Параллелепипед — призма, основанием которой является параллелограмм либо (равносильно) многогранник с шестью гранями, являющимися параллелограммами. Шестигранник.
Параллелограммы, из которых состоит параллелепипед являются гранями этого параллелепипеда, стороны этих параллелограммов являются ребрами параллелепипеда, а вершины параллелограммов — вершинамипараллелепипеда. У параллелепипеда каждая грань является параллелограммом.
Как правило выделяют любые 2-е противолежащие грани и называют их основаниями параллелепипеда, а оставшиеся грани — боковыми гранями параллелепипеда. Ребра параллелепипеда, которые не принадлежат основаниям являются боковыми ребрами.
2 грани параллелепипеда, которые имеют общее ребро являются смежными, а те, которые не имеют общих ребер — противоположными.
Отрезок, который соединяет 2 вершины, которые не принадлежат 1-ой грани является диагональю параллелепипеда.
Длины ребер прямоугольного параллелепипеда, которые не параллельны, являются линейными размерами (измерениями) параллелепипеда. У прямоугольного параллелепипеда 3 линейных размера.
Типы параллелепипеда.
Существует несколько видов параллелепипедов:
Прямым является параллелепипед с ребром, перпендикулярным плоскости основания.
Прямой параллелепипед с прямоугольником в основании является прямоугольным параллелепипедом. У прямоугольного параллелепипеда каждая из граней является прямоугольником.
Наклонный параллелепипед — это параллелепипед, у которого боковые грани расположены, по отношению к основаниям, под углом, не равным 90 градусов.
Прямоугольный параллелепипед, у которого все 3 измерения имеют равную величину, является кубом. Каждая из граней куба – это равные квадраты.
Произвольный параллелепипед. Объём и соотношения в наклонном параллелепипеде в основном определяются при помощи векторной алгебры. Объём параллелепипеда равняется абсолютной величине смешанного произведения 3-х векторов, которые определяются 3-мя сторонами параллелепипеда (которые исходят из одной вершины). Соотношение между длинами сторон параллелепипеда и углами между ними показывает утверждение, что определитель Грама данных 3-х векторов равняется квадрату их смешанного произведения.
Свойства параллелепипеда.
В параллелепипед вписывают тетраэдр. Объем этого тетраэдра будет равняться третьей части объема параллелепипеда.
Начнем с того, что узнаем, что такое параллелепипед.
Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.
На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.
Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.
Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.
Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.
Параллелепипед — это:
Свойства параллелепипеда
Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.
Вот 4 свойства параллелепипеда, которые необходимо запомнить:
Подготовка к ЕГЭ по математике онлайн в школе Skysmart — отличный способ освежить знания и снять стресс перед экзаменом.
Прямой параллелепипед
Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.
На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.
Формулы прямого параллелепипеда:
Прямоугольный параллелепипед
Определение прямоугольного параллелепипеда:
Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.
Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.
Свойства прямоугольного параллелепипеда
Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.
Формулы прямоугольного параллелепипеда:
Диагонали прямоугольного параллелепипеда: теорема
Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.
Если есть теорема, нужно ее доказать. (с) Пифагор
Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.
Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.
Доказательство теоремы:
Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.
Все грани прямоугольного параллелепипеда — прямоугольники.
Кубом называется прямоугольный параллелепипед, все три измерения которого равны.
Каждая грань куба — это квадрат.
Свойства куба:
Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.
Формулы куба:
Решение задач
Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.
Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.
Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac). Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.
Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Нужно найти длину ребра A1B1.
В фокусе внимания треугольник BDD1. Угол D = 90°.
Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Теперь потренируйтесь самостоятельно — мы верим, что все получится!
Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.
Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.
Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.
Вычислите длину ребра AA1.
Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:
Параллелепи́пед (от греч. παράλλος — параллельный и греч. επιπεδον — плоскость) — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них параллелограмм.
Содержание
Типы параллелепипеда
Различается несколько типов параллелепипедов:
Основные элементы
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства
Основные формулы
Прямой параллелепипед
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Прямоугольный параллелепипед
Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности Sп=2(ab+bc+ac)
Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Площадь боковой поверхности Sб=4a², где а — ребро куба
Площадь полной поверхности Sп=6a²
Произвольный параллелепипед
В математическом анализе
В математическом анализе под n-мерным прямоугольным параллелепипедом понимают множество точек вида
Смотреть что такое «Параллелепипед» в других словарях:
ПАРАЛЛЕЛЕПИПЕД — греч., от parallelos., параллельный, и epidon, поверхность. Четырехсторонняя призма, у которой противоположные стороны параллельны между собой. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.… … Словарь иностранных слов русского языка
Параллелепипед — Параллелепипед. ПАРАЛЛЕЛЕПИПЕД (от греческого parallelos параллельный и epipedon плоскость), призма, основание которой параллелограмм. … Иллюстрированный энциклопедический словарь
параллелепипед — призма, ромбоэдр, шестигранник Словарь русских синонимов. параллелепипед сущ., кол во синонимов: 4 • многогранник (38) • … Словарь синонимов
ПАРАЛЛЕЛЕПИПЕД — (от греч. parallelos параллельный и epipedon плоскость) призма, основанием которой служит параллелограмм … Большой Энциклопедический словарь
ПАРАЛЛЕЛЕПИПЕД — ПАРАЛЛЕЛЕПИПЕД, параллелепипеда, муж. (от греч. parallelos параллельный и epipedon поверхность) (мат.). Шестигранник, у которого противоположные грани равны и параллельны. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
ПАРАЛЛЕЛЕПИПЕД — ПАРАЛЛЕЛЕПИПЕД, а, муж. В математике: призма, основанием к рой служит параллелограмм. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Параллелепипед — шестигранник, каждая пара противоположных гранейкоторого суть параллелограммы равной величины и параллельные междусобой … Энциклопедия Брокгауза и Ефрона
параллелепипед — а, м. parallélépipède m. <гр. parallelos + epidepon плоскость. геом. Шестигранник, сторонами которого являются параллелограммы. Крысин 1998. Цвет его <сапфира> лазуревой, сложение листоватое; представляет шести или многоугольную призьму … Исторический словарь галлицизмов русского языка
ПАРАЛЛЕЛЕПИПЕД — призма, основанием которой является (см.) … Большая политехническая энциклопедия
Параллелепипед — (греч. parallelepípedon, от parállelos параллельный и epípedon плоскость) шестигранник, противоположные грани которого попарно параллельны. П. имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы. П.… … Большая советская энциклопедия
Что за слово такое мудреное – «параллелепипед»? Что за многогранник скрывается за этим словом?
Что-то должно быть связано с параллельностью, не правда ли?
Читай статью, смотри вебинар и ты все про него будешь знать!
Параллелепипед — коротко о главном
Параллелепипед— это четырехугольная призма (многогранник с \( \displaystyle 6\) гранями), все грани которой — параллелограммы.
Прямой параллелепипед—это параллелепипед, у которого \( \displaystyle 4\) боковые грани — прямоугольники.
Прямоугольный параллелепипед— параллелепипед, у которого все грани — прямоугольники
Куб— параллелепипед, у которого все грани квадраты.
Высота параллелепипеда – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.
Свойства параллелепипеда
Параллелепипед — подробнее
Параллелепипед – многоугольник, образованный пересечением трех пар параллельных плоскостей.
Если слишком сложно, просто посмотри на картинку.
Какую фигуру из планиметрии (геометрии с «плоскими» фигурами) напоминает параллелепипед?
Немного похоже на параллелограмм, правда? Только «потолще» и слово подлиннее.
Далее смотри на картинки, запоминай и не путай!
Высота – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.
Та грань, на которую опущена высота, называется основанием.
Свойства параллелепипеда
Внимание: передняя и задняя грани параллелепипеда равны, верхняя и нижняя – тоже равны, но не равны (не обязаны быть равны) передняя и верхняя грани – потому что они не противоположные, а смежные.
Прямой параллелепипед
Прямым называется параллелепипед, у которого боковые ребра перпендикулярны основанию.
У прямого параллелепипеда в основании – параллелограмм, а боковые грани – прямоугольники.
Прямоугольный параллелепипед
Прямоугольным называется параллелепипед, у которого в основании прямоугольник, а боковые ребра перпендикулярны основанию.
Это такая обувная коробка:
У прямоугольного параллелепипеда все грани – прямоугольники.
Давай-ка теперь выведем одну интересную формулу для диагонали прямоугольного параллелепипеда.
Диагональ прямоугольного параллелепипеда равна сумме квадратов его измерений.\( \displaystyle <^<2>>=<^<2>>+<^<2>>+<^<2>>\).
Видишь, как красиво? На теорему Пифагора похоже, правда? И формула эта как раз и получается из теоремы Пифагора.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Параллелепипед»
На этом уроке мы дадим определение параллелепипеда. Назовем его элементы. А также рассмотрим свойства граней и диагоналей параллелепипеда.
Мы с вами начали изучать многогранники. Напомню, что многогранник представляет собой геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два смежные из которых не лежат в одной плоскости.
Познакомились с призмой. n-угольной призмой называется многогранник, у которого две грани – равные n-угольники, а остальные n граней – параллелограммы.
Теперь давайте рассмотрим понятие параллелепипеда. Итак, параллелепипед – это четырехугольная призма, основаниями которой являются параллелограммы.
На рисунке изображен параллелепипед ABCDA1B1C1D1. Обратите внимание, все шесть граней параллелепипеда – параллелограммы.
Стороны параллелограммов называются ребрами параллелепипеда, а их вершины – вершинами параллелепипеда. Две грани параллелепипеда называются противолежащими, если они не имеют общего ребра. Например, грани AA1B1B и DD1C1C – противолежащие. Грани имеющие общее ребро называются смежными. Например, грани AA1D1D и DD1C1C – смежные, ребро DD1 у них общее.
Объединение боковых граней называется боковой поверхностью параллелепипеда, а объединение всех граней называется полной поверхностью параллелепипеда. Тогда площадью боковой поверхности параллелепипеда называется сумма площадей его боковых граней. А площадью полной поверхности параллелепипеда называется сумма площадей всех его граней.
Если все боковые ребра параллелепипеда перпендикулярны к плоскостям его оснований, т. е. боковые грани – прямоугольники, то такой параллелепипед называется прямым. Если параллелепипед не является прямым, т.е. если все его боковые ребра не перпендикулярны к плоскостям оснований, то он называется наклонным. Если же и основаниями прямого параллелепипеда служат прямоугольники, то такой параллелепипед называется прямоугольным.
На рисунке вы видите примеры прямого, наклонного и прямоугольного параллелепипедов.
Представление о форме прямоугольного параллелепипеда дают спичечный коробок, коробка, холодильник и др. Обратите внимание, что всякий прямоугольный параллелепипед является прямым параллелепипедом, но не любой прямой параллелепипед есть прямоугольный. Основанием прямого параллелепипеда может служить параллелограмм, не являющийся прямоугольником. Представление о прямом, но не прямоугольном параллелепипеде дает, например, комната, в которой пол и потолок имеют форму ромба, не являющегося квадратом.
Две вершины параллелепипеда, не принадлежащие одной грани, называются противолежащими (обозначены точками). Отрезок, соединяющий, противолежащие вершины, называется диагональю параллелепипеда. У параллелепипеда всего четыре диагонали.
Куб – это прямоугольный параллелепипед, все ребра которого равны, т.е. все грани которого – равные квадраты.
Параллелепипед обладает следующими свойствами:
1) противолежащие грани параллелепипеда равны и лежат в параллельных плоскостях.
2) диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
Докажем, что диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
Доказательство этого утверждения основывается на следующем факте: если две прямые в пространстве параллельны третьей прямой, то они параллельны.
Мы знаем, что диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Если две прямые в пространстве параллельны третьей прямой, то они параллельны.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Итак, на рисунке изображен прямоугольный параллелепипед .
, , , ,
– параллелограмм
, , , , тогда ,
– параллелограмм
, , , , тогда ,
– параллелограмм
Таким образом,
Что и требовалось доказать.
Задача.прямой параллелепипед, основание – квадрат. Найдите площадь полной поверхности параллелепипеда, если ребро равно см, а ребро – см.
По условию сказано, что наш параллелепипед прямой. Значит, все его боковые ребра перпендикулярны к плоскостям его оснований, т. е. боковые грани – прямоугольники. Т.к. в основании лежит квадрат, т.е. и основаниями прямого параллелепипеда служат прямоугольники, то наш параллелепипед прямоугольный. Из этого вытекает, что все боковые грани нашего параллелепипеда равные прямоугольники.
Напомню, что объединение всех граней называется полной поверхностью параллелепипеда. Тогда площадь полной поверхности параллелепипеда есть сумма площадей всех его граней.
Для начала найдем площадь боковой поверхности. Она равна сумме площадей боковых граней параллелепипеда.
(см 2 )
Теперь найдем площадь основания.
(см 2 )
Подставим найденные площади в формулу. Посчитаем.
(см 2 )
Ответ:(см 2 ).
Подведем итоги урока.
На этом уроке мы рассмотрели параллелепипед. Узнали, что параллелепипед – это четырехугольная призма, основаниями которой являются параллелограммы. Назвали его элементы. А также рассмотрели свойства граней и диагоналей параллелепипеда.