Что является основой композита
Композиционные материалы
1. Композиционные или композитные материалы – материалы будущего.
После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много разпревышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. Упервых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.
Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемымизначениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.
2. Типы композиционных материалов.
2.1. Композиционные материалы с металлической матрицей.
Композитные материалы или композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.
2.2. Композиционные материалы с неметаллической матрицей.
Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.
Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ейформу. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.
Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.
Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон,тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.
По виду упрочнителя композитные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты иоргановолокниты.
В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слоисобираются в пластины. Свойства получаются анизотропными. Для работыматериала в изделии важно учитывать направление действующих нагрузок. Можносоздать материалы как с изотропными, так и с анизотропными свойствами.
Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.
Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.
Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивлениесдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.
3. Классификация композиционных материалов.
3.1. Волокнистые композиционные материалы.
Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.
Композитые материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.
Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокондолжны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.
Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модульупругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.
Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.
Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных ивысокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.
Композиционные материалы на металлической основе обладают высокойпрочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.
Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.
Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, доборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.
Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.
3.2. Дисперсно-упрочненные композиционные материалы.
В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.
Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов иредкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т [pic]. В связи с этимтакие материалы чаще применяют как жаропрочные. Дисперсно-упрочненныекомпозиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.
Наиболее широко используют сплавы на основе алюминия – САП(спеченный алюминиевый порошок).
Плотность этих материалов равна плотности алюминия, они не уступают ему покоррозионной стойкости и даже могут заменять титан и коррозионно-стойкиестали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45-55 МПа.
Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердыйраствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применениеполучили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительностивыдержки при данной температуре.
Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.
Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, сметаллической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и дажеволокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют дляизготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качествесвязующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпусаприборов и т. п.).
Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательносклеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.
Стекловолокниты могут работать при температурах от –60 до 200 °С, атакже в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.
Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).
Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительнойсредах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим
(низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержаниюкарбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризациянитевидных кристаллов TiO[pic], AlN и Si[pic]N[pic], что дает увеличениемежслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.
Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).
Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углероднойлентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.
Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и
КМУ-2л на основе полиимидного связующего можно применять при температуре до
300 °С.
Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения [pic] и Епочти не изменяются.
Карбостекловолокниты содержат наряду с угольными стеклянныеволокна, что удешевляет материал.
3.5. Карбоволокниты с углеродной матриццей.
Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочностьсцепления с углеродным волокном. В связи с этим композиционный материалобладает высокими механическими и абляционными свойствами, стойкостью ктермическому удару.
Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениямпрочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200
°С, на воздухе окисляется при 450 °С и требует защитного покрытия.
Коэффициент трения одного карбоволокнита с углеродной матрицей по другомувысок (0,35-0,45), а износ мал (0,7-1 мкм на тормажение).
Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.
Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.
Помимо непрерывного борного волокна применяют комплексныеборостеклониты, в которых несколько параллельных борных волокон оплетаютсястеклонитью, предающей формоустойчивость. Применение боростеклонитейоблегчает технологический процесс изготовления материала.
В качестве матриц для получения боровлокнитов используютмодифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать притемпературе не свыше 100 °С; КМБ-2к работоспособен при 300 °С.
Бороволокниты обладают высокими сопротивлениями усталости, онистойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.
Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.
К органоволокнитах значения модуля упругости и температурныхкоэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическоевзаимодействие между ними. Структура материала бездефектна. Пористось непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильностьмеханических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочностьпри сжатии и высокая ползучесть (особенно для эластичных волокон).
Органоволокниты устойчивы в агрессивных средах и во влажномтропическом климате; диэлектрические свойства высокие, а теплопроводностьнизкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.
В комбинированных материалах наряду с синтетическими волокнамиприменяют минеральные (стеклянные, карбоволокна и бороволокна). Такиематериалы обладают большей прочностью и жесткостью.
4. Экономическая эффективность применения композиционных материалов.
Области применения композиционных материалов не ограничены. Ониприменяются в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкцийаппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.
Применение композиционных материалов обеспечивает новыйкачественный скачек в увеличении мощности двигателей, энергетических итранспортных установок, уменьшении массы машин и приборов.
Технология получения полуфабрикатов и изделий из композиционныхматериалов достаточно хорошо отработана.
Композитные материалы с неметаллической матрицей, а именнополимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники,панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульныекарбоволокниты применяют для изготовления деталей авиационной техники,аппаратуры для химической промышленности, в рентгеновском оборудовании идругом.
Карбоволокниты с углеродной матрицей заменяют различные типыграфитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.
Изделия из бороволокнитов применяют в авиационной и космическойтехнике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).
Органоволокниты применяют в качестве изоляционного иконструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.
Объявления о покупке и продаже оборудования можно посмотреть на
Обсудить достоинства марок полимеров и их свойства можно на
Зарегистрировать свою компанию в Каталоге предприятий
Что такое композитный материал и что такое ламинат?
Главная страница » Что такое композитный материал и что такое ламинат?
Нелогичным видится результат для математики, если складывая две единицы, получают в сумме три. Однако подобная логика приобретает смысл, когда речь заходит о композитах. Но что это такое — композитный материал, именуемый сокращённо «композит»? Если взять два разных материала и объединить каким-либо образом, в результате получится третий объект. В ущерб математике, это будет уже совершенно другая структура, отличная от двух сложенных. В некотором смысле, такая структура превосходит любой из оригинальных составляющих компонентов.
Раскрыть тайну композитных структур
Композитные материалы изначально воспринимаются незнакомыми вещами. Но подобного рода вещи распространены достаточно обширно в окружающем мире. На основе композитных материалов делаются многие знакомые вещи:
Корпуса автомобилей, самолётов, катеров традиционно производят из композитных материалов, подобных стекловолокну или карбону. Поэтому характеризовать композитный материал суперсовременным продуктом не стоит.
Корпус автомобиля, сделанный на основе карбона – композитного волокна, обладающего уникальными свойствами, в которых нуждается современная техника на колёсах
Проще оглянуться вокруг: бетон, дерево, костяшки — всё это композитные материалы. Ламинат, кстати, тот же самый композит, где слои разных материалов склеены один с другим, с целью придания дополнительной прочности, долговечности и других преимуществ.
Что представляет собой структура композитных материалов?
Цели изготовления композитных материалов путём объединения двух или более разных структур, видится очевидной. Таким способом стремятся достичь улучшения структуры при условии сохранения чётких и разных идентичностей в конечном продукте. Поэтому композитный материал не следует представлять:
Рассматривать композитный материал логичнее в рамках сравнения, например, с бетоном, где между цементом распределяются камни разных размеров.
Железобетон также представляет собой композитный стройматериал, изготовленный из стальных арматурных стержней, помещенных в жидкий бетон, за счёт чего фактически образуется композит из композита. Стекловолокно представляет собой смесь крошечных стеклянных частиц, склеенных внутри пластика.
Внутри бетона, железобетона, стекловолокна и т.п., оригинальные ингредиенты достаточно легко обнаружить. Так, в структуре бетона явно просматриваются камни в окружении цемента – эти компоненты не исчезают и не растворяются.
Для чего нужны композитные материалы?
Необходимость в композитном материале объясняется главным моментом – конечный продукт должен быть лучше составляющих, из которых изготовлен. Иначе необходимость в надобности полностью отпадает.
Рассматривая тот же бетон, можно отметить силу продукта в случае использования для сооружения вертикальных балок. Чтобы держать вес здания или конструкции с нагрузкой вниз, бетон удачно работает на сжатие. Но бетон демонстрирует явную слабость и тенденцию к разрушению, если используется горизонтально, когда превалируют силы на растяжение.
Структура композиционного бетона – как пример создания продукта, наделённого более выраженными эксплуатационными свойствами в том или ином варианте
Последним случаем формируется серьёзная проблема для зданий, где много горизонтальных бетонных балок. Решением проблемы является заливка плотных стальных стержней (арматурных стержней) жидким бетоном, создавая, таким образом, композитный материал — железобетон.
Сталь натягивает бетон и сопротивляется силам растяжения, а бетон защищает сталь от ржавчины и гниения. В итоге получается композитный материал, удачно работающий на растяжение и на сжатие.
Усиление структуры — наиболее распространенная причина создания композитных материалов, но не единственная. Иногда стремятся сделать структуру, обладающую другими свойствами.
Например, требуется деталь самолёта, обладающая более высоким сопротивлением усталости по сравнению с металлом. Такая деталь не ломается от многократных напряжений, присутствующих в процессе полёта.
Или, допустим, нужна деталь двигателя, способная сохранять целостность структуры при более высоких температурах, чем обычная керамика. Возможно, потребуется пластик, более жёсткий и прочный, но лёгкий, или пластик с лучшими тепловыми изоляционными свойствами, чем даёт обычный пластик. Композитный материал способствует решению задач в таких ситуациях.
Как изготавливается композитный материал?
Структура композита, как правило, изготавливается на основе двух составляющих (но не исключены добавки):
Не следует рассматривать армирование исключительно волоконной структурой (подобно стекловолокну). Такая конфигурация поддерживается не всегда. Структура железобетона, к примеру, содержит «волокна», которые по факту являются крупногабаритными витыми стальными стержнями.
Структура стекловолокна состоит из крошечных «стеклянных усов». Иногда арматурный элемент изготавливается на основе гранул, частиц или усов, не исключается исполнение на основе сложенного текстиля.
Армированные волокном композитные конструкции на основе термопластичных матриц со встроенными пьезокерамическими модулями: 1, 4 – термопластичная несущая плёнка; 2 – поверхностно-металлизированная пьезокерамическая пластина; 3 – опорная конструкция электрода; 5 – гребенчатый электрод; 6 – пьезокерамический пластинчатый композит
Расположением частиц армирования в матрице определяются механические свойства композитного материала в каждом направлении (изотропные) или свойства в разных направлениях (анизотропные).
Все волокна, направленные одинаково, делают состав анизотропным — более сильным в одном направлении, чем в другом. С другой стороны, частицы, усы или волокна, случайно ориентированные в структуре композита, сделают продукт одинаково прочным во всех направлениях.
Какую бы форму не принимал композитный материал, работа подкрепления состоит в том, чтобы противостоять внешним силам. Работа матрицы заключается в жёстком креплении арматуры на месте и защите арматуры от вредных воздействий окружающей среды.
Какие существуют типы композитных материалов?
Разнообразие типичного исполнения достаточно обширное. Рассматривая это разнообразие, можно выделить наиболее часто попадающиеся на практике экземпляры.
Натуральные композиты
Как правило, представляются композиты прочными, лёгкими, ультрасовременными изделиями. Такие изделия тщательно спроектированы для конкретных применений, например в конструкциях космических ракет и реактивных самолётов. Но если рассматривать исключительно такие продукты, легко забыть природные композитные материалы, существующие изначально и всегда.
Структура натурального дерева: 1 – годичное кольцо; 2 – лучи; 3 – возрастной индикатор; 4 – заболонная древесина; 5 – слой камбия; 6 – кора; 7 – береста; 8 — сердцевина
Древесина – пример натурального композита, состоящего из целлюлозных волокон (армирование), растущего внутри лигнина (матрица из органических полимеров на основе углерода). Кость – пример другого натурального композита, где коллагеновые волокна усиливают матрицу гидроксиапатита (кристаллический минерал на основе кальция).
И даже созданные искусственно композиты не обязательно должны выступать высокотехнологичными и современными. Бетон и кирпич – стройматериалы, сделанные из глины, усиленные соломой, являются примерами композитов, сделанными искусственно. Такие материалы активно использовались в течение тысяч лет.
Классические композиты
Первым современным композитным материалом считается стекловолокно (первоначальное название «фибреглас»). Время изобретения — 30 годы XIX столетия.
Современное стекловолокно обычно выпускается в виде лент, которые допустимо наклеивать на поверхности. Пластмассовая защитная лента — это матрица, удерживающая стеклянные волокна на месте, но именно волокна обеспечивают высокую прочность матрицы.
Пластик имеет относительно мягкую и гибкую структуру, а стекло прочную, но хрупкую. Если же соединить две структуры вместе, получается прочный, долговечный продукт, подходящий для производства, к примеру, кузова автомобиля или корпуса лодки.
Структура конструкции речного (морского) катера, корпус которого изготовлен на основе композита: 1 – корпус судна; 2 – структурная сетка; 3 – основа (подошва) кабины (рубки); 4 – палуба; 5 – центральная консоль
Стекловолокно легче металлов или сплавов, из которых допустимо производить те же самые вещи, но стекловолокно не подвержено коррозии. Углепластик похож на стекловолокно, но вместо стеклянных волокон структура углепластика включает углеродное волокно.
Современные композиты
Современные композитные материалы, как правило, основаны на металле, пластике (полимере) или керамике. Это даёт три основных типа современных композитных материалов:
Металлические матричные композиты (ММК)
Этот вид композитных материалов имеют матрицу из легкого металла — алюминия или сплава магния, усиленного керамическими или углеродными волокнами. Примеры включают алюминий, армированный карбидом кремния, и сплав меди и никеля, армированный графеном (тип углеродного волокна). Включением графена в металлы на несколько порядков усиливается свойство прочности по отношению к обычному виду.
Металлические матричные композиты:
но, как правило, дорогостоящие продукты и трудно поддаются обработке. ММК широко используются в авиакосмической промышленности (детали реактивных двигателей), для военных целей (нитрид бора используется для усиления резервуаров), в автомобильной промышленности (поршни дизельных двигателей) и в режущих инструментах.
Керамические матричные композиты (КМК)
Эта разновидность построена на керамической основе (боросиликатное стекло), выступающей в качестве фоновой матрицы, с углеродными или керамическими волокнами (карбид кремния).
Волокна усиливают и помогают преодолеть ключевую слабость обычной керамики. Примеры включают карбид кремния, армированный углеродным волокном (C/SiC), и карбид кремния, армированный карбидом кремния (SiC/SiC).
Пример керамического матричного композита – вариант продукта, который достаточно часто можно встретить на строительстве специальных объектов
Первоначально КМК разрабатывались для аэрокосмического и военного применения, где очень важны легкость и высокотемпературные характеристики (газотурбинные установки, выхлопные сопла реактивных двигателей).
Однако в последующем КМК также нашли применение в производстве автомобильных тормозов и сцепления, подшипников, теплообменников и ядерных реакторов.
Поскольку керамические матричные композиты обычно используются для высокотемпературных применений, полимерные волокна и обычные легкоплавкие стеклянные волокна не используются в качестве армирующих элементов.
Полимерные матричные композиты (ПМК)
Композиты с полимерной матрицей (ПМК) имеют свои отличающие особенности. В то время как волокна КМК делают материал более жестким и менее хрупким, внутри структуры ПМК керамические или углеродные волокна повышают прочность и жёсткость фонового пластика. Такие свойства, как:
делают полимерные матричные композиты (стекловолокно и др.), отличными материалами для производства деталей автомобилей, лодок, самолётов и т.д. Полимерные матричные композиты также широко используются в производстве спортивных товаров (теннисные ракетки, клюшки для гольфа, сноуборды, лыжи и т.п.).
Композитные материалы будущего
Многие современные исследования направлены на совершенство композитных материалов с использованием волокон примерно в 1000 раз меньше традиционных. Такой подход обещает дать гораздо больший эффект.
Эти так называемые нанокомпозиты являются примером нанотехнологий, где используются углеродные нанотрубки (наночастицы) в качестве подкрепления.
Проверка на прочность хоккейной клюшки конструкции «Colt Hockey» показала удивительные результаты. Таких результатов помогла достичь уникальная композитная структура
Композитные материалы будущего представляются более дешёвыми, обладающими лучшими механическими и электрическими свойствами по сравнению с традиционными композитами.
Яркий пример композитного материала будущего: продукт «Colt Hockey» — хоккейная клюшка из углеродного волокна, покрытого никель-кобальтовым нанокомпозитом. Согласно утверждениям производителей, эта хоккейная клюшка в 2,8 раза прочнее и на 20% более гибкая, чем стальной вариант.
Что такое ламинат?
Своего рода особый вид композитного материала, сформированного путём сращивания слоев двух или более других материалов при помощи клея – называется ламинатом.
Поскольку слои ламината обычно составлены разными материалами, ламинаты являются очевидными примерами композитных материалов, несмотря на отсутствие технологии объединения подобно другим (матричными) композитам.
Важно отметить: ламинат — это не просто несколько отдельно взятых слоёв материалов. Все составляющие ламината постоянно склеены, поэтому представлены как единый материал. Клей (или несколько различных клеев) также выступает составляющей частью ламината.
Структура несложного ламината: 1 – упругий высоко-износостойкий верхний слой; 2 – декоративное покрытие высокой чёткости; 3 – влагостойкая доска сердечника типа HDF, сделанная из натуральных волокон древесины; 4 – обработанное смолой балансное покрытие
Почему существует необходимость ламината? Объясняется потребность просто. Например, бумага, дерево, стекло, — материалы недостаточно прочные и долговечные в их натуральном виде.
Так, бумага легко пропитывается водой, а выполнить печать на пластике достаточно сложно. Между тем, печать можно выполнить на бумаге, после чего покрыть бумагу пластиком. Ламинированный композитный материал приобретает дополнительные свойства.
Примеры использования ламинирования
Примеров для разъяснения этого вопроса можно набрать больше чем достаточно. Рассмотрим некоторые из реальных примеров, которые встречаются на практике.
Ламинированная древесина
Полы из натуральной древесины пользуются высокой популярностью, демонстрируют яркий пример износостойкости. Здесь логично рассмотреть обычный пол из твёрдой древесины и пол ламинированный. В отличие от традиционного пола из твердой древесины, ламинированный пол обычно состоит из четырех слоев:
Многие недорогие мебельные изделия, напоминающие твёрдую древесину, реально представляют ламинаты, изготовленные из древесных материалов более низкого качества (ДСП, ДВП) с тонким покрытием из шпона, пластика или даже бумаги. Основным недостатком ламинированных полов является неспособность противостоять влаге.
Ламинированное стекло
Ветровые и пуленепробиваемые стёкла — фактически тяжёлые ламинаты, собранные из нескольких слоёв стекла и пластика. Наружные слои стекла устойчивы к атмосферным воздействиям и царапинам, в то время как внутренние слои пластика обеспечивают прочность и некоторый процент гибкости, предотвращая разрушение стекла. Стекло также ламинируется пластиком для изготовления композитов, подобных, например, стеклу, армированному пластиком.
Тканевые ламинированные материалы
Большая часть обуви и верхней одежды, как правило, сделаны из ламинированных материалов. Типичный плащ обычно имеет водонепроницаемую мембрану между износостойким наружным слоем и мягким, комфортным внутренним слоем. Иногда мембрана непосредственно связана с внутренним и внешним слоями.
Таким способом делается прочная и долговечная одежда на основе 3-слойного ламината. Если мембрана связана с внешней тканью без внутренней подкладки, это называется 2,5-слойным ламинатом. Водонепроницаемая одежда, изготовленная таким способом, видится более «дышащей», чем трехслойные ламинаты, так как используется лёгкий вариант удаления влаги.
Бумажные ламинированные материалы
Часто в бытовой и хозяйственной практике пользуются портативными машинами для ламинирования. Такой техникой покрывают кусочки бумаги, карты или фотографии тонким, но прочным слоем пластика. Достаточно приобрести пакет пластиковых «мешочков», вставить внутрь бумажный предмет и пропустить набор через машину.
Ламинирующая машина нагревает, склеивает пластик и плотно прижимает два разных структуры, создавая атмосферостойкое и долговечное покрытие. Идентификационные (ID) карты и кредитные карты также ламинированы прозрачным пластиком. Поэтому карты используются без проблем несколько лет.