Что усиливает коррозию металлических деталей находящихся в воде

Срочно ответ по химии надо!! Тест по химии 1 курс.
1. В ряду Na → Mg → Al:
а) увеличивается число валентных электронов
б) возрастают восстановительные свойства
в) увеличивается радиус атома
г) возрастает число электронных слоев

2. Какой из перечисленных металлов легче всего окисляется на воздухе?
а) алюминий ; б) магний ; в) натрий ; г) бериллий

3. Магний может взаимодействовать со всеми веществами группы:
а) Br2, Na2SO4, HCl; б) O2, KOH, H3PO4;
в) HCl, S, СuSO4; г) Fe2O3, H2O, KCl

4. Что усиливает коррозию металлических изделий, находящихся в воде?
а) добавление в воду ингибитора коррозии
б) применение для соединения деталей заклепок из менее активного металла
в) применение для соединения деталей заклепок из более активного металла
г) окрашивание деталей

5. Железо в промышленности получают:
а) пирометаллургическим методом;
б) гидрометаллургическим методом;
в) электролизом расплава оксида железа (III)
г) электролизом раствора хлорида железа (III)

6. Разбавленная Н2SO4 будет реагировать с каждым из металлов пары:
а) Pb и Fe; б) Zn и Нg; в) Сu и Ni; г) Мg и Al;

7. Более сильные восстановительные свойства, чем алюминий, проявляет:
а) Mg ; б) Fe ; в) Сu; г) Si

8. К органическим веществам не относится :

а) С2Н5ОН ; б) CH3COONa; в) C6H6; г) CaCO3

9. Железная конструкция будет защищена от электрохимической коррозии в воде, если на ней укрепить пластину:
а) из свинца; б) цинка; в) меди; г) никеля

10. Железо в отличие от многих металлов обладает свойством:
а) электропроводности; б) пластичности;
в) магнитными свойствами; г) имеет серый цвет.

11. Окислительно–восстановительной не является реакция:

а) 2H2S + SO2 = 3S + 2H2O;
б) CaCO3 = CaO + CO2;
в) 2NaNO3 = 2NaNO2+ O2;
г) Zn + H2SO4 = Zn SO4+ H2

12. Необратимой является реакция:
а) CuSO4 + 2KOH = Cu(OH)2 + K2SO4;
б) N2 + O2 = 2NO;
в) MgBr2 +Na2SO4 = MgSO4 + 2NaBr;
г) 2SO2 + O2 = 2SO3

13. Количество электронов у атома хлора на внешнем энергетическом уровне: а) 3 ; б) 35; в) 17; г) 7

14. Неметаллические свойства элементов в ряду F – Cl – Br – I
а) остаются неизменными
б) усиливаются
в) ослабевают
г) сначала усиливаются, затем ослабевают.

16. Общая формула СnH2n-2 подходит для каждого из классов органических соединений пары :
а) алканов и алкенов; б) алкенов и алкинов; в) алкинов и алкадиенов;
г) алкенов и алкадиенов.

17. Молекулярную кристаллическую решетку имеет каждый неметалл пары:
а) черный фосфор и селен ; б) бром и графит; в) алмаз и кислород;
г) белый фосфор и йод.

18. Химическое равновесие в системе :
N2 + 3H2 ⇆ 2NH3 + Q
сместится в сторону синтеза аммиака при:
а) повышении температуры;
б) повышении давления;
в) понижении давления;
г) увеличении концентрации аммиака

19. Водород проявляет окислительные свойства при взаимодействии:
а) с хлором; б) cерой; в) азотом; г) кальцием

20. Самым активным неметаллом среди элементов Si, P, S, Cl является:
а) сера; б) хлор; в) кремний; г) фосфор

Источник

Коррозия металлов и способы защиты от нее

Коррозия – это процесс разрушения металлов и металлических конструкций под воздействием различных факторов окружающей среды – кислорода, влаги, вредных примесей в воздухе.

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Источник

Морская коррозия

Одним из наиболее опасных для металла явлений считается морская коррозия. Это электрохимический процесс, который запускается и протекает из-за особенностей состава жидкости.

В этом материале мы подробнее разберем особенности явления, его протекание и методы защиты.

Почему морская вода так опасна для металла

По статистике, металлические изделия в море портятся намного быстрее, чем в стандартных условиях на открытом воздухе.

Катализатором становится 3 особенности жидкости:

Коррозия в морской воде протекает быстрее, потому что у нее есть выраженное депассивирующее действие. Если на поверхности начинает формироваться защитная пассивная пленка, вода быстро разрушает ее.

Все что попадает в море начинает разрушаться. Убедитесь в этом, если посмотрите на состояния днищ кораблей, погруженных металлоконструкций, трубопроводов, проложенных по дну.

То же относится и к металлическим изделиям, которые периодически соприкасаются с агрессивной средой, к примеру, при охлаждении.

Особенности протекания процесса

Морская коррозия металлов протекает под воздействием множества внешних агрессивных факторов. Как мы уже отмечали, этот процесс относится к электромеханическим разновидностям процессов.

Его протекание напрямую связано с кислородной деполяризацией и дифузионно-кинетическим катодным контролем.

Проблем добавляет то, что сама вода постоянно двигается. Это связано не только с давлением, но и с тем, что суда постоянно находятся в движении с собственной скоростью.

В зависимости от условий, в которых находится металлоконструкция, меняется тип контроля:

Если рассматривать процесс как катодно-анодную реакцию, мы увидим, что в качестве анода выступает металл, в то время как катодом становится оксидная пленка на его поверхности.

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Морская коррозия становится заметной быстро. Она вызывает масштабное разрушение материала, на нем появляются язвы большой глубины, структура металла разрушается и становится хрупкой. Материал уже переносит прежнего нагрузок.

Также не стоит сбрасывать со счетов атмосферную коррозию в морских районах. Она связана с особым составом воздуха, воздействием других особых условий среды.

Что усиливает морскую коррозию

На разных морях ржавение металла протекает с разной скоростью. На скорость и особенности явления влияет 6 факторов среды:

Виды морской коррозии

В морской воде протекает 2 вида коррозии.

Наиболее распространенными среди них считаются следующие:

Коррозия металла в морской воде способна за короткое время вывести из строя даже крупную металлоконструкцию. Как результат – она теряет прочность и обрушиться.

Это всегда риск появления человеческих жертв и больших убытков.

К 2020 году разработано множество средств, позволяющих или обеспечить защиту от агрессивной среды или замедлить протекание процесса. Их качество доказано на практике – удается получить заметный результат.

Рассмотрим вопросы защиты от морской коррозии более подробно.

Как защитить металл от повреждения

В работе используется несколько видов защитных средств, к которым относятся такие, как:

Использование специальных лакокрасочных покрытий

Как и в случае с борьбой с ржавением под открытым воздухом, очень важно не допустить контакта агрессивной среды с металлом. ЛКМ в таком случае подходят отлично.

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Есть несколько типов материалов, которые можно свободно использовать в окрашивании.

К ним относятся такие, как:

Хорошо показывают себя вещества с эпоксидной, каменноугольной основой. Главное требование, чтобы в них было как можно меньше растворителей.

Главное преимущество использования такого средства заключается в простоте нанесения.

Краска наносится на поверхность, защищенные места сразу становятся хорошо видимыми.

Для дополнительного усиления, ограждающего от агрессивной среды эффекта, можно также применять разные окиси, в том числе, ртути и меди. В таком случае конструкция не будет обрастать морскими обитателями.

Чтобы нанесение ЛКМ дало лучшие результаты, поверхность металлоконструкции нужно будет фосфатировать. Только после этого допускается проведение окрашивания.

Стоит также учитывать, что оно должно быть как можно более толстым, чтобы удержаться дольше и сохранить заметный эффект.

Применение металлических защитных покрытий

В этом направлении работает наша компания. Среди самых распространенных видов составов можно назвать цинк.

Он наносится на металл слоем толщиной до 200 мкм. При этом создается хорошая защита от контакта со средой.

Еще одно преимущество – такой материал можно окрашивать.

Оцинковывают самые разные изделия, в том числе, днища морских судов.

Зачистка поверхности

Процесс очень важен, потому что позволяет снять окалину. Как мы уже говорили выше, ее присутствие способно в несколько раз ускорить негативный процесс.

Для удаления окалины могут применяться высокие температуры, химическое травление и очистка пескоструйным методом.

Низкое легирование

Изменение самого характера стали – один из действенных методов для борьбы с коррозией. По данным исследований, стали с большим содержанием никеля портятся особенно быстро, в то время как добавление меди помогает сделать конструкцию намного более стойкой.

Создание дополнительной электрохимической защиты

Она может быть двух типов – от внешнего источника тока или от протектора. При этом удается остановить формирование пор и протекание электрохимического процесса, представляющего большую опасность для материалов.

Все перечисленные методы используются и в месте. В таком случае, вероятность повреждения металла станет намного ниже. Вопрос о подборе материалов, правильном конструировании также стоит очень остро.

Защита методом горячего цинкования

Наша компания предлагает горячую оцинковку различных видов конструкций, в том числе тех, которые постоянно находятся в контакте с морской водой.

Работаем с 2007 года и готовы быстро выполнить даже наиболее сложный и крупный заказ.

4 причины обратиться к нам:

Готовы ответить на все интересующие заказчика вопросы и быстро приступить к работе. Звоните или оставляйте заявку на сайте.

Источник

Коррозия в различных средах

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде
Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде
Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

3. КОРРОЗИЯ в ВОДНЫХ СРЕДАХ

Пресная вода

Коррозия большинства стойких алюминиевых сплавов в воде, так же как и в атмосфере, носит преимущественно питтинговый характер, но протекает заметно неравномернее в виде редких и довольно крупных поражений.

Количество питтингов, их характер и глубина проникновения в значительной мере зависят от состава воды и условий эксплуатации сплавов. Наибольшее влияние на коррозию оказывают такие факторы, как жесткость воды (присутствие в воде комплексов солей карбонатов, сульфатов и хлоридов), рН, содержание примесей тяжелых металлов (особенно меди и ртути), насыщение кислородом и др. В этой связи важное значение в определении скорости коррозионного процесса имеют такие условия, как скорость движения воды и температура.

Кроме влияния на электропроводность, перечисленные факторы могут в значительной мере изменять защитные свойства естественной оксидной пленки алюминия и его сплавов, ускорять или замедлять катодные и анодные реакции и т.д. На практике многие перечисленные факторы могут действовать одновременно и значительно ускорять процесс коррозии на алюминиевых сплавах.

Небольшое отклонение значения рН от нейтральной среды в кислотную (рН до 4,0) или слабо щелочную увеличивает скорость питтинга в естественной свежей воде. Минимальная скорость развития питтинга наблюдается при рН от 6 до 7. Бикарбонат незначительно влияет на коррозию алюминия. Его роль может быть заметной в присутствии таких примесей, как медь и хлориды. Максимальные потери наблюдались при содержании карбонатов 90 мг/л. Присутствие в воде сульфатов может повышать сопротивление питтинговой коррозии.

Наиболее заметный эффект вызывает наличие в воде солей тяжелых металлов и особенно меди и ртути. Содержание в 1 л дистиллированной воды только 0,10 мг меди вполне достаточно, чтобы вызвать появление питтинга на алюминии. Однако влияние меди в значительной степени определяется наличием в среде других веществ, например хлоридов, карбонатов, при совместном присутствии которых увеличиваются коррозионные потери уже при содержании ионов меди 0,06 мг/л. В свою очередь отрицательное влияние меди связано с рН среды и проявляется в основном при значении рН ниже 8.

Железо обладает меньшей коррозионной активностью. Тем не менее присутствие в воде ржавчины усиливает коррозию алюминия и его сплавов, особенно при повышении температуры и изменении скорости потока. В этом случае прямые участки трубопроводов покрываются плотным защитным слоем ржавчины, а в местах турбулентного потока или изменения скорости ржавчина не удерживается, и они служат эффективными анодами.

Значительно более агрессивное действие на алюминий и его сплавы в воде может оказывать ртуть. Резкое снижение коррозионной стойкости наблюдается даже в присутствии следов металлической ртути.

Большое влияние на коррозионную активность воды оказывают хлориды. Некоторое заметное увеличение скорости коррозии наблюдается при увеличении их концентрации от 50 до 300 мг/л. Как уже отмечалось, влияние хлоридов резко возрастает в присутствии ионов меди и заметно в присутствии карбонатов.

Хлорированная вода при концентрации свободного хлора до 0,5 мг/л не оказывает заметного влияния на коррозию алюминия и его сплавов. В то же время содержание хлора в пределах от 10 до 50 мг/л приводит к значительному увеличению коррозии трубопроводов из алюминиевых сплавов. Кроме перечисленных факторов, на скорость питтинговой коррозии сложное влияние оказывают скорость движения потока воды и ее температура. При повышении температуры до 50 °С скорость коррозии алюминия и его сплавов в воде увеличивается, затем при более высоких температурах резко уменьшается, что, по-видимому, связано с уменьшением растворимости в воде кислорода и формированием при 70- 80 °С бемита. Как правило, при повышении скорости потока до 2-4 м/с коррозия алюминиевых сплавов уменьшается вследствие усиления пассивации. Дальнейшее повышение скорости может снижать сопротивление коррозии из-за абразивного воздействия и кавитации.

Для того, чтобы удлинить срок службы и уменьшить толщину стенки изделий, применяющихся в пресной воде, их защищают плакированием или напылением алюминиевыми сплавами, анодными по отношению к основе. Такой подход значительно расширяет выбор сплавов, предназначенных для эксплуатации в воде и делает возможным применение даже вторичных сплавов типа ВД1, защищаемых плакировкой из АД1 или АЦ2.

В замкнутых системах целесообразно применять подходящие ингибиторы в концентрациях, предотвращающих образование питтингов.

Морская вода

Главным компонентом, определяющим коррозионную агрессивность морской воды, являются галоидные ионы, концентрация которых достигает 30 г/л. Поэтому на практике для имитации действия морской воды применяют ускоренные испытания в хлоридных растворах.

Испытания в морской воде отличаются от испытаний в таких растворах более локальным развитием коррозии и приводят к большей глубине поражений при меньших общих потерях (например, массы). В морской воде более четко и ярко по сравнению с 3%-ным раствором NaCl проявляются структурные виды коррозии РСК, МКК и КР, характерные для ряда алюминиевых сплавов.

Агрессивность морской воды в отличие от пресной может в значительной мере определяться содержанием кислорода, концентрация которого в зависимости от солености воды, скорости движения потока и глубины погружения может меняться в широких пределах.

Важным фактором, влияющим на коррозионное воздействие морской воды в естественных условиях, является биологическое обрастание, которое, как правило, более интенсивно идет в поверхностных слоях и может приводить как к уменьшению, так и к увеличению стойкости алюминиевых сплавов.

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Данные, представленные в табл. 70, 71, показывают, что коррозионная стойкость алюминия и его сплавов в морской воде значительно ниже чем в атмосферных условиях и существенно понижается по мере увеличения глубины погружения в морскую воду. Это прежде всего связано с понижением концентрации кислорода в воде. Такая зависимость коррозии от содержания кислорода характерна практически для всех металлов, находящихся в пассивном состоянии. Некоторое положительное влияние в поверхностных слоях моря может оказывать биологическое обрастание, при котором на поверхности образца образуется тонкая, почти сплошная карбонатная пленка, легко растворимая при обработке образцов в кислотах (в частности, в HN03). Одновременно наличие такой пленки может приводить к еще более неравномерному распределению очагов коррозии.

Основные закономерности коррозионного поведения алюминия и его сплавов в зависимости от природы сплава во многом совпадали с закономерностями, отмеченными для этих сплавов в морской атмосфере.

Глубина питтинговой коррозии на алюминии различных марок в ряде случаев может быть заметно больше, чем некоторых низколегированных сплавов типа АМг2, АМц и др. Чем чище по примесям алюминий, тем больше может быть максимальная глубина поражений. Относительно высокой коррозионной стойкостью характеризуются низко- и среднелегированные сплавы системы А1-Mg, что и определяет их широкое применение в качестве важных конструкционных материалов в морских строительных конструкциях. Неправильная термообработка полуфабрикатов из сплава, содержащего выше 3,5 и особенно выше 5 % Mg, приводит в ряде случаев к резкому снижению коррозионной стойкости из-за появления чувствительности к МКК и РСК.

Искусственное старение сплава типа АДЗЗ приводит к заметному уменьшению коррозионной стойкости из-за появления чувствительности к МКК. По этой же причине сварные соединения сплавов системы А1-Mg- Si являются нестойкими в морской воде. Значительно понижается коррозионная стойкость сварных соединений сплавов системы А1-Mg.

Сплавы системы AI-Zn-Mg (1915Т, 1935Т и др.) в большинстве случаев бывают нестойкими в морской воде из-за чувствительности к РСК, которая особенно сильно развивается вблизи сварных швов.

Высоколегированные сплавы Д16Т и В95Т1 в морской воде также подвержены интенсивной РСК, скорость которой значительно выше, чем в атмосферных условиях На сплаве В95 в состоянии Т2 и ТЗ развивается только язвенная коррозия с глубиной, приблизительно соответствующей глубине коррозии на низко- и среднелегированных алюминиевых сплавах. Биологическое обрастание значительно тормозит развитие РСК на высокопрочных алюминиевых сплавах, и глубина от этого вида коррозии при испытании в поверхностном слое морской воды может быть меньше, чем в атмосферных условиях.

Данные за 10 и 16 лет выдержки в морской воде стойких алюминиевых сплавов подтверждают вывод о том, что коррозия в этой агрессивной среде, так же, как и в обычной воде и в атмосфере, идет с торможением скорости роста питтинга во времени, но при этом k в формуле (22) значительно выше, чем при росте питтинга в атмосферных условиях. Повышение k происходит не только в результате увеличения эффективности действия «катодных элементов», но и вследствие возрастания общей суммы легирующих элементов в сплаве.

В морской воде контактная коррозия значительно более опасна, чем в атмосферных условиях. Степень-опасности контактной коррозии алюминиевых сплавов в 3,5 %-ном растворе NaCl уменьшается в ряду медь> >сталь 3>нержавеющая сталь>титановый сплав. Относительно высокая электропроводность морской воды в значительной мере облегчает защиту алюминиевых сплавов электрохимическим способом. Очень эффективно в данном случае применение анодных плакировок, поэтому такой сплав, как АМц, часто применяется в плакированном виде. Результаты испытаний показывают высокую надежность плакировок, содержащих цинк. Коррозионная стойкость после одного года испытаний на таком металле (0,4 мм) заметно выше, чем на металле без плакировки (3,2 мм).

Применение алюминиевых сплавов в морских средах постоянно расширяется. Построены суда с алюминиевыми корпусами, в том числе суда на подводных крыльях. Алюминиевые корпуса небольших судов не окрашиваются. Окрашивание обычно проводят для предотвращения и очистки корпусов от биологического обрастания. При этом применяются составы на основе оловянно-органических соединений.

Для крепежа можно применять детали, выполненные из стали, но обязательно с покрытием, лучшими из которых являются цинк (горячее цинкование), а также алюминивые сплавы (горячее алюминирование). Перспективно применение алюминиевых сплавов в опреснительных установках.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде
Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде
Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

11 Декабря 2021 17:36
Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в водеСистема охлаждения с магнитным креплением своими руками

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде

Что усиливает коррозию металлических деталей находящихся в воде. Смотреть фото Что усиливает коррозию металлических деталей находящихся в воде. Смотреть картинку Что усиливает коррозию металлических деталей находящихся в воде. Картинка про Что усиливает коррозию металлических деталей находящихся в воде. Фото Что усиливает коррозию металлических деталей находящихся в воде