-n переход обладает свойством односторонней проводимости, то есть ток через диод возникает только при подключении p-области (анода) к полюсу источника напряжения, а n-области (катода) – к минусу.

Вольт-амперная характеристика диода

В обратной полярности ток также имеется, но его величина, по сравнению с прямым, намного меньше. Стабилитрон – вид диода, основная область его работы находится на обратной ветви характеристики. Параметр p-n перехода подобран таким образом, что в узкой области обратного тока напряжение на стабилитроне практически не меняется.

Первый диод – детектор, использовался еще в то время, когда теория полупроводников находилась в зачаточном состоянии.

Транзистор

Транзистор, или, как раннее его называли, триод, имеет две области из материала с одинаковой проводимостью и тонкую область полупроводника с другой. Принцип работы транзистора заключается в том, что малый ток в тонкой области, называемой базой, может управлять гораздо большим током через другие области, соответственно, коллектор и эмиттер.

В зависимости от схемы включения, транзистор может иметь различное назначение: как усилительный, генераторный и преобразовательный полупроводниковый элемент.

Применение полупроводников не ограничивается вышеперечисленными областями. Существуют изделия с тремя и более p-n переходами или вообще без них. Варистор – резистор с сопротивлением, зависящим от величины протекающего тока, тоже полупроводниковый элемент.

Механизм электрической проводимости

Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.

Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.

Дырка

Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.

Обратите внимание! Подвижность электронов выше, чем у дырок.

Энергетические зоны

Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:

Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.

Подвижность

При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.

Электронно-дырочный переход

У полупроводника имеется два типа электропроводимости – электронная и дырочная. В чистых полупроводниках (без примесей) у дырок и электронов концентрация (N Д и N Э соответственно) одинаковая. По этой причине такая электропроводность называется собственной. Суммарное значение тока будет равно:

Но если учесть тот факт, что у электронов значение подвижности больше, чем у дырок, можно прийти к такому неравенству:

Подвижность заряда обозначается буквой М, это одно из главных свойств полупроводников. Подвижность – это отношение двух параметров. Первый – скорость перемещения носителя заряда (обозначается буквой V с индексом «Э» или «Д», в зависимости от типа носителя), второй – это напряженность электрического поля (обозначается буквой Е). Можно выразить в виде формул:

Подвижность позволяет определить путь, который проходит дырка или электрон за одну секунду при значении напряженность 1 В/см. можно теперь вычислить собственный ток полупроводникового материала:

I = N * e * (М Э + М Д) * E.

Но нужно отметить, что у нас есть равенства:

Буквой е в формуле обозначается заряд электрона (это постоянная величина).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *