Что является доказательством прямолинейности света
Закон прямолинейного распространения света. Закон отражения света. Плоское зеркало. Преломление света
1. В основе явления распространения света лежат три закона: закон прямолинейного распространения света, закон отражения света и закон преломления света.
Закон прямолинейного распространения света: в однородной среде свет распространяется прямолинейно. Однородная среда — это среда, состоящая из одного и того же вещества, например, воздух, вода, стекло, масло и пр. Наблюдать прямолинейное распространение света можно в затемненной комнате, в которую через небольшое отверстие проникает луч света.
Следствием прямолинейного распространения света является то, что свет не проникает за экраны, ширмы и другие преграды. Однако если преграда очень мала, например, если это волос, тонкая нить и т.п., то за неё свет будет проникать, т.е. свет в определённых условиях
свет отклоняется от прямолинейного распространения.
Прямолинейное распространение света объясняет образование тени от предметов. На рисунке 97 показано распространение света от точечного источника.
Точечный источник — это такой источник, размеры которого малы по сравнению с расстоянием от него до наблюдателя. На рисунке видно, что на экране образуется чёткая
тень предмета.
На рисунке 98 показано распространение света от протяжённого источника.
В этом случае на экране образуются область тени и область полутени. Тень — область, в которую свет не попадает, в область полутени свет попадает от одной части источника света.
Зная, как образуется тень, можно объяснить солнечные и лунные затмения.
2. Если среда, в которой распространяется свет неоднородная, т.е. свет падает на границу раздела двух сред, то свет изменяет направление распространения. На границе раздела двух сред происходят три явления: отражение света от границы раздела сред, преломление и поглощение веществом (рис. 99).
На рисунке 99 АО — падающий луч, ОВ — отражённый луч, ОС — преломлённый луч; угол ( \( \alpha \) между падающим лучом и перпендикуляром к границе раздела сред — угол падения луча, угол \( \beta \) между отражённым лучом и перпендикуляром к границе раздела сред — угол отражения, угол \( \gamma \) между преломлённым лучом и перпендикуляром к границе раздела сред — угол преломления.
При изменении угла падения изменяется угол отражения, но при этом отражение света подчиняется закону отражения:
Из закона отражения света следует, что падающий и отражённый лучи обратимы.
Если свет отражается от гладкой поверхности, то отражение называется зеркальным. В этом случае, если на поверхность падают параллельные лучи, то отражённые лучи тоже будут параллельными (рис. 100).
Если параллельные лучи падают на шероховатую поверхность, то отражённые лучи будут направлены в разные стороны. Это отражение называют рассеянным или диффузным.
3. На рисунке 101 приведено построение изображения в плоском зеркале. Как показывают опыт и построение изображения предмета в плоском зеркале на основе закона отражения:
Иными словами предмет и его изображение симметричны относительно зеркала.
Изображение предмета в плоском зеркале является мнимым. Мнимое изображение — это такое изображение, которое формируется глазом. В точке \( S’ \) собираются не сами лучи, а их продолжение, энергия в эту точку не поступает.
4. Изменение направления распространения света при переходе в другую среду называют преломлением света.
Эксперименты свидетельствуют о том, что при увеличении угла падения увеличивается угол преломления. Из опытов также следует, что соотношение углов падения и преломления зависит от оптической плотности среды.
Оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света, тем меньше оптическая плотность среды. Так, оптическая плотность воздуха меньше, чем стекла, масла и пр., поскольку скорость света в этих средах меньше, чем в воздухе.
Явление преломления света подчиняется следующим закономерностям:
При переходе света из одной среды в другую его интенсивность несколько уменьшается. Это связано с тем, что свет частично поглощается средой.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. На рисунке изображены точечный источник света \( L \) , предмет \( K \) и экран, на котором получают тень от предмета. При мере удаления предмета от источника света и приближения его к экрану (см. рисунок)
1) размеры тени будут уменьшаться
2) размеры тени будут увеличиваться
3) границы тени будут размываться
4) границы тени будут становиться более чёткими
2. Размеры изображения предмета в плоском зеркале
1) больше размеров предмета
2) равны размерам предмета
3) меньше размеров предмета
4) больше, равны или меньше размеров предмета в зависимости от расстояния между предметом и зеркалом
3. Луч света падает на плоское зеркало. Угол между падающим лучом и отражённым увеличили на 30°. Угол между зеркалом и отражённым лучом
1) увеличился на 30°
2) увеличился на 15°
3) уменьшился на 30°
4) уменьшился на 15°
4. Какое из изображений — А, Б, В или Г — соответствует предмету MN, находящемуся перед зеркалом?
5. Предмет, расположенный перед плоским зеркалом, приблизили к нему на 5 см. Как изменилось расстояние между предметом и его изображением?
1) увеличилось на 5 см
2) уменьшилось на 5 см
3) увеличилось на 10 см
4) уменьшилось на 10 см
6. Предмет, расположенный перед плоским зеркалом, удалили от него так, что расстояние между предметом и его изображением увеличилось в 2 раза. Во сколько раз увеличилось расстояние между предметом и зеркалом?
1) в 0,5 раза
2) в 2 раза
3) в 4 раза
4) в 8 раз
7. Чему равен угол падения луча на границе вода — воздух, если известно, что угол преломления равен углу падения?
8. Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред. Какое из направлений 1-4 соответствует преломлённому лучу?
9. Свет распространяется из масла в воздух, преломляясь на границе раздела этих сред. Па каком рисунке правильно представлены падающий и преломлённый лучи?
10. Световой луч падает на границу раздела двух сред. Скорость света во второй среде
1) равна скорости света в первой среде
2) больше скорости света в первой среде
3) меньше скорости света в первой среде
4) используя один луч, нельзя дать точный
11. Для каждого примера из первого столбца подберите соответствующее физическое явление из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.
ПРИРОДНЫЕ ЯВЛЕНИЯ
A) изображение стоящих на берегу деревьев в «зеркале» воды
Б) видимое изменение положения камня на дне озера
B) эхо в горах
ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) отражение света
2) преломление света
3) дисперсия света
4) отражение звуковых волн
5) преломление звуковых волн
12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу
1) угол преломления равен углу падения, если оптическая плотность двух граничащих сред одинакова
2) чем больше показатель преломления среды, тем больше скорость света в ней
3) полное внутреннее отражение происходит при переходе света из среды оптически более плотной в среду оптически менее плотную
4) угол преломления всегда меньше угла падения
5) угол преломления всегда равен углу падения
Прямолинейное распространение света
Всего получено оценок: 214.
Всего получено оценок: 214.
Видимый свет – это электромагнитное излучение определенного, довольно узкого диапазона длин волн, 0.4 – 0.8мкм. Такое излучение обладает рядом важных особенностей. Рассмотрим одну из этих особенностей – прямолинейное распространение света.
Закон распространения света
Наиболее важное доказательство – образование теней и полутеней за освещенным объектом.
Тень можно получить, если взять точечный источник света в темной комнате, поместить предмет между источником и стеной и поглядеть на стену. В качестве точечного источника можно взять любую маленькую лампу, размер которой во много раз меньше освещаемого предмета. За предметом будет видна четкая тень, повторяющая границы освещенного объекта.
Тени, точно повторяющие формы границ освещенного объекта возможны только в случае, если свет распространяется прямолинейно. Если бы свет распространялся по кривым – границы тени искажали бы формы освещенных предметов.
Полутень
Если присмотреться к границе тени в приведенном опыте, можно обнаружить, что эта граница все-таки имеет некоторую «ширину». Освещенность на границе падает не сразу, а на протяжении некоторого небольшого расстояния. Зона, в которой освещенность имеет промежуточное значение, называется полутенью.
Можно подумать, что в случае полутени закон прямолинейного распространения света не действует. Однако, это не так.
Все дело в том, что реальные источники света имеют конечный, и нередко, довольно большой размер. Они содержат не одну, а множество точек, излучающих свет. В результате существует три вида областей:
Последняя область и есть полутень. Построив ход лучей, можно видеть, что закон прямолинейного распространения хорошо объясняет существование полутени.
Рис. 2. Лучи, образующие полутень.
Свойство прямолинейного распространения света было использовано в качестве доказательства шарообразности Земли еще в античности. При лунных затмениях тень Земли, надвигающаяся на Луну, имеет очертания круга. Это возможно только при шарообразности Земли.
Роль среды распространения
Распространение света зависит от свойств среды, в которой это происходит. Во-первых, разные среды по-разному проводят свет. Наиболее прозрачным является вакуум, менее прозрачны газы и жидкости, твердые вещества, как правило, непрозрачны.
Во-вторых, и это гораздо важнее, среда может искривлять лучи света, если она будет неоднородной. Например, когда воздух у поверхности земли перегрет, а вверху прохладен – появляются миражи выше или ниже горизонта. Примеры нижних миражей можно легко наблюдать даже в средней полосе, летом на горячем асфальте видны «лужи» – это лучи неба, искаженные в неоднородной воздушной среде.
Рис. 3. Искажения света над горячим асфальтом.
Что мы узнали?
В прозрачной однородной среде свет распространяется прямолинейно. Доказательством прямолинейности распространения света является существование теней и полутеней. В неоднородной среде лучи света могут искривляться.
Закон прямолинейного распространения света – примеры с объяснением
Видимый свет – это электромагнитное излучение определенного, довольно узкого диапазона длин волн, 0.4 – 0.8мкм. Такое излучение обладает рядом важных особенностей. Рассмотрим одну из этих особенностей – прямолинейное распространение света.
Закон распространения света
Наиболее важное доказательство – образование теней и полутеней за освещенным объектом.
Тень можно получить, если взять точечный источник света в темной комнате, поместить предмет между источником и стеной и поглядеть на стену. В качестве точечного источника можно взять любую маленькую лампу, размер которой во много раз меньше освещаемого предмета. За предметом будет видна четкая тень, повторяющая границы освещенного объекта.
Рис. 1. Лучи, образующие тень.
Тени, точно повторяющие формы границ освещенного объекта возможны только в случае, если свет распространяется прямолинейно. Если бы свет распространялся по кривым – границы тени искажали бы формы освещенных предметов.
Полутень
Если присмотреться к границе тени в приведенном опыте, можно обнаружить, что эта граница все-таки имеет некоторую «ширину». Освещенность на границе падает не сразу, а на протяжении некоторого небольшого расстояния. Зона, в которой освещенность имеет промежуточное значение, называется полутенью.
Можно подумать, что в случае полутени закон прямолинейного распространения света не действует. Однако, это не так.
Все дело в том, что реальные источники света имеют конечный, и нередко, довольно большой размер. Они содержат не одну, а множество точек, излучающих свет. В результате существует три вида областей:
Последняя область и есть полутень. Построив ход лучей, можно видеть, что закон прямолинейного распространения хорошо объясняет существование полутени.
Рис. 2. Лучи, образующие полутень.
Свойство прямолинейного распространения света было использовано в качестве доказательства шарообразности Земли еще в античности. При лунных затмениях тень Земли, надвигающаяся на Луну, имеет очертания круга. Это возможно только при шарообразности Земли.
Роль среды распространения
Распространение света зависит от свойств среды, в которой это происходит. Во-первых, разные среды по-разному проводят свет. Наиболее прозрачным является вакуум, менее прозрачны газы и жидкости, твердые вещества, как правило, непрозрачны.
Во-вторых, и это гораздо важнее, среда может искривлять лучи света, если она будет неоднородной. Например, когда воздух у поверхности земли перегрет, а вверху прохладен – появляются миражи выше или ниже горизонта. Примеры нижних миражей можно легко наблюдать даже в средней полосе, летом на горячем асфальте видны «лужи» – это лучи неба, искаженные в неоднородной воздушной среде.
Рис. 3. Искажения света над горячим асфальтом.
Что мы узнали?
В прозрачной однородной среде свет распространяется прямолинейно. Доказательством прямолинейности распространения света является существование теней и полутеней. В неоднородной среде лучи света могут искривляться.
Световые явления. Свойства света
Цель работы – изучить световые явления и свойства света на опытах, рассмотреть три основных свойства света: прямолинейность распространения, отражение и преломление света в разных по плотности средах.
Задачи:
Актуальность
В повседневной жизни мы постоянно сталкиваемся со световыми явлениями и их различными свойствами, работа многих современных механизмов и приборов также связана со свойствами света. Световые явления стали неотъемлемой частью жизни людей, поэтому их изучение актуально.
Приведённые ниже опыты объясняют такие свойства света, как прямолинейность распространения, отражение и преломление света.
Для провидения и описания опытов использовано 13-е стереотипное издание учебника А. В. Перышкина «Физика. 8 класс.» (Дрофа, 2010)
Техника безопасности
Электрические приборы, задействованные в опыте, полностью исправны, напряжение на них не превышает 1.5 В.
Оборудование устойчиво размещено на столе, рабочий порядок соблюдён.
По окончанию проведения опытов электрические приборы выключены, оборудование убрано.
Опыт 1. Прямолинейное распространение света. (стр. 149, рис. 120), (стр.149, рис. 121)
Цель опыта – доказать прямолинейность распространения световых лучей в пространстве на наглядном примере.
Прямолинейное распространение света – его свойство, с которым мы встречаемся наиболее часто. При прямолинейном распространении энергия от источника света направляется к любому предмету по прямым линиям (световым лучам), не огибая его. Этим явлением можно объяснить существование теней. Но кроме теней существуют еще и полутени, частично освещённые области. Чтобы увидеть, при каких условиях образуются тени и полутени и как при этом распространяется свет, проведём опыт.
Оборудование: непрозрачная сфера (на нити), лист бумаги, точечный источник света (карманный фонарь), непрозрачная сфера (на нити) меньше размером, для которой источник света не будет являться точечным, лист бумаги, штатив для закрепления сфер.
Ход опыта
Образование тени
Мы видим, что результатом эксперимента стала равномерная тень. Предположим, что свет распространялся прямолинейно, тогда образование тени можно легко объяснить: свет, идущий от точечного источника по световому лучу, касающийся крайних точек сферы продолжил идти по прямой линии и за сферой, из-за чего на листе пространство за сферой не освещено.
Предположим, что свет распространялся по кривым линиям. В этом случае лучи света, искривляясь, попали бы и за сферу. Тени бы мы не увидели, но в результате проведения опыта тень появилась.
Теперь рассмотрим случай, при котором образуется полутень.
Образование тени и полутени
В этот раз результаты эксперимента – тень и полутень. Как образовалась тень уже известно из примера выше. Теперь, чтобы показать, что образование полутени не противоречит гипотезе о прямолинейном распространении света, необходимо пояснить это явление.
В этом опыте мы взяли источник света, не являющийся точечным, то есть состоящий из множества точек, по отношению к сфере, каждая из которых испускает свет во всех направлениях. Рассмотрим самую верхнюю точку источника света и световой луч, исходящий из неё к самой нижней точке сферы. Если пронаблюдать за движением луча за сферой до листа, то мы заметим, что он попадает на границу света и полутени. Лучи из подобных точек, идущие в таком направлении (от точки источника света к противоположной точке освещаемого предмета) и создают полутень. Но если рассматривать направление светового луча из выше обозначенной точки к верхней точке сферы, то будет отлично видно, как луч попадает в область полутени.
Из этого опыта мы видим, что образование полутени не противоречит прямолинейному распространению света.
Вывод
С помощью этого опыта я доказала, что свет распространяется прямолинейно, образование тени и полутени доказывает прямолинейность его распространения.
Явление в жизни
Прямолинейность распространения света широко применяется на практике. Самым простым примером является обыкновенный фонарь. Также это свойство света используется во всех устройствах, в составе которых есть лазеры: лазерные дальномеры, приспособления для резки металла, лазерные указки.
В природе свойство встречается повсеместно. Например, свет, проникающий через просветы в кроне дерева, образует хорошо различимую прямую линию, проходящую сквозь тень. Конечно, если говорить о больших масштабах, стоит упомянуть о солнечном затмении, когда луна отбрасывает тень на землю, из-за чего солнце с земли (естественно, речь идет о затененном ее участке) не видно. Если бы свет распространялся не прямолинейно, этого необычного явления не существовало бы.
Ссылка на видео проведения опыта: https://www.dropbox.com/s/eu0r135b5o2cx9b/VID_20170517_222801.mp4?dl=0
Опыт 2. Закон отражения света. (с.154, рис. 129)
Цель опыта – доказать, что угол падения луча равен углу его отражения.
Отражение света также является важнейшим его свойством. Именно благодаря отражённому свету, который улавливается человеческим глазом, мы можем видеть какие-либо объекты.
По закону отражения света, лучи, падающий и отражённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; угол падения равен углу отражения. Проверим, равны ли данные углы, на опыте, где в качестве отражающей поверхности возьмём плоское зеркало.
Оборудование: специальный прибор, представляющий собой диск с нанесённой круговой шкалой, укреплённый на подставке, в центре диска находится небольшое плоское зеркало, расположенное горизонтально (такой прибор можно изготовить в домашних условиях, используя вместо диска с круговой шкалой транспортир.), источник света – осветитель, прикреплённый к краю диска или лазерная указка, лист для нанесения измерений.
Ход опыта
Результаты опыта в первом случае:
Из опыта видно, что угол падения светового луча равен углу его отражения. Свет, попадая на зеркальную поверхность, отражается от неё под тем же углом.
Вывод
С помощью опыта и проведённых измерений я доказала, что при отражении света угол его падения равен углу отражения.
Явление в жизни
С этим явлением мы встречаемся повсеместно, так как воспринимаем глазом отражённый от предметов свет. Ярким видимым примером в природе могут служить блики яркого отражённого света на воде и на других поверхностях с хорошей отражательной способностью (поверхность поглощает меньше света чем отражает). Также, следует вспомнить солнечные зайчики, которые может пускать с помощью зеркала каждый ребёнок. Они не что иное, как отражённый от зеркала луч света.
Человек использует закон отражения света в таких приборах, как перископ, зеркальный отражатель света (к примеру, отражатель на велосипедах).
Кстати, с помощью отражения света от зеркала фокусники создавали многие иллюзии, например, иллюзию «Летающая голова». Человек помещался в ящик среди декораций так, что из ящика была видна только его голова. Стенки ящика закрывали наклонённые к декорациям зеркала, отражение от которых не давало увидеть ящик и казалось, что под головой ничего нет и она висит в воздухе. Зрелище необычное и пугающее. Фокусы с отражением имели место и в театрах, когда на сцене нужно было показать призрака. Зеркала «затуманивали» и наклоняли так, чтобы отражённый свет из ниши за сценой был виден в зрительном зале. В нише уже появлялся актёр, играющий призрака.
Ссылка на видео проведения опыта: https://www.dropbox.com/s/hysbxxeflb7n5zn/VID_20170517_222039.mp4?dl=0
Опыт 3. Преломление света. (стр. 159, рис. 139)
Цель опыта — доказать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред; доказать, что угол падения светового луча (≠ 0°), идущего из менее плотной среды в более плотную, больше угла его преломления.
В жизни мы часто встречаемся с преломлением света. Например, кладя в прозрачный стакан с водой совершенно прямую ложку мы видим, что её изображение изгибается на границе двух сред (воздуха и воды), хотя на самом деле ложка остаётся прямой.
Чтобы получше рассмотреть это явление, понять, почему оно происходит и доказать закон преломления света (лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред) на примере, проведём опыт.
Оборудование: две среды разной плотности (воздух, вода), прозрачная тара для воды, источник света (лазерная указка), лист бумаги.
Ход опыта
Предположим, что световые лучи, проходя через среды разной плотности, испытывали преломление. При этом углы падения и преломления не могут быть равны, а отношения синусов этих углов не равны одному. Если преломления не произошло, то есть свет перешёл из одной среды в другую, не меняя своё направление, то данные углы будут равными (отношение синусов равных углов равно одному). Чтобы подтвердить или опровергнуть предположение, рассмотрим результаты опыта.