Что является биологическим катализатором

Биологические катализаторы

Урок 10. Введение в общую биологию и экологию 9 класс ФГОС

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Конспект урока «Биологические катализаторы»

Начнём с цитаты известного советского химика и инженера, академика Георгия Константиновича Борескова:

«Если бы на Земле вдруг исчезли все катализаторы, наша планета скоро стала бы безжизненной пустыней, омываемой океаном слабой азотной кислоты».

Неуютная картина, не правда ли? Поэтому сегодняшняя наша цель – разобраться, почему же Земля всё-таки выглядит более привычно для нашего глаза.

Из уроков химии вам должно быть известно, что такое катализ. Давайте вспомним. Катализом называется явление ускорения реакции без изменения её общего результата. Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Для протекания многих химических реакций необходимы специальные условия. Чаще всего на скорость реакций влияют температура и давление. Чем они выше, тем быстрее протекает химическая реакция. Но её скорость можно увеличить, не изменяя внешних условий, а просто добавив к реагирующей смеси определённые вещества. Так, металлический родий почти в 10000 раз ускоряет разложение муравьиной кислоты на углекислый газ и водород. Такие вещества, увеличивающие скорость реакции, но не входящие в состав продуктов реакции, называются катализаторами.

В клетках живых организмов каждую секунду происходят тысячи химических реакций.
И это несмотря на то, что в живой клетке умеренная температура и нормальное давление. Например, бактерии из рода Азотобактер могут при обычных условиях разрывать прочнейшую молекулу азота, где атомы соединены тремя ковалентными связями и присоединять их к водороду. А для того, чтобы проделать то же самое человеку в промышленности, необходимо создать давление в 350 раз большее, чем на поверхности Земли и поднять температуру до 500 градусов Цельсия.
Естественно, бактерии не обходятся при этом без катализаторов. Кстати, люди также пытались применить их при получении аммиака. Перепробовав при этом более 20000 различных веществ.

Что же за всесильные вещества – эти катализаторы?

Катализаторами химических реакций в неживой природе могут быть самые различные вещества. Это и уже упомянутый нами экзотический родий, который используется для изготовления зеркал супермощных лазеров и обычный оксид марганца, применяемый для получения кислорода даже в школьной лаборатории.
Кроме того, неорганические катализаторы могут ускорять реакции с разными веществами. Например, родий не только эффективно разлагает муравьиную кислоту, но и борется с выбросами вредных оксидов азота в автомобильных катализаторах.

Другое дело – биологические, а значит, органические катализаторы. На них мы остановимся более подробно.
Многочисленные исследования прошлого нашей планеты говорят о том, что на начальном этапе зарождения жизни каталитической способностью обладали некоторые молекулы рибонуклеиновых кислот.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

И тогда это свойство РНК имело очень важное значение. Сегодня же роль молекул РНК как катализаторов крайне мала. А основными биокатализаторами в клетке являются ферменты. Которых уже к 2013 году было описано более пяти тысяч видов.

Термин фермент (от латинского fermentum – «брожение», «закваска») был предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

Абсолютно все процессы в живом организме прямо или косвенно осуществляются с участием ферментов или энзимов, как их ещё называют. Это и фиксация углерода в процессе фотосинтеза, и расщепление питательных веществ в пищеварительном тракте, и синтез источника энергии для всех живых организмов – АТФ, и многое –многое другое.

Как вы помните, по химической природе биологические катализаторы относятся к белкам. Они могут быть как простыми, состоящими только из аминокислот, так и сложными, включающими белок и небелковую часть – простетическую группу. Простетическая группа фермента называется кофермент, а белковая часть – апофермент.

В роли коферментов выступают органические и неорганические вещества. Среди органических это могут быть витамины, например, аскорбиновая кислота. А из неорганических – ионы различных металлов. Например, ионы меди, железа, магния.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Ферменты ускоряют химические реакции за счёт тесного взаимодействия с молекулами исходных реагирующих веществ – так называемых субстратов. Зачастую размеры молекул субстратов значительно меньше размеров молекул самих ферментов, хотя, казалось бы, должно быть наоборот. Поэтому с субстратом или субстратами, потому что их может быть несколько, взаимодействует не вся молекула фермента, а лишь небольшой её участок – активный центр фермента. Построен он чаще всего из нескольких аминокислотных остатков, которые образуют его уникальную структуру. Почему уникальную? Дело в том, что форма и химическое строение активного центра таковы, что с ним могут связываться только те субстраты, структура которых подходит к структуре активного центра.

Магия этого процесса неизвестна до сих пор. Несмотря на то, что человечество в ближайшее время планирует полёты на Марс, оно не в состоянии разобраться со своим организмом. Но существует теория. Её выдвинул ещё в 1890 году немецкий химик Эмиль Фишер.

Называется его предположение моделью «ключ-замок». То есть, субстрат по своему строению подходит к активному центру, как ключ к замку с образованием короткоживущего фермент-субстратного комплекса.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

В этом комплексе молекула субстрата деформируется и в её структуре ослабляются определённые химические связи. Что приводит к облегчённому их разрыву и в конечном итоге к ускорению химической реакции.
После этого фермент-субстратный комплекс распадается на конечные продукты и свободный фермент, а активный центр последнего тут же готов принимать новые молекулы субстрата. Получаем такой же итог, как и в случае работы обычных химических катализаторов – скорость реакции увеличивается, а сам катализатор при этом не расходуется и может использоваться многократно.

Но в самом механизме работы органических и неорганических катализаторов есть кардинальное отличие. Каждый фермент действует только на определённый тип связи и ускоряет только одну определённую реакцию. То есть обладает специфичностью. Как вы поняли, специфичность объясняется соответствием активного центра только определённым субстратам. Поэтому, например, фермент мальтаза, разлагающий дисахарид мальтозу до двух молекул глюкозы оказывается не способным разрушать молекулы сахарозы. Несмотря на то, что сахароза также является дисахаридом.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Наверное, именно благодаря специфичности, биологические катализаторы работают на несколько порядков быстрее, по сравнению со своими неорганическими коллегами. Они ускоряют химические реакции в миллионы и миллиарды раз! Против ускорения в сотни и тысячи раз для обычных катализаторов. Например, одна молекула каталазы за одну секунду способна расщепить 44000 молекул перекиси водорода. Причём, делает она это при нормальном давлении и умеренной температуре.
Но за высокую скорость работы всегда нужно чем-то расплачиваться. Белковая природа ферментов накладывает на них жёсткие ограничения. Как вы помните, структуры белковых молекул могут существовать только при определённых условиях с минимальными от них отклонениями. А так как модель «ключ-замок» основана именно на соответствии структур субстрата и активного центра фермента, то малейшее нарушение строения биологического катализатора приводит к невозможности его связывания с субстратом. Ферменты могут выполнять свои функции только при определённой температуре, определённом диапазоне рН и других факторов. Например, ферменты слюны амилаза и мальтаза разрушают углеводы пищи в слабощелочной среде, а пепсин желудка расщепляет белки уже в кислой. Если повышение температуры ускоряет скорость протекания реакций с неорганическими катализаторами, то ферментативные реакции при значительном повышении температуры замедляются и прекращаются. Именно поэтому температура нашего тела выше 40 градусов оказывается несовместима с жизнью.

Скорость работы ферментов зависит не только от температуры. Некоторые биологические катализаторы, кроме активного центра, имеют и несколько регуляторных центров. С ними также могут связываться определённые вещества и оказывать влияние на активность фермента. Все их можно разделить на две группы. Активаторы – вещества, повышающие скорость ферментативных реакций. От латинского activus — «активный, деятельный». И ингибиторы – вещества, снижающие или блокирующие активность ферментов. От латинского inhibere — «задерживаю, останавливаю».

Активирующее влияние на скорость ферментативной реакции оказывают разнообразные вещества органической и неорганической природы. Например, в желудке человека соляная кислота активирует фермент пепсин. Максимальная активность которого лежит в пределах рН от полутора до двух.
Ингибирование ферментов может быть обратимым и необратимым. Если вещество-ингибитор вызывает стойкое изменение пространственной структуры фермента, то такое ингибирование будет необратимым.
А вот обратимое ингибирование, в свою очередь, бывает двух типов. Давайте их рассмотрим.

С активным центром фермента могут связываться вещества, сходные по структуре с субстратом. Никакой реакции при этом нет, но между ингибиторами и субстратом происходит конкуренция за активный центр. Поэтому такой тип ингибирования называется конкурентным.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Конкурентное ингибирование широко используется в медицине. Антибиотики, противоопухолевые препараты, используемые в качестве лекарственных средств, являются конкурентными ингибиторами.

В неконкурентном ингибировании не участвуют вещества, сходные с субстратом. При таком типе ингибирования, молекулы ингибиторов присоединяются к регуляторному центру фермента. Это вызывает изменение пространственной структуры активного центра, что препятствует присоединению к нему молекул субстрата. Тем самым снижается скорость ферментативной реакции.

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Уникальные способности ферментов уже много лет используются человеком в хозяйственной деятельности. В настоящее время развивается новая отрасль науки – промышленная энзимология. Которая, в свою очередь, является основой биотехнологии.
Мы уже упоминали об использовании ферментов в медицине. Фармацевтическая промышленность научилась производить искусственный аналог гормона надпочечников кортизола – преднизолон. Который используется при лечении ревматоидного артрита.
Широкое применение ферменты-энзимы находят также в пищевой промышленности. Их применяют в производстве сыров, соков, овощных и фруктовых пюре. Не обходится без применения ферментов хлебопечение, производство алкогольных напитков. Для улучшения вкуса, аромата и консистенции их применяют для обработки мяса.
В текстильной и кожевенной промышленности ферменты позволяют значительно увеличить выход овчины, а обработка кожи перед дублением делает её поверхность чистой, гладкой и тонкой.
Перспективным является применение ферментов, разлагающих целлюлозу. В результате этого из древесины, торфа, сельскохозяйственных и городских отходов можно получить ценные биотехнологические продукты: глюкозу, этанол, ацетон и другие. Особую актуальность это имеет в наши дни, когда проблема загрязнения окружающей среды выходит на передний план.

Источник

Биокатализаторы

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй — в англо- и франкоязычной).
Наука о ферментах называется энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

Содержание

История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

В кон. ХVIII — нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен [1]

В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришел к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках.

Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастера с одной стороны, и М. Бертло и Ю. Либиха — с другой, о природе спиртового брожения. Собственно ферментами (от лат. fermentum — закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч. ἐν- — в- и ζύμη — дрожжи, закваска) предложен в 1876 году В. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин, амилаза). Через два года после смерти Л. Пастера в 1897 году Э. Бюхнер опубликовал работу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В 1907 году за эту работу он был удостоен Нобелевской премии.

Функции ферментов

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10 −10 моль/л и менее. См. также Каталитически совершенный фермент

Ферменты широко используются в народном хозяйстве — пищевой, текстильной промышленности, в фармакологии.

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC — Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию — присоединение по двойным связям.

Соглашения о наименовании ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата (например, лактаза — фермент, участвующий в превращении лактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например, по оптимальному pH (щелочная фосфатаза) или локализации в клетке (мембранная АТФаза).

Кинетические исследования

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса — Ментен (см. рис.). На сегодняшний момент описано несколько механизмов действия ферментов. Например, действие многих ферментов описывается схемой механизма «пинг-понг».

Структура и механизм действия ферментов

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

У некоторых ферментов есть сайты связывания малых молекул, они могут быть субстратами или продуктами метаболического пути, в который входит фермент. Они уменьшают или увеличивают активность фермента, что создает возможность для обратной связи.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам. Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты демонстрируют высокий уровень стереоспецифичности, региоселективности и хемоселективности.

Модель «ключ-замок»

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Что является биологическим катализатором. Смотреть фото Что является биологическим катализатором. Смотреть картинку Что является биологическим катализатором. Картинка про Что является биологическим катализатором. Фото Что является биологическим катализатором

Модель индуцированного соответствия

Модификации

Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями (процессингом). Один из самых распространенных типов модификации — присоединение химических групп к боковым остаткам полипептидной цепи. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой. Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы.

Еще один распространенный тип посттранляционных модификаций — расщепление полипептидной цепи. Например, химотрипсин (протеаза, участвующая в пищеварении), получается при выщеплении полипептидного участка из химотрипсиногена. Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе. Неактивная форма транспортируется в желудок, где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок. Неактивный предшественник фермента называют также «зимогеном».

Кофакторы ферментов

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы. Кофакторы могут быть как неорганическими молекулами (ионы металлов, железо-серные кластеры и др.), так и органическими (например, флавин или гем). Органические кофакторы, прочно связанные с ферментом, называют также простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами.

Фермент, который требует наличия кофактора для проявления каталитической активности, но не связан с ним, называется апо-фермент. Апо-фермент в комплексе с кофактором носит название холо-фермента. Большинство кофакторов связано с ферментом нековалентными, но довольно прочными взаимодействиями. Есть и такие простетические группы, которые связаны с ферментом ковалентно, например, тиаминпирофосфат в пируватдегидрогеназе.

Источник

Ферменты – биологические катализаторы.

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Глава 1. Что такое ферменты?

1.1. Ферменты – биологические катализаторы…….…………………….2-3
1.2. Типы ферментов……………………………………………………..…3
1.3. Структура ферментов………………………………………………..…3
1.4. Специфичность ферментов и условия их активности. ………….… 4

Глава 2. Значение ферментов в живых организмах.

2.1. Роль ферментов в организме ……………………………………. 4-5


Глава 3. Исследовательская работа.

3.1. Химические результаты исследования ………………………. 5-6

3.2. Механизм работы ферментов…………. ………………………………6
3.3. Исследовательский опрос…………………………………………. 6-7
Глава 4. Заключение.

Актуальность: Известно, ферменты играют важнейшую роль в регуляции химических превращений обмена веществ. Ферменты обнаружены у всех живых существ, начиная от самых примитивных микроорганизмов. Получено около 600 ферментов. Ферменты способны управлять сложнейшими процессами разрушения и сотворения новых веществ в организме. В настоящее время знания о работе ферментов человек поставил себе на службу в медицине, промышленности, сельском хозяйстве и других сферах жизни.

Цель проекта: Провести исследование по обнаружению ферментов в живых организмах, рассмотреть их значение.


Что такое ферменты?

Ферменты – это биологические катализаторы белковой природы, ускоряющие химические реакции в живых организмах и вне их.

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов. Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз.

Фермент амилаза необходим для переработки углеводов. Под воздействием амилазы углеводы разрушаются и легко всасываются в кровь. Амилаза присутствует как в слюне, так и в кишечнике. Амилаза тоже бывает разной. Для каждого вида сахаров существует собственный вид этого фермента.

Липаза – это ферменты, которые присутствуют в желудочном соке и вырабатываются поджелудочной железой. Липаза необходима для усвоения организмом жиров.

Протеаза – это группа ферментов, которые присутствуют в желудочном соке и тоже вырабатываются поджелудочной железой. Кроме этого, протеаза присутствует и в кишечнике. Протеаза необходима для расщепления белков.

Активность ферментов определяется их трёхмерной структурой.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.


Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме — давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.


Роль ферментов в организме

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов — все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма — дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. — обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значительной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.


Местонахождение ферментов в организме

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию — синтез ДНК(ДНК-полимеразы), за ее транскрипцию — образование РНК (РНК-полимеразы). В митохондриях присутствуют ферменты, ответственные за накопление энергии, в лизосомах — большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.


Химические результаты исследования

Нами был проведен опыт по изучению механизма действия ферментов на примере вареного куриного филе и сырого.

1. Активность фермента проявилась в пробирке с живыми тканями и не проявилась в пробирке с мёртвыми тканями, потому что в результате денатурации белка, нарушается структура молекулы фермента, её активность снижается, затем прекращается.

2. Измельчение ткани влияет на активность фермента из-за увеличения площади прикосновения, таким образом скорость протекания реакции увеличивается.

Важные отличия ферментов и неорганических катализаторов в том, что реакции с участием неорганических катализаторов протекают, как правило, при высоких давлениях, а ферменты работают при нормальном давлении. Самое главное отличие в том, что скорости реакций, катализируемых ферментами, во много раз больше.


Механизм работы ферментов

Мы провели опрос, среди учащихся МАОУ СШ №55 «Лингвист» по следующим вопросам:

Что такое ферменты?

Какова их роль в организме?

Что влияет на активность ферментов?

Какова химическая природа ферментов?

Чьи работы положили начало ферментологии, как самостоятельному разделу биологической химии?

Из 20 человек лишь 3 ответили правильно на все вопросы. 4 и 5 вопросы оказались самыми трудными для ребят.

Ферменты являются посредниками между организмом и окружающей средой, обеспечивают адаптацию организма к изменяющимся условиям (авторегуляторы).

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов — все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма — дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. — обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значительной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.

Обычно ферменты выделяют из тканей животных, растений, клеток и культуральных жидкостей микроорганизмов, биологических жидкостей (кровь, лимфа и др.). Для получения некоторых труднодоступных ферментов используются методы генетической инженерии. Из исходных материалов ферменты экстрагируют солевыми растворами. Затем их разделяют на фракции, осаждая солями [обычно (NH 4 ) 2 SO 4 ] или, реже, органическими растворителями, и очищают методами гельпроникающей и ионообменной хроматографии. На заключительных этапах очистки часто используют методы аффинной хроматографии. Контроль за ходом очистки ферментов и характеристику чистых препаратов осуществляют, измеряя каталитическую активность ферментов с применением специфических (обычно дающих цветные реакции) субстратов. За единицу количества фермента принимают такое его количество, которое катализирует превращение 1 мк моля субстрата в 1 мин в стандартных условиях. Число единиц фермента, отнесенное к 1 мг белка, называется удельной активностью.

В мире производится около 20 ферментов в объеме 65 тыс. тонн (а существует, как предполагают 25000 ферментов). Например, промышленным способом производят такие ферменты как амилаза, глюкоамилаза, протеаза, инвертаза, пектиназа, каталаза, стрептокиназа, целлюлаза и другие.

Амилазы и протеазы используют в текстильной, хлебопекарной и кожевенной промышленности. Пектолитические ферменты могут быть использованы для мацерации тканей при переработке растительного сырья, например при получении льноволокна. Щелочные протеазы, особенно иммобилизованные, очень эффективно используются в составе моющих средств. Кроме протеолитических ферментов в состав моющих средств вводят липазу, целлюлазу, оксидазу и амилазу для удаления загрязнений крахмального происхождения. Использование иммобилизованной глюкозоизомеразы для непрерывного получения глюкозы является наиболее крупным процессом такого рода в мире.

Микробные ферменты активно используют в клинической диагностике при определении уровня холестерина в крови и мочевой кислоты. Ферменты предлагают использовать для очистки канализационных и водопроводных труб и т.д. и т.п. Ферменты для медицинских или аналитических целей должны быть высокоочищенными.

Иммобилизация и получение связанных ферментных препаратов стало возможным благодаря детальному изучению строения многих ферментов. Раскрыт аминокислотный состав ряда ферментных белков, их пространственная конфигурация, выявлены активные центры, значение различных функциональных групп в проявлении каталитической активности фермента и так далее.


Болезни, связанные с нарушением выработки ферментов

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей — галактоземия (приводит к умственной отсталости) — развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозыв легко усваиваемую глюкозу. Причиной другого наследственного заболевания — фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланинав тирозин. Определение активности многих ферментов в крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина. Фенилкетонурия связана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

1. Тарханов И. Р., Ферменты, в физиологии // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
2. Энзимы // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.).

3. Фершт Э. Структура и механизм действия ферментов. М., 1980.

5. Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохомия человека. Т. 1. М., 1993.

13. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: «Медицина», 2004, с. 114-116, 118-120, 129-134, 139-143, 159-163, 165-168.

14. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторным занятиям по биологической химии. М.: М. Медицина, 1983, раб 24 (п. 1), 25.

15. Учебник Химии 11 класс, Кузнецова Н.Е., Литвинова Т.Н., Лёвкин А.Н. с.132.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *