Что такое цитозоль клетки
Цитозоль
Цитозоль (англ. cytosol ) или внутриклеточная жидкость, матрикс цитоплазмы, гиалоплазма — жидкость, находящаяся внутри клеток. У эукариот матрикс цитоплазмы отделен клеточными мембранами от содержимого органоидов, например, матрикса митохондрий. Содержимое клетки за исключением плазматической мембраны и ядра называют цитоплазмой.
У прокариот большинство реакций метаболизма протекают в цитозоле, и лишь малое количество — в периплазматическом пространстве. У эукариот часть метаболических путей протекают в цитозоле, а часть — внутри органоидов.
Цитозоль представляет собой смесь веществ, растворенных в воде. Концентрации ионов натрия и калия в цитозоле отличаются от таковых во внеклеточном пространстве, эти различия в концентрациях ионов играют важную роль в осморегуляции и передаче сигнала.
Ион | Концентрация в цитозоле, мМ | Концентрация в крови, мМ |
---|---|---|
Калий | 139 | 4 |
Натрий | 12 | 145 |
Хлорид ион | 4 | 116 |
Бикарбонат | 12 | 29 |
Аминокислоты (в составе белков) | 138 | 9 |
Магний | 0.8 | 1.5 |
Кальций | ПримечанияПолезноеСмотреть что такое «Цитозоль» в других словарях:Рицин — Общие Термические свойства Безопасность ЛД50 0,3 мг/кг Токсичность СДЯВ … Википедия Секреция (физиология) — У этого термина существуют и другие значения, см. Секреция. Секреция это процесс выделения химических соединений из клетки. В отличие от собственно выделения, при секреции у вещества может быть определённая функция (оно может не быть отходами… … Википедия Гликолиз — I Гликолиз (греч. glykys сладкий + lysis разрушение, распад) ферментативный процесс анаэробного негидролитического расщепления углеводов (главным образом глюкозы) в клетках человека и животных, сопровождающийся синтезом аденозинтрифосфорной… … Медицинская энциклопедия Клетка — I Клетка (cytus) основная структурно функциональная единица, определяющая строение, жизнедеятельность, развитие и размножение животных и растительных организмов за исключением вирусов; элементарная живая система, способная к обмену веществ с… … Медицинская энциклопедия Обме́н веще́ств и эне́ргии — совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу … Медицинская энциклопедия цитоплазма — ы; ж. Биол. Внеядерная часть протоплазмы животных и растительных организмов. ◁ Цитоплазменный, ая, ое. * * * цитоплазма (от цито. и плазма), внеядерная часть протоплазмы животных и растительных клеток. Состоит из гиалоплазмы, в которой… … Энциклопедический словарь Ботокс — Действующее вещество ›› Ботулинический нейротоксин типа A гемагглютинин комплекс (Clostridium botulinum toxine type A hemagglutine complex) Латинское название Botox АТХ: ›› M03AX01 Ботулинический нейротоксин типа A гемагглютинин комплекс… … Словарь медицинских препаратов Кропоз — Действующее вещество ›› Кромоглициевая кислота* (Cromoglicic acid*) Латинское название Cropoz АТХ: ›› R03BC01 Кромоглициевая кислота Фармакологическая группа: Стабилизаторы мембран тучных клеток Нозологическая классификация (МКБ 10) ›› J45 Астма… … Словарь медицинских препаратов Бактерии — Кишечная палочка (Escherichia coli) … Википедия Эндоплазматический ретикулум — (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев … Википедия Загадочный кальциевый языкАссоциативный ряд, связанный с явлением кальциевого сигналинга. авторский коллаж с использованием рисунка из журнала «Как и почему» АвторРедакторыСтатья на конкурс «Био/Мол/Текст»: В нашем организме существует элегантная сигнальная система, основанная на изменении концентраций ионов кальция. Клетки нашего тела каждый день сталкиваются с сотнями различных внешних стимулов: от гормонов, нейромедиаторов и цитокинов до температурных колебаний и механических воздействий. Все эти изменения клетки переводят на язык внутреннего общения, где кодом является концентрация ионов Ca 2+ в цитозоле. Кальциевый сигналинг — настолько широко распространенный механизм, что он управляет одновременно и сокращением мышц, и работой нейронов, и дифференциацией клеток во время эмбрионального развития. Основные проблемные вопросы, которые ставятся в этой статье: каким образом для кальциевых сигнальных путей сочетаются свойства исключительной универсальности и специфичности? И как клетки умудряются не запутаться в сложной информационной паутине, сплетенной помощью этого простого неорганического иона? Конкурс «Био/Мол/Текст»-2021/2022Эта работа опубликована в номинации «Биофизика» конкурса «Био/Мол/Текст»-2021/2022. Партнер номинации — компания «БиоЛайн». Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD. Генеральный партнер конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств. Информационная роль других ионов (не Ca 2+ )Бислойные липидные мембраны, которые отделяют все живые клетки от внешней среды, непроницаемы для заряженных ионов, окруженных вдобавок массивными «шубами» из молекул воды [1]. Это происходит примерно по тем же термодинамическим законам, что не дают капелькам масла раствориться в воде [2]. В силу эволюционных причин [3], содержание различных ионов в цитоплазме клеток и внеклеточной среде сильно разнится (табл. 1), [4]. Рисунок 1. Электрический мембранный потенциал покоя и потенциал действия в возбудимых клетках создается благодаря растворимым носителям заряда — ионам Na + и K + : рисунок автора статьи с использованными элементами из [4] Генеральный план кальциевого сигналаМы несколько увлеклись рассказом про другие ионы, однако теперь нам будет легче воспринять общие закономерности, а также уникальные черты в передаче сигнала с помощью ионов кальция. Рисунок 2. Поддержание концентраций ионов кальция в животной клетке с помощью кальциевых насосов. Видно, что высокие концентрации кальция (порядка 10 −3 —10 −4 M) приходятся на внеклеточную среду, люмен ЭПР и матрикс митохондрий. Напротив, содержание Ca 2+ в цитозоле и ядерном матриксе гораздо ниже (порядка 10 −7 M). Обратите внимание, что на мембранах самой клетки и мембране ЭПР существует электрический потенциал. В частности, потенциал на цитоплазматической мембране для невозбудимых клеток составляет в среднем −5..−10 мВ. Потенциалы возбудимых клеток (нервных и мышечных) существенно выше — порядка −70 мВ. Давно известно, что концентрация Ca 2+ в цитозоле клеток в норме чрезвычайно мала ( 10 −7 M), тогда как содержание во внеклеточной среде ( 10 −4 M) значительно выше [4]. Такое неравномерное распределение кальция дается недешево: клетка тратит много энергии, чтобы выкачивать с помощью специальных насосов избытки Ca 2+ из цитоплазмы во внеклеточную среду и в ЭПР, который выполняет функции внутреннего «депо» кальция (рис. 2) [7]. На первый взгляд, схема работы кальциевого сигналинга до смешного проста [9]. Стимул открывает кальциевые каналы на цитоплазматической мембране или мембране ЭПР, и через эти открытые «шлюзы» ионы кальция устремляются в цитоплазму. Повышение цитозольной концентрации кальция в 10 раз (с 100 нМ в покое до 1000 нМ) запускает различные кальций-чувствительные процессы. После этого инактивирующие механизмы (насосы и ионные обменники) выкачивают Ca 2+ из цитозоля, возвращая концентрации кальция к уровню покоя. Биохимический набор для кальциевого общенияКакие же механизмы запускают ионы Ca 2+ извне? Нетрудно догадаться, что такими «шлюзами», встроенными в цитоплазматическую мембранную «плотину», являются различные кальциевые каналы. Воспринимая раздражитель, они изменяют свою конформацию, открывая путь стремящемуся внутрь кальцию. Механизм активации ионных каналов бывает совершенно разным. В случае возбудимых клеток «воротами» для кальциевого тока часто служат высокоспецифичные потенциал-чувствительные кальциевые каналы (рис. 3, 1). Они воспринимают скачок электрического потенциала на мембране, что приводит к их открытию. Потенциал-чувствительные каналы обеспечивают выброс нейромедиатора в синапсах, сокращение мышц и секрецию гормонов [9]. [12], рисунок адаптирован с использованием элементов из [4] Наконец, широко распространены лиганд-управляемые белковые каналы, которые, подобно замку, открываются при связывании своего ключика — некоторой активирующей молекулы, называемой лигандом. Это может быть что угодно: гормон, нейромедиатор или какой-нибудь фактор роста. В зависимости от взаимного расположения рецепторной и собственно канальной части лиганд-управляемого белка, принято выделять ионотропные и метаботропные рецепторы. Ионотропные рецепторы непосредственно слиты с ионными каналами в единую химерную молекулу (рис. 3, 3). Для таких белков конформационное изменение рецепторной части при связывании своего лиганда передается механически на канал, открывая его. Среди ионотропных рецепторов ионы Ca 2+ из внеклеточной среды пропускают неселективные катионные каналы [12]: NMDA и AMPA-рецепторы к глутамату, а также P2X-рецепторы, которые активирует АТФ [13]. У метаботропных белков рецепторная и канальная часть значительно разнесены в пространстве, и активирующее воздействие от первой ко второй передается через молекулы-посредники. Для ионов Ca 2+ существует специальный фосфоинозитидный сигнальный путь, завязанный на метаботропные рецепторы. Что существенно, рецепторная часть такого сигнального пути располагается на цитоплазматической мембране (рис. 3, 4), а специфические кальциевые каналы, управляемые рецепторами, — на мембране ЭПР (рис. 3, 5). В отличие от всех вышеописанных примеров, в этом случае Ca 2+ попадает в цитоплазму не из внешней среды, а из внутреннего «склада» — пространства эндоплазматического ретикулума. Молекулой-посредником в данном случае выступает инозитол-1,4,5-трисфосфат (IP3), открытие которого еще в 1983 году вызвало бурное изучение информационной роли кальция в целом. Остановимся на фосфоинозитидном сигнальном пути более детально, в силу его исключительной важности в кальциевом сигналинге, в особенности в невозбудимых клетках, где он часто является преобладающим механизмом поступления Ca 2+ [14]. Ключевую роль тут играет связанный с клеточной мембраной фермент фосфолипаза С-β. Он действует на фосфатидилинозитол-4,5-бисфосфат (PI(4,5)P2). Столь пугающее название носит минорный фосфолипид, компонент внутреннего слоя цитоплазматической мембраны. Запускают же сигнальный путь метаботропные рецепторы, которые, как правило, относятся к классу G-белоксопряженных. Трансмембранная часть такого рецептора связывает свой лиганд, что приводит к разваливанию комплекса G-белков. Одна из G-субъединиц (α), собственно, и приводит в действие фосфолипазу, «прилипая» к ней. Фосфолипаза С связывает свой субстрат, PI(4,5)P2, «разгрызая» одну из фосфоэфирных связей в молекуле. В результате совершенно нейтральный с точки зрения клетки фосфолипид распадается на две составляющие, каждая из которых обладает сигнальной активностью. Таким образом, в этот момент фосфоинозитидный путь разделяется на две сигнальные ветви [4]. Рисунок 4. Схема фосфоинозитидного сигнального пути. Одна из новообразованных молекул — инозитол-1,4,5-трисфосфат (IP3) — хорошо растворима в воде, поэтому может диффундировать внутрь цитоплазмы клетки, где «открывает» IP3-управляемые каналы кальциевого выброса (далее будем именовать IP3-рецепторами), расположенными как раз на мембране ЭПР. Другая часть бывшего фосфоинозитида — диацилглицерол — в силу своих гидрофобных свойств остается в плазматической мембране, где вместе с ионами Ca 2+ и другим фосфолипидом — фосфатидилсерином — активирует фермент протеинкиназу С, которая фосфорилирует различные белковые молекулы, меняя их активность. В дальнейшем в контексте кальциевых колебаний нас будет интересовать по большей части первая ветвь фосфоинозитидного сигнального пути. Мы рассмотрели различные белковые механизмы, которые обеспечивают повышение концентрации Ca 2+ в цитозоле, что активирует в дальнейшем многочисленные кальций-чувствительные процессы. Однако после прекращения действия сигнала требуется вернуть клетку в состояние покоя, понизив концентрацию Ca 2+ к исходному значению. Например, сокращенная под действием кальция мышечная клетка должна в конечном счете расслабиться. Во-первых, необходимо остановить ток Ca 2+ в цитозоль. Известно, что предельно высокие цитозольные концентрации Ca2+ (порядка 10 −5 —10 −6 M) приводят к связыванию ионов Ca 2+ низкоспецифичными ингибиторными сайтами, которые не чувствительны к более низким концентрациям кальция. Такие ингибиторные сайты есть на поверхности IP3-чувствительных каналов и RyR-рецепторов, что приводит к их отключению. Таким образом клетки «проводят» условную верхнюю границу возможных концентраций кальция [12]. И швец, и жнец, и на дуде игрец: многоликий кальциевый сигналингМы рассмотрели целый биохимический набор белков и других молекул, полезных для генерации кальциевого сигнала. Посмотрим, как клетки разных тканей по-разному пользуются этим инструментарием. Обратим внимание, что один и тот же сигнал (повышение концентрации Ca 2+ в цитоплазме) применяется для решения совершенно разных функциональных задач. Мышечные клеткиПожалуй, наиболее специализированный механизм использования кальциевого сигнала встречается в клетках скелетной мускулатуры. Давно известно, что повышенная концентрация Ca 2+ в их цитоплазме снимает ингибирующий эффект тропонина C, который мешает взаимодействию главных сократительных белков — актина и миозина [4]. Получается, что каждый раз, когда мы ходим, поднимаем гирю или просто моргаем, в наших мышцах происходит всплеск цитоплазматической концентрации кальция, который и запускает сокращение мышц. [9], рисунок адаптирован с использованием элементов из [4] Поджелудочная железаКак было отмечено ранее, метаботропные рецепторы активно используются различными невозбудимыми клетками для генерации кальциевого сигнала. В качестве примера рассмотрим клетку поджелудочной железы, где подобный механизм обеспечивает секрецию воды и ферментов — главных компонентов панкреатического сока (рис. 6). [9], рисунок адаптирован с использованием элементов из [4] Как работает кальциевый сигналинг применительно к клеткам поджелудочной железы? Представьте себе, что вы вкусно пообедали. Для переваривания пищи в кишечнике требуется выделение поджелудочной железой своего секрета, содержащего все необходимые ферменты. Пищевое поведение запускает активацию парасимпатической нервной системы, в частности, блуждающего нерва, который иннервирует поджелудочную железу. Блуждающий нерв выделяет в место контактов с клетками поджелудочной железы свое сигнальное вещество — ацетилхолин. С другой стороны, в ответ на растяжение, двенадцатиперстная кишка выделяет в кровь гормон холецистокинин. Оба этих сигнальных вещества действуют на метаботропные рецепторы цитоплазматической мембраны панкреатических клеток и вызывают выброс ионов Ca 2+ из люмена ЭПР в цитозоль. Повышение цитоплазматических концентраций кальция приводит к выделению клеткой пищеварительных ферментов, а также экскреции различных ионов, за которыми по законам осмоса следует вода. НейроныПожалуй, самый сложный кальциевый сигналинг можно встретить в нервных клетках. Потенциал-чувствительные кальциевые каналы в окончаниях аксона открываются в ответ на приход ПД (рис. 7), что запускает экзоцитоз нейромедиаторов [15] — небольших молекул, которые передают воздействие (возбуждение или торможение) на соседний нейрон в местах специализированных нервных контактов — синапсов. В дендритах (воспринимающих окончаниях нейрона) ионы Ca 2+ обеспечивают удивительное свойство нервных клеток — долговременную потенциацию, — лежащее в основе таких фундаментальных свойств нервной системы, как память и обучение (рис. 7). Процесс долговременной потенциации хорошо изучен на примере основного класса нейронов головного мозга, общающихся при помощи нейромедиатора глутамата. Рисунок 7. Кальциевый сигналинг обеспечивает секрецию нейромедиатора, а также явление нейронной «памяти» — долговременной потенциации. Подробности см. в тексте. [9], рисунок адаптирован с использованием элементов из [4] Поздняя потенциация [9] заключается в том, что высокие концентрации Ca 2+ достигают тела нейрона, где взаимодействуют со своими белковыми мишенями. В частности, кальциевый сигнал приводит к перемещению транскрипционного белкового фактора CREB в ядро нейрона, что запускает синтез различных белков. Обученный нейрон экспрессирует еще больше AMPA-рецепторов, а также других белков, которые обеспечивают рост нейрона и создание все большего количества новых синаптических контактов. Кальций как вторичный мессенджер: паутина сигнальных путейИз этих схем, напоминающих причудливые паутины, видно, что ионы Ca 2+ служат промежуточным звеном между первичными раздражителями на мембране и ответом клетки [16]. В этом свойстве ионы кальция не одиноки. Ученые открыли целый перечень таких посредников, которые называют вторичными мессенджерами (по аналогии с первичными мессенджерами, воспринимаемыми цитоплазматической мембраной). рисунок автора статьи Рисунок 8 отражает еще одно замечательное свойство сигнального каскада с участием вторичного мессенджера. Читатели, знакомые с устройством электросхем, могут предположить у такого промежуточного звена простейшие интегративные свойства — способность суммировать входные сигналы и передавать информацию дальше только при достижении определенного порога возбуждения. Например, в разобранном примере с клеткой поджелудочной железы (см. рис. 6) предполагается эффективная секреция панкреатического сока при одновременном действии и ацетилхолина, и холецистокинина. Другой пример: в экспериментах по индуцированной активации кальциевого сигнала в фибробластах требуется разрядка мембраны с помощью грамицидина одновременно с воздействием вазопрессина [17]; по отдельности же эти стимулы не вызывают кальциевого ответа в фибробластах. Тонко настраивая работу своих интеграторных систем, клетка может как глушить информационные потоки, так и увеличивать свою чувствительность к внешним раздражителям, что описано выше для потенциации нервных клеток. Кальциевые колебания: клеточное радиоЗа последнее время ученые значительно продвинулись в поисках ответов на проблемные вопросы клеточного сигналинга (некоторые из них мы сформулировали в предыдущем разделе). В частности, стал понятен принцип, что клетки считывают не столько повышение в цитозоле средней концентрации вторичного мессенджера, сколько его тонкое пространственно-временное распределение [16]. Почему же, однако, при длительном возбуждении клетки пользуются чаще именно колебаниями, а не держат концентрацию Ca 2+ на стабильно высоком уровне? По всей видимости, такое колебательное поведение обладает рядом существенных преимуществ. Существует, вероятно, еще одна причина такой «популярности» колебаний кальция среди клеток. Величина X, изменяющаяся по закону гармонического осциллятора, описывается уравнением: где A — амплитуда, а f — частота (Гц). Таким образом, колебания могут нести информацию одновременно в величине их амплитуды и частоты, в отличие от константной концентрации кальция. Предполагается, что именно в этих двух характеристиках колебаний Ca 2+ клетки кодируют информацию о силе стимула и его природе. Амплитудная модуляция (АМ) предполагает, что кодируемая величина (например, сила стимула) отражается в амплитуде колебаний (см. рис. 9) [22]. В случае частотной модуляции (ЧМ) частота осцилляции тем выше, чем сильнее исходный стимул. Наконец, встречается частотно-амплитудная модуляция — их комбинация. Удивительно, что все эти варианты кодирования активно применяются человеком в технических устройствах, основанных на радиоволнах! Получается, что задолго до Попова и Маркони эволюция создала своеобразное клеточное радио, которое позволяет передавать сигнал с периферии (клеточной мембраны) вглубь цитоплазмы, в царство белковых машин. Рисунок 9. Моделирование трех принципиальных типов кодирования информации при помощи колебательного сигнала на примере кальциевых колебаний. В качестве кодируемого сообщения (силы стимула) используется ступенчатая концентрация IP3. В случае амплитудной модуляции (AM) сила стимула отражена в амплитуде колебаний, в случае частотной модуляции (ЧМ) — в их периоде. Амплитудно-частотная модуляция (АЧМ) использует оба принципа. Амплитудная модуляция (AM)Закодированный кальциевый сигнал необходимо расшифровать. Как и большинство других молекулярных «профессий», работу переводчика в клетке выполняют белки. Связывание ионов Ca 2+ инициирует конформационную перестройку этих сенсоров, активируя их. Шифрование силы сигнала с помощью AM привлекает понятным механизмом декодирования. При базальных концентрациях Ca 2+ белковые сенсоры находятся в свободном от кальция состоянии и, соответственно, неактивны. При возникновении колебаний определенной амплитуды устанавливается равновесие, при котором определенная доля сенсоров связывают кальций и активируются. При увеличении амплитуды таких колебаний равновесие устанавливается при большей доле связавших кальций (активных) молекул. Таким образом, сила стимула переводится на язык белковой активности. Механизм АМ, однако, обладает одним существенным недостатком в плане специфичности ответа. Так, при возбуждении низкочувствительного белкового сенсора колебанием высокой амплитуды в качестве побочного процесса клетка активирует целое море более чувствительных сенсоров. Как избавиться от этой неспецифики? Одно из решений проблемы лежит в возможности пространственного разграничения белковых сенсоров (например, в разных компартментах клетки). Экспериментальные данные свидетельствуют, однако, что AM используется значительно реже ЧM в кальциевом сигналинге и хороша в основном для триггерных процессов, работающих по принципу «всё или ничего». Например, показано, что колебания кальция очень высокой амплитуды могут переходить в стабильно высокие концентрации Ca 2+ — и тем самым вызывать гибель клеток путем апоптоза [23]. Частотная модуляция (ЧM)Рисунок 11. Использование частотной модуляции (ЧM) для кодирования силы стимула. а — рисунок автора статьи, получен в программе PyTrax; б — [25], с изменениями Каким образом происходит «чтение» сигнала в случае ЧM? Во-первых, колебания цитозольного уровня Ca 2+ может вызывать аналогичные колебания активности своего сенсора; так частота кальциевых осцилляций может быть прямо «переписана» в частоту активности белков. Селективность здесь состоит в том, что для сенсоров с гораздо более быстрой кинетикой связывания кальция суммация наблюдаться не будет, и сигнал будет просто декодирован как совокупность одиночных ответов на каждый кальциевый пик (рис. 12а). В то же время, для очень медленно связывающих кальций белков при коротких высокочастотных стимулах резонанс также будет работать плохо (рис. 12в): для таких белков более эффективны низкочастотные, но длительно действующие кальциевые колебания. рисунок автора статьи по материалам [24], [26] К настоящему времени ученым известна обширная сеть белков, способных воспринимать колебательный кальциевый сигнал и активировать целые клеточные «программы» (например, через транскрипционные факторы). Как показывает один из недавних обзоров [24], различные белки-расшифровщики имеют разные диапазоны чувствительности к частоте кальциевых колебаний. Это может быть обусловлено, например, явлением резонанса, описанным выше. Примечательно, что интервалы «рабочих частот» важнейших кальциевых декодеров, отложенные на логарифмической шкале, слабо перекрываются между собой, что может свидетельствовать о разделении клеточных программ, запускаемых этими белками (рис. 13). Рисунок 13. Различие в рабочих частотах кальциевых декодеров может обеспечивать специфичность ответа на колебания Ca 2+ в разных типах клеток. Разные декодеры кальциевых колебаний обладают различными диапазонами рабочих частот, слабо перекрывающимся между собой. Учитывая широкое поле действия данных белковых сенсоров, это дает возможность селективно включать целые клеточные программы с помощью кальциевых колебаний определенной частоты. Внутри диапазонов рабочих частот с увеличением частоты колебаний активность белков возрастает (ЧМ для кодирования силы стимула). Цифрами для каждого белка обозначены источники данных о рабочих частотах данного сенсора. Благодаря наличию целого набора сенсоров клетка может решать проблему «запутанности» сигнальных путей. Например, стимул А вызывает колебания определенной частоты, и их воспринимает определенный сенсор, чувствительный в этой области, что запускает ответ 1, не затрагивая другие кальций-опосредованные процессы. Точно так же стимул Б приводит к ответу 3 и никак не влияет на ответ 4. Уникальные профили экспрессии этих декодирующих молекул позволяют различным типам клеток отвечать на один и тот же сигнал отличным образом, что может, в свою очередь, влиять на дифференциацию клеток в процессе эмбриогенеза. Всем киназам киназаОбратим внимание, что среди кальциевых сенсоров довольно много киназ, что вряд ли можно считать простым совпадением. Киназы — это ферменты, которые фосфорилируют свои белковые мишени, то есть вешают на определенные остатки аминокислот фосфат-анион. Такая метка зачастую драматически влияет на жизнь своего «хозяина», меняя его конформацию: одни белки она активирует, другие подавляет, третьи — заставляет сменить локализацию в клетке (рис. 14). Рисунок 14. Активное использование киназ в кальциевом сигналинге существенно расширяет его регуляторные возможности. Активация обобщенной «киназы X» ионами Ca 2+ реализуется в разнообразных воздействиях на внутриклеточные белки. Фосфорилирование такой киназой активирует одни белки (А), подавляет действия других (В) и приводит к перераспределению между клеточными структурами третьих (Б). рисунок автора статьи Многие киназы обладают целым спектром молекул-мишеней. Таким образом, воздействуя на ключевые узлы в виде киназ, кальциевый сигналинг может управлять целым оркестром клеточных процессов. Эти замечательные особенности CaMKII могут предложить объяснение проблемы, казавшейся долгое время загадкой для ученых. Было показано, что в нейронах гиппокампа стимуляция частотой 100 Гц и длительностью в 1 секунду вызывает ранние фазы долговременной потенциации; при этом никаких свидетельств запуска поздней фазы (которая включает транскрипцию генов и синтез новых белков) не происходило. Долговременные эффекты, однако, подключаются, если трижды повторить эту секундную стимуляцию с интервалами в 10 минут [27], [28]. Огромные промежутки между стимулами свидетельствуют о наличии у нейрона какого-то запоминающего механизма, обладающего свойствами простейшего интегратора. Небольшие возбуждения должны накапливаться в таком «устройстве» — и только в своей сумме вызывать ответ, индуцирующий экспрессию генов. Интересно, что мутантные мыши, у которых «выключена» форма CaMKII, специфичная для головного мозга, испытывают определенные трудности в запоминании объектов, что тоже является свидетельством в активном участии CaM-киназы II в процессах долговременной памяти [4]. Пространственный факторрисунок автора статьи Заключение
|