Что такое щук в биохимии

Цикл трикарбоновых кислот

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Ци́кл трикарбо́новых кисло́т (цикл Кре́бса, цитра́тный цикл) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ.

Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год).

У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Содержание

Стадии цикла Кребса

СубстратыПродуктыФерментТип реакцииКомментарий
1Оксалоацетат +
Ацетил-CoA +
H2O
Цитрат +
CoA-SH
ЦитратсинтазаАльдольная конденсациялимитирующая стадия,
превращает C4 оксалоацетат в С6
2Цитратцис-аконитат +
H2O
аконитазаДегидратацияобратимая изомеризация
3цис-аконитат +
H2O
изоцитратгидратация
4Изоцитрат +
NAD +
Оксалосукцинат +
NADH + H +
изоцитратдегидрогеназа декарбоксилирующаяОкислениеобразуется NADH (эквивалент 2.5 ATP)
5Оксалосукцинатα-кетоглутарат +
CO2
декарбоксилированиенеобратимая стадия,
образуется C5
6α-кетоглутарат +
NAD + +
CoA-SH
сукцинил-CoA +
NADH + H + +
CO2
альфакетоглутаратдегидрогеназный комплекс (3 фермента)Окислительное декарбоксилированиеобразуется NADH (эквивалентно 2.5 АТФ),
регенерация C4 цепи (освобождается CoA-SH)
7сукцинил-CoA +
GDP + Pi
сукцинат +
CoA-SH +
GTP
сукцинилкофермент А синтетазасубстратное фосфорилированиеАДФ->ATP, [1]
образуется 1 ATP (или 1 GTF)
8сукцинат +
убихинон (Q)
фумарат +
убихинол (QH2)
сукцинатдегидрогеназаОкислениеиспользуется FAD как простетическая группа (FAD->FADH2 на первой стадии реакции) в ферменте, [2]
образуется эквивалент 1.5 ATP
9фумарат +
H2O
L-малатфумаразаH2O-присоединение
(гидратация)
10L-малат +
NAD +
оксалоацетат +
NADH + H +
малатдегидрогеназаокислениеобразуется NADH (эквивалентно 2.5 ATP)

Общее уравнение одного оборота цикла Кребса:

Регуляция цикла

Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса.

Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО2 + АТФ = Оксалоацетат (субстрат Цикла Кребса) + АДФ + Фн.

Функции

Мнемонические правила

Для более легкого запоминания кислот, участвующих в цикле Кребса, существует мнемоническое правило:

Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед, что соответствует ряду — цитрат, (цис-)аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

Существует также следующее мнемоническое стихотворение (его автором является ассистент кафедры биохимии КГМУ Е. В. Паршкова [3] ):

Щуку ацетил лимонил, Но нарцисса конь боялся, Он над ним изолимонно Альфа-кетоглутарался. Сукцинился коэнзимом, Янтарился фумарово, Яблочек припас на зиму, Обернулся щукой снова.

(щавелевоуксусная кислота, лимонная кислота, цис-аконитовая кислота, изолимонная кислота, α-кетоглутаровая кислота, сукцинил-KoA, янтарная кислота, фумаровая кислота, яблочная кислота, щавелевоуксусная кислота).

Другой вариант стихотворения

ЩУКа съела ацетат, получается цитрат через цис-аконитат будет он изоцитрат водороды отдав НАД, он теряет СО2 этому безмерно рад альфа-кетоглутарат окисление грядет — НАД похитил водород ТДФ, коэнзимА забирают СО2 а энергия едва в сукциниле появилась сразу ГТФ родилась и остался сукцинат вот добрался он до ФАДа — водороды тому надо фумарат воды напился, и в малат он превратился тут к малату НАД пришел, водороды приобрел ЩУКа снова объявилась и тихонько затаилась Караулить ацетат.

Примечания

Ссылки

Полезное

Смотреть что такое «Цикл трикарбоновых кислот» в других словарях:

цикл трикарбоновых кислот — • цикл трикарбоновых кислот (ЦТК) цикл кребса, цикл лимонной кислоты – важнейший биохим. механизм, обеспечивающий энергетический и конструктивный метаболизм всех живых клеток. Открыт X. Кребсом и У. Джонсоном в 1937 г. У эукариот полный набор… … Словарь микробиологии

цикл трикарбоновых кислот — цикл Кребса Важнейшая циклическая последовательность метаболических реакций у аэробных организмов (эу и прокариот), в результате которых происходит последовательное окислительно восстановительное превращение ди и трикарбоновых кислот,… … Справочник технического переводчика

цикл трикарбоновых кислот — цикл трикарбоновых кислот. См. цикл Кребса. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

цикл трикарбоновых кислот — trikarboksirūgščių ciklas statusas T sritis chemija apibrėžtis Baltymų, riebalų ir angliavandenių oksidacinio skaidymo organizme ciklas. atitikmenys: angl. citric acid cycle; Krebs cycle; tricarboxylic acid cycle rus. цикл Кребса; цикл лимонной… … Chemijos terminų aiškinamasis žodynas

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ — цикл трикарбоновых кислот, метаболический цикл Кребса, циклический ферментативный процесс, являющийся основным путём конечного распада белков, жиров и углеводов в организме. В Ц. т. к. продукт окислительного декарбоксилирования пировиноградной… … Ветеринарный энциклопедический словарь

цикл трикарбоновых кислот — (син.: Кребса цикл, лимоннокислый цикл) совокупность ферментативных реакций, приводящих к полному окислению активированной уксусной кислоты до воды и двуокиси углерода, чем завершается распад углеводов, жиров и белков в живом организме;… … Большой медицинский словарь

ЦИКЛ КРЕБСА (цикл трикарбоновых кислот — цикл лимонной кислоты) сложный циклический ферментативный процесс, при котором в организме происходит окисление пировиноградной кислоты с образованием углекислого газа, воды и энергии в виде АТФ; занимает центральное положение в общей системе… … Словарь ботанических терминов

трикарбоновых кислот цикл — (Кребса цикл, лимонной кислоты цикл), циклический ферментативный процесс полного окисления в живых организмах активированной уксусной кислоты до СО2 и Н2О; общий конечный путь, которым завершается распад углеводов, жиров и белков в организме. При … Энциклопедический словарь

Трикарбоновых кислот цикл — цикл лимонной кислоты, цикл Кребса, широко представленный в организмах животных, растений и микробов путь окислительных превращений ди и трикарбоновых кислот, образующихся в качестве промежуточных продуктов при распаде белков, жиров и… … Большая советская энциклопедия

ТРИКАРБОНОВЫХ КИСЛОТ ЦИКЛ — (Кребса цикл лимонной кислоты цикл), циклический ферментативный процесс полного окисления в живых организмах активированной уксусной кислоты до СО2 и Н2О; общий конечный путь, которым завершается распад углеводов, жиров и белков в организме. При… … Большой Энциклопедический словарь

Источник

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбо-новых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль «клеточного топлива»: углеводов, жирных кислот и аминокислот.

Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса. Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций (рис. 10.9). Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и двух декарбоксилирований (отщепление СО2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО2 и Н2О, а молекула окса-лоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Первая реакция катализируется ферментом цит-рат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Пятая реакция катализируется ферментом сукцинил-КоА-синтета-зой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью (см. главу 4) – в ходе реакции образуется L-яблочная кислота:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление («сгорание») одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД + и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи (в цепи дыхательных ферментов), локализованной в мембране митохондрий. Образовавшийся ФАДН2 прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН2 попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ. В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что равносильно одной молекуле АТФ. Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ.

Если подсчитать полный энергетический эффект гликолитического расщепления глюкозы и последующего окисления двух образовавшихся молекул пирувата до СО2 и Н2О, то он окажется значительно большим.

Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО2 и Н2О дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С6Н12О6 + 6О2 —> 6СО2 + 6Н2О синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.

Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Ци-топлазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализи-

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рис. 10.10. Глицеролфосфатный челночный механизм. Объяснение в тексте.

руется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назой:

Образовавшийся глицерол-3-фосфат легко проникает через митохонд-риальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата:

Глицерол-3-фосфат + ФАД Диоксиацетонфосфат + ФАДН2.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рис. 10.11. Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс. Объяснение в тексте.

В дальнейшем было показано, что с помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н + в митохондрии.

В клетках печени, почек и сердца действует более сложная малат-ас-партатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях.

Транспортирование в цитозоле регенерирует оксалоацетат, что вызывает к действию следующий цикл. В целом процесс включает легкообратимые реакции, происходит без потребления энергии, «движущей силой» его является постоянное восстановление НАД + в цитозоле гли-церальдегид-3-фосфатом, образующимся при катаболизме глюкозы.

Итак, если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ (табл. 10.1).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

В табл. 10.1 приведены реакции, в которых происходит образование высокоэргических фосфатных связей в ходе катаболизма глюкозы, с указанием эффективности процесса в аэробных и анаэробных условиях.

Источник

Как запомнить Цикл Кребса: мнемотехники и стихи для запоминания

Цикл Кребса? Что это такое?

Если вы не в курсе, то это — цикл трикарбоновых кислот. Понятнее?

Если нет, то это — ключевой этап дыхания всех клеток, использующих кислород. Кстати, за открытие этого цикла Ганс Кребс получил Нобелевскую премию.

Вообщем, как вы поняли, эта штука очень важная, особенно для биохимиков. Именно им интересен вопрос «Как быстро запомнить цикл Кребса?»

Вот как он выглядит:

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимииПо сути Цикл Кребса описывает этапы превращения лимонной кислоты. Их и нужно запомнить.

Я, на самом деле, не всё понял. Мне больше интересно про то, а как это запомнить.

Как запомнить Цикл Кребса? Стих!

Есть замечательный стих, который позволяет запомнить этот цикл. Автор данного стиха бывшая студентка КГМУ, сочинила его ещё в 1996 году.

ЩУК у АЦЕТИЛ ЛИМОНил,
Но нарЦИСсА КОНь боялся,
Он над ним ИЗОЛИМОННо
АЛЬФА-КЕТОГЛУТАРался.

СУКЦИНИЛся КОЭНЗИМом,
ЯНТАРился ФУМАРОВо,
ЯБЛОЧек припас на зиму,
Обернулся ЩУКой снова.

Здесь последовательно зашифрованы субстраты реакций цикла трикарбоновых кислот:

Ещё один стих для запоминания цикла трикарбоновых кислот:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.

Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.

Окисление грядет — НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.

А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.

Вот дoбрался он дo ФАДа — вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.

Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

Стих — это неплохо. Его, конечно, еще запомнить надо, тогда вопрос: «Как запомнить цикл Кребса» волновать студентов не будет.

Как запомнить Цикл Кребса? История!

Я вдобавок предлагаю вот какую штуку — каждую из этих стадий (кислоту) преобразовать в образы и картинки:

ЩУКА — щавелевоуксусная кислота
АЦтек сражается с ЕТИ — ацетил-коэнзим А
ЛИМОН — лимонная кислота
ЦИСтерна с КОНями — цисаконитовая
Рисованный на холсте (ИЗО) ЛИМОН — изолимонная кислота
АЛЬФ держит ГЛУбокую ТАРу — альфа-кетоглутаровая кислота
на СУКу сидит и пилит его ЦИНИк — сукцинил-коэнзим А
ЯНТАРЬ — янтарная кислота
в ФУражке МАРля — фумаровая кислота
ЯБЛОКО — яблочная кислота

Добавил картинок, которые могут вызвать сомнения, чтобы вы уж знали наверняка кто есть кто:

Возле широкой реки ЩУКИ стали выпрыгивать из воды и нападать на АЦтека и ЕТИ, которые из без низ сражались друг с другом. Закидав их ЛИМОНами ацтек и ети сели на цистерну с конями и побыстрее стали убираться с этого места. Они не заметили как врезались в ворота, на которых был изображен(ИЗО) ЛИМОН. Изнутри ворота им открыл АЛЬФ, держащий стеклянную ГЛУбокую ТАРу. В это время сидящий на СУКу ЦИНИк стал забрасывать их ЯНТАРНыми камнями. Прикрываясь ФУражками с МАРлей наши герои спрятались за огромные ЯБЛОКи. Но оказывается ЩУКи оказались хитрыми и поджидали их за яблоками.

Фууф, наконец-то дописал эту историю. Дело в том, что придумать такую историю в голове — очень быстро. Буквально 1-2 минуты. А вот изложить её текстом, да ещё так, чтобы поняли окружающие это совсем другое.

Запоминание цикла Кребса акронимом

Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед, что соответствует— цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Надеюсь, теперь вам понятно, как можно запомнить Цикл Кребса.

Источник

Цикл трикарбоновых кислот

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Биохимия является основой для глубокого понимания всего, что происходит на более высоких уровнях организации живой материи. Поэтому без опоры на такие знания сегодня немыслимо полноценное биомедицинское образование.

Преподавание курса биохимии будущим врачам гуманной и ветеринарной медицины имеет цель формировать у них универсальные профессиональные компетенции. Предлагаемое учебное пособие продолжает цикл учебных материалов по основам биохимии для студентов и преподавателей факультета «Биоинженерия и ветеринарная медицина» Донского государственного технического университета, а также других вузов медико-биологического профиля. Оно знакомит читателей с процессами жизнедеятельности организма, а также с некоторыми его нарушениями, которые приводят к возникновению болезней, и позволяет, оптимизировать знания в области биохимии, применяя их при изучении нормальной и патологической физиологии, фармакологии, клинической лабораторной диагностики.

ВВЕДЕНИЕ

Автотрофные организмы используют энергию солнечного света для синтеза органических соединений, обладающих запасом внутренней энергии, из СО2 и H2O, то есть получают углерод из СО2. В свою очередь, гетеротрофные организмы используют энергию органических соединений, поступающих с пищей, то есть получают углерод из органических соединений. Основным способом преобразования этой энергии для нужд жизнедеятельности является биологическое окисление или тканевое дыхание. Под тканевым дыханием понимается катаболизм органических веществ клетками с участием O2 и выделением СО2 и H2O. Больше всех от обогащения атмосферы Земли кислородом во времена протерозоя выиграли альфа-протеобактерии.

Все три этапа связаны: конечный продукт одного является начальным субстратом следующего.

ЦТК — филогенетически старый метаболический путь, но не самый древний. Но большая часть организмов, в том числе прокариоты, имеют те или иные компоненты ЦТК. Вообще, синтез, взаимопревращение и разрушение промежуточных метаболитов (пируват, ацетил-КоА), а также все компоненты ЦТК считаются приобретением эукариот вследствие их симбиогенеза с прокариотами (альфа-протеобактериями). Последние в дальнейшем преобразовались в эукариотические органеллы — митохондрии [1]. Такая теория находит отклик в том, что ферменты ЦТК синтезируются с использованием не только митохондриальных генов, но и ядерных.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Примечательно, что ЦТК не имеет прямого отношения к аэробному дыханию (филогенетически более новому способу окисления по сравнению с анаэробным дыханием), но снижение концентрации О2 у аэробов подавляет его реакционную способность. Дело в том, что синтезированные в ходе ЦТК НАДH + Н + далее переносят гидрид-анионы на ЦПЭ и восстанавливают кислород, поступивший в процессе дыхания, до H2O. Образуемый потенциал между митохондриальным матриксом и межмембранным пространством превращается в энергию связей АТФ.

НАД (никотинамидадениндинуклеотид) является коферментом и активированным вариантом никотиновой кислоты (ниацин, витамин В3). Ферменты, обеспечивающие синтез НАД + из никотиновой кислоты, сконцентрированы в ядре клетки.

Преобразования веществ в ЦТК носят окислительный характер. На сегодняшний день исследовано множество анаэробных организмов, у которых есть набор метаболитов ЦТК, но вместо последовательного окисления субстраты подвергаются восстановлению [2]. Такой цикл получил название восстановительный цикл трикарбоновых кислот (ВЦТК) или цикл Арнона.

Таким образом, компоненты ЦТК (рисунок 2) и ВЦТК (рисунок 3) являются универсальной последовательностью для известных форм жизни [3].

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 2. Реакции цикла трикарбоновых кислот (цикл Кребса)

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 3. Восстановительный цикл трикарбоновых кислот (цикл Арнона)

Хемотрофы (водородобактерии, метанобактерии, железобактерии) — прокариоты и, пожалуй, одни из самых древних форм жизни, начало которым было положено в архей (отсюда и одноименное название домена — Archaea). Для них именно ВЦТК является началом путей биосинтеза органических веществ. Например, хемолитоавтотрофы рода Thiobacillus получают энергию в результате окислительно-восстановительных преобразований неорганических соединений и в процессе хемоассимиляции СO2. В настоящее время нет достоверных сведений о наличии ВЦТК у эукариот [4,5], поэтому для изучения метаболических путей взаимопревращения углеродсодержащих веществ логично рассмотрение не варианта ВЦТК, в котором имелся какой-то примитивный источник энергии, не представленный органическими веществами, а ЦТК как более позднего и нового приобретения эволюции.

ИСТОРИЯ ОТКРЫТИЯ ЦТК

В 1930 году некоторые из компонентов ЦТК открыл Альберт Сент-Дьерди. В частности, он установил, что при добавке сукцината, фумарата и малата к измельченной мышечной ткани поглощается большее количество кислорода, чем требуется для окисления, тем самым придя к выводу, что кислоты являлись катализаторами, но сами не претерпевали изменений. Сент-Дьерди первый, кто непосредственно описал ЦТК и в 1937 году был удостоен Нобелевской премии по физиологии и медицине «За исследования биологического окисления и в особенности за открытие витамина С и катализа фумаровой кислотой» [6].

Однако полную последовательность реакций и образующихся соединений в 1937 году установил Ханс Адольф Кребс. В 1953 году он получил Нобелевскую премию «За открытие цикла лимонной кислоты» (разделил с Фрицем Альбертом Липманом, получившим премию «За открытие кофермента А и его значения для промежуточных стадий метаболизма») [7]. С тех пор ЦТК имеет авторское узнаваемое название — цикл Кребса.

Для чего нам эта историческая справка? Что ж, кто-то разбрасывает камни, а кто-то умело их собирает… Если рассматривать ее в контексте медицины, то эти прорывные, сложные и даже революционные открытия были сделаны не так уж и давно. Мы знаем мало. Мы в начале пути.

ЦИКЛ КРЕБСА

Пусковым субстратом ЦТК является ацетил-КоА. Разберем, из чего он может синтезироваться.

Углеводы

Возьмем всем известный моносахарид — глюкозу, — которая в организме человека может подвергаться гликолизу (рисунок 4). В результате гликолиза из одной молекулы глюкозы получается две молекулы пирувата. Суммарное уравнение гликолиза будет выглядеть так:

Глюкоза + 2НАД + + 2АДФ + 2Н3РО4 → 2Пирувата + 2НАДH + 2Н + + 2ATФ + 2Н2O

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Реакции окисления глюкозы занимают 10–11 стадий, которые можно разделить на подготовительный этап — до образования 3-фосфоглицерата — и этап непосредственного синтеза АТФ. Ко всему прочему, суммарный выход АТФ при гликолизе составляет 2 молекулы при условии, что другие 2 молекулы расходуются на подготовительном этапе.

Стоит оговорить некоторые детали. Гликолиз — это не только окисление глюкозы. Другие углеводы тоже окисляются по этому пути, но только в том случае, когда они превращаются в его компоненты. Например, фруктоза при участии одной молекулы АТФ превращается в фруктоза-6-фосфат, и такое преобразование происходит в мышцах и почках. Гликолиз — это анаэробный процесс. Так, в эритроцитах он является единственным путем поддержания их биоэнергетики.

Синтез пирувата осуществляется в цитоплазме клеток в результате гликолиза, а процесс ЦТК идет в матриксе митохондрий. Следовательно, пирувату надо попасть из одного компартмента в другой. Проблема в том, что пируват является полярной молекулой и не может проникнуть через внутреннюю мембрану митохондрии, проницаемую только для О2, СО2 с помощью простой диффузии, в то время как внешняя мембрана проницаема для малых молекул и ионов за счёт поринов.

Транспорт пирувата в митохондриальный матрикс происходит при участии белка транспортера, который по последней классификации IUPAC (Международного союза теоретической и прикладной химии) и NC-IUBMB (Комитета по номенклатуре Международного союза биохимии и молекулярной биологии) относят к транслоказам с механизмом симпорта H + во внутренней мембране. Для участия в ЦТК необходима ацетильная группа пирувата — СН3–С=О, — однако этому мешает полярная карбоксильная группа, отщепить которую возможно путем окислительного декарбоксилирования с участием специального мультиферментного комплекса в митохондриальном матриксе — пируватдегидрогеназного комплекса. В итоге образуется необходимый ацетил-КоА, и реакция становится необратимой (рисунок 5).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Пируватдегидрогеназный комплекс включает в себя три типа ферментов в множестве копий, пять коферментов, два вспомогательных белка.

Среди компонентов этих коферментов есть четыре витамина и одно витаминоподобное вещество, которые человек получает преимущественно с пищей:

Кстати, далее, по ходу всех стадий, будет понятна роль витаминов в ЦТК. Стоит обратить внимание, что при алиментарной недостаточности компонента пируватдегидрогеназного комплекса тиамина (витамин В1) развивается болезнь бери-бери (рисунок 6), которая на сегодняшний день встречается редко и характерна для слаборазвитых стран.

Вспомогательные белки для протекания сопутствующих реакций фосфорилирования:

Липиды

Вспомним липиды, которые распадаются до высших жирных кислот (ВЖК) и глицерола. ВЖК затем подвергаются процессу β-окисления до ацетил-КоА (рисунок 7). Глицерол в свою очередь является субстратом для глюконеогенеза в печени, и уже не сложно догадаться, что будет с вновь синтезированной глюкозой дальше.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Белки

Они очевидно распадаются до аминокислот. И самое важное, что стоит отметить: аминокислоты невероятно пластичны. Путем реакций трансаминирования (ферментативные реакции переноса аминогруппы с аминокислот на кетокислоты) (рисунок 8) организм может получать не только глюкозу и пируват, но также субстраты ЦТК — α-кетоглутарат, оксалоацетат. Более того, такие аминокислоты, как серин, аланин, триптофан и другие могут превратиться в ацетил-КоА, минуя превращение до пирувата (рисунок 9).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Аланинаминотрансфераза локализована в цитоплазме клеток. Аспартатаминотрансфераза имеет как цитоплазматическую (cAST), так и митохондриальную (mAST) изоформы. Аминотрансферазы переносят аминогруппу аминокислот в состав глутамата. Затем глутамат с помощью транслоказ попадает из цитоплазмы в митохондрию, где активна аспартатаминотрансфераза. В результате глутамат снова превращается в α-кетоглутарат.

АСТ — аспартатаминотрансфераза, ПФ — кофермент пиридоксальфосфат (производный витамина В6), ГОТ — глутамат-оксалоацетатаминотрансфераза, АЛТ — аланинаминотрансфераза, ГПТ — глутамат-пируватаминотрансфераза

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 9. Аминокислоты как ресурс для синтеза компонентов цикла трикарбоновых кислот.

Этанол

Алкогольдегидрогеназа печени окисляет этанол до ацетальдегида (рисунок 10). В ходе последующей реакции токсичный ацетальдегид в той же печени при участии альдегиддегидрогеназы окисляется до уксусной кислоты, которая претерпевает превращения с образованием ацетил-КоА.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 10. Реакция превращения этанола в ацетат. Алкогольдегидрогеназа использует НАД + для осуществления реакции и в норме не локализуется в сыворотке крови человека.

Кетоновые тела

Если для синтеза ацетоацетата (рисунок 11) в митохондриях гепатоцитов необходимо наличие двух молекул ацетил-КоА, пришедших в результате обильного поступления ВЖК в печень или при обезвреживании этанола, то его катаболизм клетками организма (рисунок 12) вновь приводит к образованию двух молекул ацетил-КоА, которые отправятся в ЦТК.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 11. Анаболизм кетоновых тел.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 12. Катаболизм кетоновых тел.

Выходит, что белки, жиры и углеводы являются источниками не только ацетил-КоА, который «закрутит колесо ЦТК», но и незаменимых для его стадий субстратов.

Большинство окислительных реакций ЦТК обратимы, но исключение составляют три стадии: превращение оксалоацетата в цитрат, окисление изоцитрата до α-кетоглутарата и окисление α-кетоглутарата до сукцинил-КоА.

Далее подробно остановимся на каждой из восьми стадий:

I стадия — образование цитрата;
II стадия — образование изоцитрата;
III стадия — окисление до α-кетоглутарата;
IV стадия — окисление до сукцинил-КоА;
V стадия — образование сукцината;
VI стадия — окисление до фумарата;
VII стадия — гидратация до малата;
VIII стадия — окисление до оксалоацетата.

СТАДИИ ЦТК

I стадия — образование цитрата

Оксалоацетат (щавелевоуксусная кислота) соединяется с ацетил-КоА в присутствии фермента цитратсинтазы (рисунок 13). Биотин является необходимым компонентом в реакции карбоксилирования пирувата с участием АТФ, в результате чего образуется сам оксалоацетат в присутствии пируваткарбоксилазы, коферментом которой является биотин. Так получается трикарбоновый цитрат — лимонная кислота, поэтому ЦТК иногда называют циклом лимонной кислоты.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Ацетил-КоА имеет карбонильный (С=О) участок, превращающийся в гидроксильный (С–ОН) благодаря цитратсинтазе (кодируется ядерным геном CIT1). Промежуточный продукт — цитроил-КоА, образующийся в активном центре фермента, — гидролизуется до свободного КоА и цитрата.

Эта стадия ЦТК является одной из немногих необратимых реакций, поэтому уровень экспрессии CIT1 оказывает влияние на остальные стадии цикла.

II стадия — образование изоцитрата через цис-аконитат

Из цитрата необходимо получить его изомер в присутствии фермента аконитазы (аконитатгидратазы), которая будет проводить дегидратацию цитрата и следом гидратацию полученного промежуточного соединения (трикарбоновой кислоты цис-аконитата) для получения изоцитрата, т. е. является одновременно и изомеразой, и гидратазой (рисунок 14).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Аконитаза (лат. aconítum — борец, была открыта в растении Aconítum napéllus) — название данного соединения по международной номенклатуре — аконитатгидратаза. Фермент имеет митохондриальную и цитоплазматическую изоформы, кодируемые ядерными генами ACO1 на p-плече 9 хромосомы и ACO2 на q-плече 22 хромосомы соответственно. Митохондриальная изоформа фермента катализирует превращение цитрата в изоцитрат с использованием НАД + (нарушение гена ACO1 приводит к неспособности провести эту стадию ЦТК [8]), а цитоплазматическая катализирует превращение цитрата в изоцитрат с использованием НАДФ, которая образует НАДФН, участвующий в синтезе ВЖК и стероидов.

III стадия — окисление изоцитрата до α-кетоглутарата

Начиная с этой стадии цикл перестает быть трикарбоновым с точки зрения химических структур последующих субстратов. Здесь фермент изоцитратдегидрогеназа катализирует окислительное декарбоксилирование изоцитрата с образованием α-кетоглутарата (оксоглутарата) и СО2. Реакция проходит через промежуточное соединение — оксалосукцинат — и является необратимой.

Кроме декарбоксилирования в этой реакции происходит восстановление кофермента HAД + до НАДH+H + (НАДФН) (рисунок 15).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Изоцитратдегидрогеназа является октамером, состоящим из четырех субъединиц Idh1p и четырех субъединиц Idh2p, кодируемых генами второй хромосомы IDH1 (внемитохондриальный) и IDH2 (внутримитохондриальный) соответственно. Гены IDH1 и IDH2 транскрибируются независимо друг от друга, при этом изменение экспрессии любого из них не влияет на транскрипцию другого, но гетерозиготные мутации в любом из генов изоцитратдегидрогеназы приводят к снижению активности фермента с сохранением функции [9].

IV стадия — окисление α-кетоглутарата до сукцинил-КоА

Далее происходит такое же окислительное декарбоксилирование как и с пируватом. Теперь α-кетоглутарат необратимо превращается в сукцинил-КоА и СО2 (рисунок 16). А значит и выполнять окислительное декарбоксилирование будет достаточно похожий фермент — α-кетоглутаратдегидрогеназный комплекс. Он близок к пируватдегидрогеназному комплексу по структуре, функциям и также включает три типа ферментов: КЕ1/КЕ2/КЕ3, каждый из которых кодируется отдельным ядерным геном KGD1, KGD2 и LPD1 соответственно [10].

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

В результате реакции у α-кетоглутарата отщепляется группа –СООН в α-положении. Отщепление кислотного остатка в результате даст CO2 и гидрид-анион. Бывшему α-кетоглутарату к С=О присоединяется свободная теперь группа –SКоА и получается сукцинил-КоА.

V стадия — превращение сукцинил-КоА в сукцинат

Сукцинил-КоА является соединением, которое может формировать новый порядок реакций. Доказательством тому является возможность альтернативного хода ЦТК под названием ГАМК-шунт (рисунок 17) в нейронах и астроцитах центральной нервной системы, где IV стадия заканчивается превращением не в сукцинил-КоА, а в глутамат, который декарбоксилируется в ГАМК (тормозный нейромедиатор). Затем ГАМК метаболизируется сначала до сукцинилового полуальдегида, а потом до сукцината — продукта V стадии.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Образование сукцината происходит при участии фермента сукцинил-КоА-синтетазы (используется лигаза, т. к. катализируется образование новых связей между индивидуальными молекулами с использованием энергии макроэргических соединений) (рисунок 18).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

VI стадия — окисление сукцината до фумарата

Сукцинат (янтарная кислота) окисляется до фумарата под действием оксидоредуктазы — сукцинатдегидрогеназы (у эукариот это митохондриальный хромопротеин и единственный фермент ЦТК, который закреплен во внутренней мембране митохондрий). Активный центр фермента образуют субъединицы, содержащие флавин и железо-серные группы, кодируемые генами SDH1 и SHD2 соответственно [12,13]. Закрепление фермента в мембране митохондрии осуществляется с помощью двух гидрофобных субъединиц, кодируемых генами SDH3 и SDH4 [14,15]. Для сборки функционального комплекса необходим шаперон семейства Hsp60-Tcm62p [16].

В этой реакции от сукцината отщепляется гидрид-анион, но коферментом будет являться не НАД + или НАДФ, как в предыдущих реакциях, а флавинадениндинуклеотид (ФАД) (образуется из рибофлавина, витамина B2), т. к. этот кофермент является ковалентно связанной простетической группой сукцинатдегидрогеназы. В итоге в исходном соединении просто создается ковалентная связь.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Изучая эту стадию подробно, непременно столкнешься с понятием об убихиноне (кофермент Q) (рисунок 19). Этот компонент ЦПЭ принимает участие в окислительном фосфорилировании как компонент митохондриального ферментного комплекса (МФК). Всего же на сегодня изучено четыре МФК (1 — НАДН-дегидрогеназный комплекс, 2 — сукцинатдегидрогеназа, 3 — убихинон-цитохром С-оксидоредуктаза, 4 — цитохромоксидаза). Функционирование МФК 1 и 3 приводит к генерации активных форм кислорода (АФК).

Таким образом, сукцинатдегидрогеназа является одновременно ферментом этой стадии и обязательным компонентом ЦПЭ. Какова ее функция в ЦПЭ? Дело в том, что НАДH+H + переносится гидрид-анион, который будет отдаваться МФК 1, а потом МФК 3 и 4, создавая необходимый пул электронов. К слову, вновь о роли аминокислот в организме человека: убихинон синтезируется из аминокислот тирозина, фенилаланина и мевалоновой кислоты (субстратом для синтеза мевалоновой кислоты служит ацетил-КоА).

VII стадия — гидратация фумарата до малата

Полученная ковалентная связь между атомами углерода фумарата будет подвергаться гидратации до малата (L-малата, яблочной кислоты) при действии гомотетрамерного фермента фумаратгидратазы или фумаразы (рисунок 20). Фумараза стереоспецифична к транс-изомерам, а не цис-изомерам.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 20. Реакция превращения фумарата в малат.

В отличие от других ферментов цикла, имеющих митохондриальную и цитоплазматическую изоформы, которые кодируются отдельными генами, обе изоформы фумаразы закодированы в одном и том же ядерном гене — FUM1 — и транслируются с одного и того же транскрипта [17] путем альтернативного сплайсинга. Фумараза принадлежит ферментам двух классов. Первый класс обнаружен у прокариот, и это термолабильный железозависимый фермент. Второй класс обнаружен у млекопитающих, дрожжей и коринебактерий, где он уже является термостабильным железонезависимым ферментом [18,19].

VIII стадия — окисление малата до оксалоацетата

Последняя стадия ЦТК (рисунок 21).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Реакция сопровождается действием уже привычной НАД-зависимой дегидрогеназы — L-малатдегидрогеназы. Митохондриальная малатдегидрогеназа эукариот функционирует в виде гомодимера, субъединицы которого закодированы в митохондриальном гене MDH2 [20].

ЭНЕРГЕТИЧЕСКАЯ РОЛЬ ЦТК

Освобождающаяся в результате окисления одной молекулы ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. В ходе ЦТК синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что эквивалентно одной молекуле АТФ при действии фермента нуклеозиддифосфаткиназы. Полученные НАДH+H + понесут гидрид-анионы для работы АТФ-синтазы путем их передачи через 1, 3 и 4 МФК на внутренней мембране митохондрий (кристы).

Энергетический выход одного ЦТК на основании энергии Гиббса:

— 3 НАДH+H + = 9 АТФ
— 1 ФАДН2 = 2 АТФ
— 1 ГТФ = 1 АТФ

Однако глицеролфосфатная челночная система переноса НАДH+H + в матрикс митохондрий из цитоплазмы идёт в конечном счёте с потерей АТФ. Данный механизм будет рассмотрен ниже, но в таком случае при расщеплении одной молекулы глюкозы будет получаться около 25 АТФ.

В энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробное дыхание.

Таблица 1. Образование макроэргических фосфатных связей в ходе гликолиза, ЦТК и аэробного дыхания.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Из вышесказанного следует, что основная роль ЦТК заключается в поставке 4 гидрид-анионов (или 8 электронов — 6 на НАДH и 2 на ФАДH2) в ЦПЭ. Кроме того, в самом цикле образуется одна молекула ГТФ.

РОЛЬ ЦТК В МЕТАБОЛИЗМЕ

ЦТК играет важную роль в процессе анаболизма (рисунок 22): из α-кетоглутарата синтезируется глутамат, а из него глутамин, аргинин, пролин, в свою очередь, из оксалоацетата синтезируется аспартат, который при реакции аминирования образует аспарагин. Сукцинил-КоА как предшественник δ-аминолевулиновой кислоты при его конденсации с глицином будет участвовать в синтезе порфиринов у животных или хлорофилла у растений. Из оксалоацетата в процессе глюконеогенеза будет получена глюкоза.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 22. Значение цикла трикарбоновых кислот в анаболизме.

В процессе катаболизма (рисунок 23) на I этапе крупные молекулы (полимеры) расщепляются до простых компонентов (мономеров): углеводы превращаются в глюкозу, жиры в ВЖК и глицерол, белки в аминокислоты. На II этапе полученные мономеры внутриклеточно специфически расщепляются до одного и того же метаболита — пирувата. Далее пируват (а также некоторые аминокислоты в процессе дезаминирования и ВЖК в процессе β-окисления) окисляется до ацетил-КоА. III этап представляет собой ЦТК и ЦПЭ (общий путь катаболизма), где образованный ацетил-КоА окончательно распадается до CO2 в митохондриях клетки. То есть 2 атома углерода в составе ацетил-КоА входят в ЦТК (I стадия) и 2 атома углерода в составе CO2 покидают его (III и IV стадии).

Также некоторые аминокислоты могут превращаться в субстраты стадий ЦТК: аргинин, гистидин и глутамат в α-кетоглутарат, а фенилаланин и тирозин в фумарат.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 23. Значение цикла трикарбоновых кислот в катаболизме.

Существует связь между ЦТК и циклом мочевины. Такое пересечение названо «бициклом Кребса» (рисунок 24). Непосредственный путь, связывающий ЦТК и цикл мочевины, называется аспартат-аргининосукцинатный шунт: в нем утилизируются аминогруппы. Фумарат, образующийся в аргининосукцинатной реакции в межмембранном пространстве, является субстратом ЦТК. При этом фумарат либо в цикле мочевины, либо при синтезе пуринов может быть превращен в малат, который будет транспортирован в матрикс через малат-аспартатный переносчик для участия в ЦТК (рисунок 25).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 24. Схема взаимодействия цикла трикарбоновых кислот и цикла мочевины (цикл Кребса-Гензелейта).

Ключевым путём транспорта НАДH+H + из цитоплазмы через внутреннюю мембрану митохондрии в матрикс являются митохондриальные челноки: малат-аспартатная и глицеролфосфатная челночные системы.

Малат-аспартатная челночная система осуществляет перенос НАДH+H + из межмембранного пространства в митохондриальный матрикс и действует в митохондриях печени, почек и сердца. НАДH+H + передает гидрид-анион на оксалоацетат, и образуется малат, который переносится через внутреннюю мембрану митохондрии малат-α-кетоглутаратной транспортной системой. В ЦТК малат превращается в оксалоацетат при действии митохондриальной малатдегидрогеназы. Оксалоацетат сам по себе не может вернуться обратно в межмембранное пространство, но может подвергаться действию трансаминазы и превращаться в аспартат, который переносится в межмембранное пространство глутамат-аспартатной транспортной системой. Там аспартат снова переходит в оксалоацетат, который вновь запускает челночную систему.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 25. Схема малат-аспартатной челночной системы

Цитоплазматическая глицерол-3-фосфат-дегидрогеназа полностью находится в цитоплазме и не проникает в мембрану митохондрии. Митохондриальная глицерол-3-фосфат-дегидрогеназа располагается на внешней стороне внутренней мембраны митохондрии и именно она окисляет глицерол-3-фосфат до ФАДH2, а образующиеся в ходе такой окислительно-восстановительной реакции H + далее переходят на убихинон ЦПЭ. В результате работы глицеролфосфатной челночной системы на 1 НАДH+H + будет приходиться только 1,5 АТФ.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Следовательно, ЦТК — это амфиболический цикл. С одной стороны, присутствуют выраженные катаболические процессы, но вместе с тем промежуточные продукты ЦТК начинают новые биосинтетические пути, которые приводят к снижению их концентрации. Такое истощение пула промежуточных продуктов должно пополняться путем анаплеротических реакций.

РЕГУЛЯЦИЯ ЦТК

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 27. Естественная регуляция активности ферментов цикла трикарбоновых кислот по принципу обратной связи.

Скорость реакций ЦТК зависит от обеспеченности клеток энергией АТФ. Активность зависит от соотношения [АТФ]/[АДФ] и [НАДH+H + ]/[НАД + ] (рисунок 27). То есть общий путь катаболизма активируется при низком энергетическом потенциале клетки или ингибируется при высоком. Соотношение [АТФ]/[АДФ] характеризует энергетический заряд клетки (ЭЗК) по Аткинсу, который выражается формулой:

ЭЗК может меняться от 0 до 1. Метаболические пути, приводящие к синтезу АТФ, ингибируются высоким значением ЭЗК, а ведущие к затрате АТФ, активируются высоким значением ЭЗК.

Трансмембранный белок термогенин синтезируется в клетках бурой жировой ткани, но гомологичные белки присутствуют и в других тканях. При охлаждении организма эти клетки получают сигнал от симпатической нервной системы, и в них активируется процесс липолиза, что приводит к получению НАДН+Н + и ФАДН2. Далее активируется ЦПЭ и возрастает электрохимический градиент. Но в мембранах митохондрий клеток бурого жира много темогенина, поэтому большая часть энергии Н + рассеивается в виде тепла, что и помогает поддерживать температуру тела при охлаждении.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 28. Схематическое изображение F1FО-АТФсинтазы и ее электронный снимок. F1 — внемембранный (матриксный) комплекс АТФсинтазы. FО — трансмембранный домен.

Особенно выражено действие парацетамола, а точнее метаболита его действующего вещества — ацетаминофена, на митохондрии гепатоцитов [22]. При поражении свободными радикалами этого вещества митохондриальных мембран, образуемые продукты липопероксидации и свободные ионы кальция нарушают трансмембранный потенциал. Далее при нарушении целостности митохондрий происходит провоспалительный сигналинг цитокинами — IL-1β, ФНО-α, а также простагландина Е2 и тромбоксана В2, что в конечном итоге приводит к деструкции ДНК [23].

Особое место в регуляции ЦТК занимает ответная регуляция пируватдегидрогеназного комплекса. Его активность как фермента зависит от доступности пирувата, аллостерического эффекта и ковалентной модификации. Ковалентная модификация пируватдегидрогеназного комплекса осуществляется путем фосфорилирования и дефосфорилирования по остаткам серина при помощи вспомогательных белков протеинкиназы и фосфопротеинфосфатазы. Протеинкиназа фосфорилирует пируватдегидрогеназный комплекс и инактивирует его, а фосфопротеинфосфатаза дефосфорилирует, превращая его в активную форму. Активность вспомогательных белков может изменяться аллостерически (рисунок 29).

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

При накоплении продуктов пируватдегидрогеназной реакции тормозится превращение пирувата в ацетил-КоА, т. к. ацетил-КоА и НАДН+Н + являются аллостерическими активаторами протеинкиназы. Такая ситуация создается в печени при голодании: из жировой ткани в цикл трикарбоновых кислот поступают ВЖК, из которых синтезируется ацетил-КоА, а пируват при этом не окисляется и используется для синтеза глюкозы.

Помимо вышесказанного нельзя не упомянуть значение многочисленных сигнальных белков в регуляции МФК (рисунок 30). Примечательна роль комплексов ТОМ (транслоказа внешней мембраны) на внешней мембране и TIM (транслоказа внутренней мембраны) на внутренней в переносе белков из цитоплазмы в митохондрию, т. к. уже было сказано, что некоторые изоформы ферментов ЦТК синтезируются ядерной, а не митохондриальной ДНК, и заведомо должны быть не только транспортированы между двумя органеллами, но и специфически внедрены через мембрану митохондрии.

Митохондриальные белки после трансляции переносятся к внешней мембране, где их N-концевая сигнальная последовательность сначала взаимодействует с компонентом ТОМ-комплекса и укрепляется белком TOM-22, который содержит кислые цитозольные домены, взаимодействующие с остатками основных аминокислот в составе N-концевой сигнальной последовательности. После переноса через канал в межмембранном пространстве эта основная часть белка-субстрата за счет сил электростатического притяжения входит в контакт с кислыми доменами белков TOM-22 и TIM-23, но близость друг к другу TOM-22 и TIM-23 обеспечивает прохождение белка-субстрата между этими комплексами, минуя выход в межмембранное пространство.

Непосредственное участие в митохондриальном сигналинге принимает AAA (ATPases associated with various cellular activities — АТФ-синтазы, связанные с различными клеточными активностями) — домен, состоящий из α и β субъединиц мембранно-связанного или FO комплекса АТФ-синтазы, который несет так называемый «Walker motifs» [24] — высоко консервативные трехмерные структуры белка, которые регулируют функциональную деятельность FOF1-АТФ-синтазы. При таргетинге митохондриальные белки находятся в несвернутом состоянии и подготавливаются к транслокации за счет связи с белком HSP70, находящемся в цитозоле. Белки семейства HSP экспрессируются при повышении температуры и помогают транспорту других белков, стабилизируя их в частично свернутом состоянии.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Иными словами, ЦТК и ЦПЭ позволяют митохондрии выполнять ее энергетическую роль — синтез АТФ. Но накопилось много данных, которые говорят об участии митохондрий в регуляции различных сигнальных путей в клетке. К тому же, митохондрии являются одним из основных источников внутриклеточных АФК, и в них содержится большое количество ферментов, катализирующих окислительно-восстановительные реакции. Субстраты этих ферментов окисляются кислородом и превращаются в супероксидные радикалы — предшественники прочих АФК, которые в свою очередь участвуют в регуляции как путем прямого окисления функциональных биомолекул, так и путем активации сигнальных каскадов, например, антиоксидантных систем клетки [26,27].

Основные пути регуляции экспрессии генов, кодирующих ферменты ЦТК

Экспрессия генов (таблица 2), кодирующих ферменты (рисунок 31), зависит от функционирования следующих регуляторных систем:

У клеток с дисфункциями митохондрий экспрессия генов ЦТК зависит от белков семейства Rtg. Белок Rtg 3, содержащий bHLH-домен, образует комплекс с белком Rtg 1 в ядре. Этот комплекс участвует в ретроградном ответе клетки, то есть в изменении экспрессии ядерных генов в ответ на нарушение состояния митохондрий, в частности ЦПЭ [28]. Было показано, что Rtg-путь активирует экспрессию генов ферментов первых трех стадий ЦТК [29].

Таблица 2. Регуляция экспрессии генов цикла трикарбоновых кислот.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

Рисунок 31. Структура ферментов цикла трикарбоновых кислот и их обобщённая роль [33].

КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ЦТК И ВОЗМОЖНОСТИ ЕГО ФАРМАКОЛОГИЧЕСКОГО КОНТРОЛЯ

Применение сукцината (янтарной кислоты) и витамина B2 в терапии

Нарушение синтеза АТФ, как правило, связано с дезорганизацией дыхательных МФК на фоне патологического состояния (гипоксии). К МФК 1 относят активацию НАД-зависимого окисления субстратов ЦТК, а к МФК 2 активацию сукцинатоксидазного пути окисления (VI стадия ЦТК) как самого энергоэффективного [35]. Применение препаратов янтарной кислоты является спорной практикой. При этом этилметилгидроксипиридина сукцинат (Мексидол, Мексикор, Нейрокс и т. д.) является одним из самых популярных препаратов на догоспитальном, госпитальном и амбулаторном этапах в России [36] и включен в Перечень жизненно необходимых и важнейших лекарственных препаратов [37], но не одобрен для медицинского применения в США и Европе, а также не входит в систему классификации анатомо-терапевтических и химических веществ (Anatomical Therapeutic Chemical Classification System), утвержденную ВОЗ.

В отечественной медицине препарат получил широкое применение при лечении ишемического инсульта [38,39]. Главным доказательным мотивом выступает принцип Ле Шателье-Брауна, т. е. если в ЦТК извне увеличивать концентрацию его субстрата, то в итоге должна получиться вполне естественная стимуляция реакций, не противоречащая законам химии. Но подтверждается ли это эмпирически? Пока нет. Так, исследователи считают увеличение концентрации сукцината не только универсальным диагностическим критерием ишемии миокарда, но и дополнительным фактором повреждения при постинфарктной реперфузии наряду с АФК (рисунок 32) [40].

Накопление сукцината вследствие мутаций по генам сукцинатдегидрогеназы связывают с ингибированием ряда α-кетоглутарат-зависимых гистон-деметилаз, в частности Jhd1. Предполагается, что сукцинат может играть роль в злокачественной трансформации клеток [41]. В итоге терапия в подобных случаях должна быть направлена на ингибирование накопления или чрезмерного окисления сукцината. На сегодняшний день есть данные о том, что вещество диметилмалонат обладает кардиопротективным свойством на экспериментальных моделях за счет воздействия на процесс окисления сукцината [42]. Правда, такие данные должны подтверждаться надлежащими научными исследованиями с участием людей, т. к. клиническое значение такого подхода пока тоже не выяснено или отсутствует вовсе.

Что такое щук в биохимии. Смотреть фото Что такое щук в биохимии. Смотреть картинку Что такое щук в биохимии. Картинка про Что такое щук в биохимии. Фото Что такое щук в биохимии

В любом случае нужно понимать, что есть биохимия in silico\in vitro\in vivo, но в противовес есть парадигма доказательной медицины и клиническое значение для практики врача.

Касаемо рибофлавина, во-первых, выше было сказано, что витамин В2 является предшественником кофермента ФАД в организме человека. Поэтому будет закономерно рассматривать влияние рибофлавина с позиции метаболизма ФАД. Во-вторых, окисление пирувата, α-кетоглутарата и сукцината идет под действием дегидрогеназных комплексов, обязательным компонентом которых является ФАД. В третьих, ФАД обладает высоким окислительно-восстановительным потенциалом (больше, чем НАД + при значении Е° –0,32 против –0,12 у ФАД). Опираясь на предыдущие доводы касательно нежелательного накопления сукцината, есть вероятность его опосредованной утилизации путем потенцирования окисления до фумарата. Но есть загвоздка: реакция превращения сукцината в фумарат обратима, а сукцинатдегидрогеназный комплекс, как и любой фермент, может ускорить как прямую, так и обратную реакции. В таком случае направление реакции будет диктоваться концентрацией субстрата или продукта, но контролировать и тем более влиять на это в биосистеме человека пока непосильная задача. И может быть не нужная.

Все же ФАД (и НАД + ) имеют некоторое диагностическое значение, например, как мишени при флуоресценции (хемилюминесценции) слизистых ротовой полости при обследовании онкологических больных [43,44]. Дело в том, что восстановленные формы этих коферментов могут поглощать спектр излучения в 340 нм, а окисленные нет. В итоге есть возможность качественно регистрировать интенсивность окисления, особенно при усилении хемилюминесценции от АФК [45].

Вдобавок необходимо обозначить, что дефицит рибофлавина не так распространен, а последствия его недостатка не настолько опасны, чтобы употреблять его в виде препарата. Ведь фактическую суточную норму жители экономически благополучных стран получают с пищей, и вопрос скорее стоит в сбалансированности питания.

Соответственно трендом и перспективой на сегодня является не использование компонентов ЦТК для моделирования реакций при метаболических патологиях любого генеза или применение их в виде препаратов для лечения, а скорее их прикладное исследование в клинической лабораторной диагностике. Например, жидкостная хроматография с масс-спектрометрией для определения онкометаболита D-2-гидроксиглутарата, о котором будет сказано ниже, или газовая хроматография с масс-спектрометрией для определения концентрации сукцината и фумарата.

Онкология, митохондриальные заболевания и иммунитет

Ферменты ЦТК кодируются конститутивными генами (housekeeping genes). Звучит скучно, если это не такие заболевания, как лейомиома или феохромоцитома, возникающие из-за дефекта в гене, кодирующем сукцинатдегидрогеназный комплекс (SDHB, SDHC, SDHD [46]), а также синдромы Лея, Кернса-Сейра, MELAS, MERRF [47]. Некоторые мутации в гене FUM1, кодирующем фумаразу, приводят к снижению или потере активности фермента и как следствие образованию опухолей кожи, матки, нейробластом и/или рака почек (например, лейомиоматоз и хромофильная карцинома почек второго типа) [48]. Для митохондриальных заболеваний характерна гетероплазмия, т. е. в клетке могут находиться как мутантные мтДНК, так и ДНК дикого типа [49]. Также появились данные, что мтДНК может наследоваться потомками от отца [50].

Давно известно, что пусковым механизмом онкологических процессов является собственное снижение реакционной способности ЦТК при нарушениях в ЦПЭ ввиду деградации ферментов, а также концентрирование онкогенных метаболитов [51]. Например, при мутациях в генах IDH1 и IDH2 изоцитратдегидрогеназы образуется субстрат D-2-гидроксиглутарат [52]. В ответ на накопление данного субстрата экспрессируется белок HIF-1α (Hypoxia-inducible factor 1-alpha — фактор, индуцируемый гипоксией), являющийся онкомаркером, т. к. способствует ангиогенезу за счет взаимодействия с проангиогенным фактором VEGF (Vascular Endothelial Growth Factor — фактор роста эндотелия сосудов) [53].

Гипоксию не стоит рассматривать только с позиции физического снижения концентрации кислорода ввиду нарушения его поступления в кровь или транспорта в ткани. Гипоксия также может быть сигналом нарушения тканевого дыхания (функции митохондрии), неотъемлемой частью которого является ЦТК, и об этом было сказано в самом начале. Особую ее роль может подтверждать тот факт, что нейтрофилы в условиях недостатка кислорода живут значительно дольше, чем в нормальных. Такая живучесть определяется увеличением количества транскрипционных факторов HIF-1α, которые приводят к экспрессии Mcl-1 (Induced myeloid leukemia cell differentiation protein — индуцированный белок дифференцировки клеток миелоидного лейкоза) — главного антиапоптотического фактора нейтрофилов из семейства Bcl-2 [54,55].

Не исключают и эффект Варбурга, который сопряжен с выключением митохондриальных генов и сопутствует онкологическим процессам [56]. Данный эффект основан на активации интенсивного гликолиза с образованием лактата даже при избытке кислорода, что является облигатным признаком пролиферации опухолевых клеток [57,58]. При этом некоторые стадии ЦТК обращаются, чтобы синтезировать ацетил-КоА, который нужен для синтеза липидов. Также HIF-1α действует как фактор транскрипции, усиливающий синтез гликолитических ферментов, киназы пируватдегидрогеназного комплекса, которая блокирует реакцию окислительного декарбоксилирования пирувата, и тем самым возрастает концентрация пирувата в цитоплазме клетки, что приводит к усилению эффекта Варбурга и метаболизированию пирувата в лактат.

В конечном итоге при накоплении D-2-гидроксиглутарата возрастает риск сопряженного острого миелоидного лейкоза или глиомы [59,60], при сопутствующем нарушении деметилирования ДНК с участием эпигеномного фактора TET2 (Ten-eleven Translation\Tet methylcytosine dioxygenase 2 — тетраметилцитозиндиоксигеназа 2) [61]. Уменьшение количества HIF-1α происходит при действии белка VHL (Von Hippel–Lindau tumor suppressor protein — белок-онкосупрессор), но не в условиях гипоксии (62).

Синдром Лея — генетически детерминированное заболевание с поражением серого вещества головного и спинного мозга, чаще проявляется в раннем детском возрасте [63]. МФК транслируются на митохондриальной ДНК, а мутации при синдроме Лея приводят к дисфункции ЦПЭ (особенно МФК 1, 2 и 4), нарушению синтеза пируватдегидрогеназного комплекса с накоплением в дальнейшем пирувата и лактата в тканях [64,65]. Накапливаемый пируват не поступает в митохондрии, и образующийся в чрезмерных концентрациях лактат оказывает токсичное действие на структуру нейрона.

Синдром Кернса-Сейра или митохондриальная миопатия имеет характерный симптомокомплекс: прогрессирующая наружная офтальмоплегия, пигментная ретинопатия, атриовентрикулярная блокада. Наиболее часто патология выражена со стороны глаз в виде птоза. При этом заболевании также наблюдаются нарушения в работе эндокринной системы. Они включают гипогонадизм, сахарный диабет, гипопаратиреоз, дефицит соматотропина [66]. Синдром проявляется при делеции митохондриальной ДНК [67], что приводит к гетероплазмии [68], и уже распределение мутантных ДНК зависит от локализации процесса в определенной клетке, ткани, органе [69]. Мутации, как правило, приводят к выключению МФК ЦПЭ, что создает уменьшение соотношения [АТФ]/[АДФ], аллостерической деградации реакционной способности ЦТК и накоплению пирувата и лактата [70].

Синдром MELAS (англ. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes — митохондриальная энцефаломиопатия, лактатацидоз, инсультоподобные эпизоды) — нейродегенеративное заболевание, диагностически значимыми жалобами которого являются мигрени, судороги, снижение слуха, непереносимость физических нагрузок и повышение концентрации лактата в крови [71].

MERRF (англ. Myoclonic Epilepsy with Ragged Red Fibers) — заболевание, характеризующиеся миоклонической эпилепсией и феноменом RRF (морфологический маркер в биоптате миофибрилл с рваными красными краями). Патогенез данного синдрома является похожим на вышеизложенные митохондриальные заболевания [72].

Иммунная система и ее вовлеченность при нарушениях синтеза ферментов ЦТК понятна. Очевидно, что клетки, потерявшие функциональность своих митохондрий, заведомо являются чужеродными и провоцирующими иммунный ответ. А что можно сказать о прямом воздействии на ЦТК самих иммунокомпетентных клеток?

Существует мнение, что гамма-интерферон не только активирует макрофаги и NK-клетки для регуляции аутоиммунных процессов, но и потенцирует аэробный гликолиз, перепрофилирует митохондрии, усиливает сигналинг окислительного фосфорилирования в них, но это лишь опосредованное влияние на ЦТК как на реакционный компонент митохондрий [73]. В международной практике иммуностимуляторами называют и сами цитокины, используемые как фармакологические средства, которые одобрило FDA. Это сигнальные молекулы иммунитета, и они взаимодействуют с мембранными рецепторами клеток, но не митохондрий.

Тот же интерферон не взаимодействует напрямую с рецепторами митохондрий. Внутриклеточные АФК, сопровождающие воспаление (хотя определенные концентрации АФК стабильны и не являются токсичными, например, перекись водорода присутствует в клетке в постоянной концентрации в пределах 1 нМ [74]), формируются за счет связи интерферона с цитоплазматическим рецептором врожденного иммунитета NLRX1 и адаптерного белка MAVS на внешней мембране митохондрий. Тем самым MAVS, при наличии митохондриальных АФК, может участвовать в апоптозе зараженных вирусами клеток или нетозе нейтрофилов [75,76,77]. Но нет утверждения, что прием определенного интерферона или его индуктора в виде препарата может достоверно повлиять на энергетический метаболизм пораженных вирусом или иммунокомпетентных клеток, тем самым усиливая их активность. На сегодня не продемонстрирована такая эффективность в рамках двойных слепых плацебо-контролируемых исследований, поэтому использование иммуностимуляторов считается бесполезным. Перспектива исследований скорее затрагивает влияние на сигналинг в ЦПЭ, так как ЦТК является последовательностью реакций небелковых компонентов, находящихся в зависимости от функционирования огромного комплекса белкового сигналинга митохондрий. Однако исследователями показано возрастание L-2-гидроксиглутарата (при все той же мутации в генах изоцитратдегидрогеназы) и его производных в ответ на гипоксию и экспрессию HIF-1α у CD8+ лимфоцитов [78].

Таким образом, метаболиты, выявляющиеся при нарушении работы ЦТК и митохондрий, в целом, могут являться как токсичными (лактат, АФК), так и онкогенными (VEGF, D-2-гидроксиглутарат, HIF-1α). Но нет оснований полагать, что ЦТК можно контролировать и регулировать клинико-фармакологическими методами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *