Что такое шунтирующий резистор

Что такое шунтирующий резистор

В электронике и электротехнике часто можно услышать слово «шунт», «шунтирование», «прошунтировать». Слово «шунт» к нам пришло с буржуйского языка: shunt — в дословном переводе «ответвление», «перевод на запасной путь». Следовательно, шунт в электронике — это что-то такое, что «примыкает» к электрической цепи и «переводит» электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома для участка электрической цепи? Вот, собственно и он:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря «константа». Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Значит, исходя из формулы

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное — просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

На самом же деле, как бы это странно ни звучало — это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.

Работа шунта на практическом примере

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Сзади можно прочитать его маркировку:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 — это класс точности. То есть сколько мы замерили — это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс 😉

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Вспоминаем, что показывал наш блок питания?

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится » голь на выдумку хитра» 😉

Что такое шунт в электронике и видео про это:

Где купить шунт

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке: Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Источник

Назначение и использование токовых шунтов

Шунтом называется простой преобразователь тока, выполненный в виде резистора с четырьмя зажимами, два из них входные или токовые и два выходные или потенциальные. К этим частям изделия обычно подключают прибор измерения.

Используются токовые шунты для того, чтобы увеличить пределы измерения, при этом основная его часть проходит непосредственно через шунт, а другая через всю систему. Изделия отличаются небольшим сопротивлением, поэтому работают в цепях постоянного тока, где подключены электрические измерительные устройства.

В электротехнических сферах шунтом принято считать немного другое приспособление. Используется оно для замера тока, причем через него устремляется все напряжение системы. Шунт выполняется в виде небольшого элемента, напоминающего сопротивление. Его значение выбирается из такого расчета, чтобы величина падения напряжения была в несколько раз меньше основного значения, которое действует в системе. В такой ситуации наличие шунта не оказывает влияния на размер тока, принося лишь небольшое искажение. Только по закону Ома, величина падения напряжения будет пропорциональна проходящему току, поэтому он может измеряться при помощи вольтметра либо осциллографа.

Все шунты имеют свой мощностной коэффициент. При увеличении протекающего через него напряжения, изменяется сопротивление.

Шунты бывают индивидуальными и используются в калиброванных приборах, рассчитанных на определенный ток и перепады напряжения. Изделия могут применяться для работы с различными устройствами, которые имеют сопротивление, не выходящее за пределы измерений.

В переводе с иностранного языка шунт – ответвление, электропроводник, подключаемый параллельно к электроцепи для отвода части тока. Его используют, когда нельзя пропускать все напряжение через определенный участок цепи.

В общем, суть использования приспособления в том, чтобы осуществлять обход чего-либо. К примеру, в медицине при помощи шунта отделяют закупоренную часть вены, а в электротехнике в ее роли выступает резистор.

Источник

Измерительные шунты и добавочные резисторы

Измерительные ш унты

К потенциальным зажимам шунта обычно присоединяют измерительный механизм измерительного прибора.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Ш унты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую — через измерительный механизм. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Рис. 1. Схема соединения измерительного механизма с шунтом

На рис. 1 приведена схема включения магнитоэлектрического механизма измерительного прибора с шунтом R ш. Ток I и протекающий через измерительный механизм, связан с измеряемым током I зависимостью

I и = I (R ш / R ш + R и),

где R и — сопротивление измерительного механизма.

где n = I / I и — коэффициент шунтирования.

Шунты изготовляют из манганина. Если шунт рассчитан на небольшой ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.

На рис. 2 показан наружный шунт на 2000 А Он имеет массивные наконечники из меди, которые служат для отвода тепла от манганиновых пластин, впаянных между ними. Зажимы шунта А и Б — токовые.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Рис 2 Наружный шунт

Измерительный механизм присоединяют к потенциальным зажимам В и Г, между которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резисторНаружные шунты обычно выполняются калиброванными, т е. рассчитываются на определенные токи и падения напряжения. Калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Для переносных магнитоэлектрических приборов на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения.

На рис. 3, а, б показаны схемы многопредельных шунтов. Многопредельный шунт состоит из нескольких резисторов, которые можно переключать в зависимости от предела измерения рычажным переключателем (рис. 3, а) или путем переноса провода с одного зажима на другой (рис. 3, б).

При работе шунтов с измерительными приборами на переменном токе возникает дополнительная погрешность от изменения частоты, так как сопротивления шунта и измерительного механизма поразному зависят от частоты.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Рис.3. Схемы многопредельных измерительных шунтов: a — шунта с рычажным переключателем, б — шунта с отдельными выводами

Шунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Добавочные резисторы являются измерительными преобразователями напряжения в ток, а на значение тока непосредственно реагируют измерительные механизмы вольтметров.

Добавочные резисторы служат для расширения пределов измерения по напряжению вольтметров различных систем и других приборов, имеющих параллельные цепи, подключаемые к источнику напряжения. Сюда относятся, например, ваттметры, счетчики энергии, фазометры и т. д.

Добавочный резистор включают последовательно с измерительным механизмом (рис. 4). Ток I и в цепи, состоящий из измерительного механизма с сопротивлением Rи и добавочного резистора с сопротивлением Rд, составит:

где U — измеряемое напряжение.

Если вольтметр имеет предел измерения Uном и сопротивление измерительного механизма Rи и при помощи добавочного резистора Rд надо расширить предел измерения в n раз, то, учитывая постоянство тока I и, протекающего через измерительный механизм вольтметра, можно записать:

U ном / R и = n U ном / (Rи + Rд)

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Рис 4. Схема соединения измерительного механизма с добавочным резистором

Добавочные резисторы изготовляются обычно из изолированной манганиновой проволоки, намотанной на пластины или каркасы из изоляционного материала. Они применяются в цепях постоянного и переменного тока.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резисторДобавочные резисторы, предназначенные для работы на переменном токе, имеют бифилярную обмотку для получения безреактивного сопротивления.

При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность.

В переносных приборах добавочные резисторы изготовляются секционными на несколько пределов измерения (рис. 5).

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Рис. 5. Схема многопредельного вольтметра

Добавочные резисторы бывают внутренние и наружные. Последние выполняются в виде отдельных блоков и подразделяются на индивидуальные и калиброванные. Индивидуальный резистор применяется только с тем прибором, который с ним градуировался. Калиброванный резистор может применяться с любым прибором, номинальный ток которого равен номинальному току добавочного резистора.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Калиброванные добавочные резисторы делятся на классы точности 0,01; 0,02; 0,05; 0,1; 0,2; 0,5 и 1,0. Они выполняются на номинальные токи от 0,5 до 30 мА.

Добавочные резисторы применяются для преобразования напряжений до 30 кВ.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Компоненты для измерения тока

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резисторИзмерение тока используется для контроля над разными параметрами, один из которых — мощность на нагрузке. Существует немало считывающих элементов для измерения тока через нагрузку. Их выбор диктуется потребностями каждого конкретного устройства, а также величиной измеряемого тока. Мы обсудим в этой статье три разных типа считывающих компонентов для измерения тока.

1. Шунтовые резисторы
Шунты и шунтовые резисторы — про­стейший вариант токочувствительных элементов. Необходимо лишь помнить о температурном коэффициенте сопро­тивления (ТКС) резистора и избегать его нагрева. Напомним эмпирическое правило выбора токочувствительного резистора: его максимально допусти­мая мощность должна не менее чем в два раза превышать рабочую мощность рассеивания.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резисторИзменение температуры резистора в зависимости от величины протекающего через него тока прямо пропорциональ­но отношению номинальной мощности к рассеиваемой.

При выборе токочувствительно­го резистора необходимо учитывать тепловое сопротивление его кор­пуса. Этот параметр, представляющий собой тепловое сопротивление между резистором и его внешней поверхно­стью, является основным показателем, который определяет повышение тем­пературы резистора. В таблице пере­числены тепловые сопротивления стандартных корпусов для поверхност­ного монтажа.

Ширина проводника
При проектировании печатной платы необходимо, чтобы ее медные проводники выдержали максимальный ток, необходимый для устройства.
Для каж­дого устройства необходимо найти разумный компромисс между толщи­ной, шириной проводников и стоимо­стью.

Топология
Длина проводников между токо­измерительным резистором и измери­тельной схемой должна быть как можно меньше, чтобы уменьшить не только сопротивление проводника, но и его паразитные емкость и индуктивность, которые могут внести погрешность в показания быстроменяющегося тока.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резисторПодключение сигнальных проводни­ков к токочувствительному резистору
Рекомендуется использовать токо­чувствительный резистор с четырьмя
выводами. Если по какой-либо при­чине применяются резисторы с двумя выводами, то сигнальная шина должна находиться под токочувствительным резистором в том месте, где он соединя­ется с контактной площадкой печатной платы.

Во многих случаях ширина токо­чувствительных резисторов меньше ширины токонесущих шин. Проводники соединяются с этими шинами под углом 45°, чтобы обеспечить равномерное про­текание тока.

Магнитные помехи
Величина генерируемого проводни­ком магнитного поля прямо пропорцио­нальна току через проводник и обратно пропорциональна расстоянию до точки измерения. Необходимо помнить, что сигналь­ные проводники с высоким импе­дансом не должны располагаться параллельно проводникам с большим током. Следует избегать пересечения проводников с большими токами. Если это невозможно по какой-то причине, рекомендуется располагать эти про­водники перпендикулярно друг другу и пересекать тот слой, который наибо­лее удален от сигнального проводника, чтобы ограничить влияние помех.

2. Схемы с активными сопротивлениями

Рассмотрим проектирование токо­чувствительных схем с активными сопротивлениями (direct current resistance, DCR), которые не вызывают дополнительных потерь на измери­тельной цепочке.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

Как правило, схемы с активными сопротивлениями используются в низ­ковольтных устройствах, в которых падение напряжения на токочувстви­тельном резисторе составляет значи­тельную долю от величины напряжения питания, подаваемого на нагрузку.
Схема измерения тока с активным сопротивлением представляет собой альтернативу токочувствительным резисторам. В ней используется пара­зитное сопротивление индуктора для измерения тока нагрузки. Эта схема дистанционно измеряет ток через дроссель импульсной цепи регулято­ра. Благодаря отсутствию компонентов, установленных последовательно регулятору на нагрузке, схема работа­ет без потерь.
У правильно согласованной DCR-схемы эффективный импеданс со стороны АЦП равен сопротивлению индуктора. На рисунке представлена простая схема с активным сопротив­лением для измерения тока нагрузки понижающего импульсного преобразо­вателя.

Проектирование DCR-схемы, не оснащенной функцией регулировки, увеличивает погрешность измерений до 35%, что связано с разбросом значений индуктивности и емкости в этой схеме. В некоторых случаях погрешность измерений может увеличиваться до 50%. Но использование простой выравни­вающей схемы с энергонезависимыми цифровыми потенциометрами (digital potentiometers, DCP) существенно повы­шает точность измерения тока.

Итак, DCR-схемы не вносят потерь и занимают мало места на печатной плате. Поскольку эти решения требуют настройки для правильного функционирования, необходимы дополнительные меры при изготовлении устройств на их основе. Большие допуски на отклонения значений реактивных компонентов могут привести к большому разбросу значений между эффективными сопротивлениями схем. Большие температурные коэффициенты индукторов и конденсаторов увеличивают погрешность схемы. В целом, архитектуру схемы с активным сопротивлением можно считать хорошей для измерения больших токов.

3. Датчики Холла
Рассмотрим датчики Холла. Как правило, эти датчики, предназна­ченные для сильноточных устройств, определяют ток через проводник путем измерения индукции его маг­нитного поля. Поскольку измерение тока осуществляется дистанционно, считается, что датчики Холла работают без потерь. Эти устройства предназначены для систем с током выше 200 А, т.к. мощность, рассеиваемая токочув­ствительным резистором, достаточно велика.

Что такое шунтирующий резистор. Смотреть фото Что такое шунтирующий резистор. Смотреть картинку Что такое шунтирующий резистор. Картинка про Что такое шунтирующий резистор. Фото Что такое шунтирующий резистор

На рисунке иллюстрируется базовая концепция метода измерения тока на основе эффекта Холла. В этой схеме ток через проводник опреде­ляется путем измерения индукции генерируемого им магнитного поля В. Величина поля прямо пропорциональ­на протекающему току и определяется его направлением.
Линейные датчики Холла являются активными схемами, потребляющими ток 3-10 мА. Уровень шума этих датчиков составляет около 25 мВ, или 5 Гс. Данные устройства не годятся для устройств с малыми токами или большими расстояниями между проводником и датчиком из-за большого шума и потребляемого тока.

Условия, в которых эксплуатируются сигнальный проводник и датчик, следует учитывать при измерении слабых магнитных полей. Линейные датчики Холла измеряют суммарное магнитное поле в месте нахождения самого датчика. Проводники с током, расположенные рядом с датчиком, изменяют величину измеряемого магнитного поля, ухудшая точность показаний. Датчик также реагирует на другие внешние магнитные поля, возникающие при переключении двигателя или любого другого генерирующего энергию устройства.

Для ограничения влияния внешних магнитных полей на датчики используется магнитный экран, который окружает проводник с током. На рисунке показан пример использования металлического кожуха (клетки Фарадея), экранирующего проводник и датчик.

Недавно на рынке появились датчики Холла с интегрированным проводящим каналом, цепью компенсации и защитным экраном. Интеграция проводящего канала в датчик облегчает расчет выходного сигнала в функции тока через проводник. Однокристальное решение упрощает схему устройства и разработку приложения по измерению тока с помощью датчика Холла.

Несмотря на то, что за последнее время конструкция датчиков на эффекте Холла была усовершенствована, их точность и защита от помех увеличились, применение этой технологии ограничено сильноточными устройствами. Датчики Холла рассеивают меньшую мощность, чем шунтовые резисторы.

Шунтовые резисторы — наиболее распространенные токочувствительные элементы благодаря простоте схемного решения и его стоимости, а также точности измерений. DCR-схемы предназначены для устройств с импульсными регуляторами и малыми регулируемыми выходными напряжениями благодаря дистанционному измерению тока. Наконец, датчики Холла предназначены для сильноточных устройств, поскольку рассеиваемая ими мощность меньше, чем у решений на основе шунтовых резисторов.

У каждого из трех рассмотренных решений имеются свои преимущества и недостатки. Из-за того, что шунтовые резисторы рассеивают мощность, энергоэффективность решений на основе этих компонентов сравнительно невелика. К тому же в устройствах с низким напряжением величина падения напряжения на токочувствительном резисторе может быть соизмерима с рабочим напряжением, что недопустимо. Работа схемы с использованием активного сопротивления (DCR) зависит от согласования конденсатора и индуктора. Оба компонента имеют большие допуски и высокие температурные коэффициенты. Датчик Холла восприимчив к окружающему шуму, и его применение осложняется недостатками схемы. Несмотря на усовершенствование этой технологии, до сих пор ограничивающим фактором на пути ее применения остается точность измерений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *