Что является рабочим телом на тэс работающей на органическом топливе
Котлы тепловых электростанций и защита атмосферы
Систематизированы и обобщены сведения о первой части технологического цикла тепловой электростанции: подготовке различных видов топлива к сжиганию, организации топочного процесса, получении перегретого пара в котельных установках различных конструкций. Приведены особенности эксплуатации паровых котлов на разных видах органического топлива. Учитывая всё возрастающее значение вопросов охраны окружающей среды, авторы, используя результаты собственных исследований и достижения отечественных и зарубежных энергетиков, подробно рассказывают о методах и конструкциях аппаратов, предназначенных для защиты атмосферы от токсичных и парниковых газов, а также золовых частиц, выбрасываемых в атмосферу с дымовыми газами котлов. Пособие предназначено для студентов энергетических специальностей технических вузов, инженерно-технического персонала инжиниринговых компаний и тепловых электростанций, а также слушателей курсов повышения квалификации инженеров-теплотехников.
Оглавление
Приведённый ознакомительный фрагмент книги Котлы тепловых электростанций и защита атмосферы предоставлен нашим книжным партнёром — компанией ЛитРес.
Глава 2. Органическое топливо и особенности его использования на тепловых электростанциях
2.1. Состав и основные характеристики органического топлива
Первичным источником энергии, который используется на тепловых электростанциях, является ископаемое топливо органического происхождения. Горючие вещества, входящие в состав топлива, — углерод С, водород Н и сера S (за исключением небольшой части серы, содержащейся в минеральной массе топлива — сульфатная сера). Кроме горючих веществ, в состав топлива входят кислород О (поддерживает горение, но теплоты не выделяет) и азот N (не участвующий в реакциях горения инертный газ). Кислород и азот иногда называют внутренним балластом топлива, в отличие от внешнего балласта, к которому относят золу и влагу.
Зола (обозначается буквой «А») — это минеральная часть топлива, включающая оксиды кремния, железа, алюминия, а также соли щелочных и щелочноземельных металлов.
Влага топлива (W) подразделяется на внешнюю и гигроскопическую. При длительном хранении твердого топлива в сухом месте оно теряет внешнюю влагу и становится «воздушно-сухим».
Таким образом, если какое-то количество топлива принять за 100 %, то можно записать:
C r + H r + O r + N r + Sл r + A r + W r = 100 %. (2.1)
Индекс «r» в этом уравнении обозначает, что речь идет о рабочей массе топлива, полученного на электростанции (за рубежом обычно говорят не «рабочее», a «as receive», то есть «полученное» топливо).
Исключая из рабочего состава всю влагу, можно получить:
C d + H d + O d + N d + Sл d + A d = 100 %. (2.2)
Индекс «d» в этом уравнении обозначает «dry», то есть «на сухую массу».
Если пойти еще дальше и исключить золу (точнее — минеральную массу), то можно получить состав горючей массы топлива:
C daf + H daf + N daf + O daf + Sл daf = 100 %. (2.3)
Индекс «daf» в этом уравнении обозначает топливо — «dry ash free», то есть «сухое и свободное от золы».
Сера со значком «л», входящая в вышеприведенные уравнения, во-первых, не включает серу, входящую в состав золы, и, во-вторых, состоит из двух частей: серы органической и серы колчеданной (Fe2S), которая присутствует в некоторых марках углей в заметном количестве.
Следовательно, можно рассматривать еще и органическую массу топлива, которая не содержит серы колчеданной:
C o + H o + O o + N o + S o = 100 %. (2.4)
где Аиспр — зольность без учета сульфатов, образовавшихся при разложении карбонатов и с поправкой на сгорание серы колчеданной, то есть
где S, Sст и Sк — содержание серы в лабораторной золе, сульфатной серы в топливе и колчеданной серы соответственно.
Горючими элементами топлива, как уже отмечалось, являются углерод, водород и сера. При полном сгорании с теоретически необходимым количеством окислителя эти компоненты выделяют разное количество теплоты:
С + О2 = CO2 − 8130 ккал/кг (34,04 МДж/кг);
2Н2 + O2 = 2Н2O − 29 100 ккал/кг (121,8 МДж/кг);
S + O2 = SO2 − 2600 ккал/кг (10,88 МДж/кг).
Следует учитывать, что углерод составляет большую часть рабочей массы топлива: в твердом топливе его доля равна 50–75 % (в зависимости от возраста углей), а в мазутах — 83–85 %. Водорода в топливе меньше, но он отличается очень высокой теплотой сгорания. Если продукты его сгорания сконденсировать (то есть учитывать не низшую, а высшую теплоту сгорания), выделенная теплота составит даже не 121,8, а 144,4 МДж/кг.
Серу отличает невысокая теплота сгорания, да и количество её, как правило, невелико. Следовательно, сера не представляет существенной ценности как горючий элемент, а вот проблемы, связанные с наличием SO2 в продуктах сгорания, — весьма существенны.
Таблица 2.1 Коэффициенты пересчета характеристик топлива
Основной характеристикой любого вида органического топлива является его теплота сгорания, то есть количество теплоты, выделяющейся при полном сгорании единицы массы (для твердого и жидкого топлива) или единицы объема (для газа). В расчетах чаще всего используют низшую теплоту сгорания (Qi r ) — количество теплоты, образовавшейся при сжигании 1 кг угля или мазута, а при сжигании газообразного топлива — 1 м 3 этого газа. При этом предполагается, что продукты сжигания остались в газообразном состоянии. Иногда используют другую теплотехническую характеристику — высшую теплоту сгорания (Qs r ), но при этом в тексте обязательно уточняют, что речь идет именно о Qs r (или HHV — higher heating value, в отличие от LНV — lower heating value — низшей теплоты сгорания). Высшая теплота сгорания всегда больше, чем низшая, так как она учитывает дополнительное количество теплоты, выделяющейся при конденсации водяных паров и охлаждении всех продуктов сгорания до исходной температуры.
Пересчет низшей теплоты сгорания на высшую (и наоборот) выполняется по следующей зависимости:
Qi r = Qs r − 6(W r + 9Н r ), ккал/кг (2.5)
Qi r = Qs r − 25,12 (W r + 9Н r ), кДж/кг. (2.5 а)
Другие характеристики топлив, отличающихся своим агрегатным состоянием, удобнее рассматривать отдельно для твердого, жидкого и газообразного топлива.
2.2. Твердое топливо
Твердое топливо включает в себя прежде всего различные угли (антрацит, каменные и бурые угли), а также торф, сланцы и некоторые виды отходов (как промышленных, так и твердых бытовых отходов — ТБО). К этому же виду топлива относится один из возобновляемых источников энергии — биотопливо, то есть древесина, отходы лесозаготовки, деревопереработки, целлюлозно-бумажного и сельскохозяйственного производства.
Преобладающим видом топлива для тепловых электростанций являются различные марки угля. В России прочно установилось деление углей на бурые (самые молодые), каменные и антрациты (старые угли с максимальной степенью углефикации).
Бурые угли делятся по максимальной влагоемкости (в расчете на беззольную массу W af max) на 3 группы: 1Б (W af max > 50 %), 2Б (30 ≤ W af max ≤ 50) и ЗБ (W af max daf > 40 %), неспекшийся коксовый остаток и высокая гигроскопичность. В этих углях меньше (по сравнению с каменными углями) углерода и больше кислорода. При сушке на воздухе бурые угли теряют механическую прочность и растрескиваются. Их недостатком является и повышенная склонность к самовозгоранию при хранении на складе.
Приведенная выше классификация не учитывает каменные угли, подвергшиеся окислению в природных условиях, в период формирования угольных месторождений. Окисленные угли отличают пониженная высшая теплота сгорания на сухую и беззольную массу (Qs daf ), а также потеря спекаемости. Различают I группу окисленности (снижение Qs daf на 10 %) и II группу (снижение Qs daf нa 25 %). Так, например, длиннопламенный уголь Таллинского месторождения (Кузбасс) имеет высшую теплоту сгорания Qs daf = 31,82 МДж/кг. Окисленный уголь того же месторождения ДРОК-I (длиннопламенный, рядовой, окисленный I группы) — до 27,42 МДж/кг, а еще более окисленный — ДРОК-II — только 25,04 МДж/кг.
Еще одна важная характеристика каменных углей — размер кусков. Поступивший на электростанцию уголь по этому показателю делится на следующие классы:
плита (П — от 100 до 200 или 300 мм);
крупный (К — 50–100 мм);
рядовой (Р — 0–200 или 300 мм).
Верхний предел 300 мм распространяется только на угольные разрезы, то есть на предприятия с открытым способом добычи.
Иногда на тепловые электростанции поступает уголь не прямо от добывающего предприятия, а после обогатительных фабрик. При обогащении углей мокрым и сухим способами различают следующие продукты обогащения: малозольный концентрат, высокозольный промпродукт, отсевы мелких классов, шлам, а также породу и «хвосты», удаляемые в отвал. С учетом этого можно по маркировке поступающего на ТЭС угля представить некоторые характеристики топлива, весьма важные как для надежности топливоподачи в пределах ТЭС, так и для сжигания в котельном цехе. Например, ГСШ — газовый уголь с размерами «семечко» и «штыб», а ГРОКII — это тоже газовый уголь, но «рядовой», 2-й группы окисленности.
Заметную роль в организации топочного процесса играют характеристики минеральной части. Условно можно минеральную часть угля разделить на три группы:
— минералы, занесенные в пласт топлива в результате геологических преобразований в процессе его образования;
— минералы прилегающих к пласту топлива горных пород, занесенные в топливо при его добыче;
— минералы, связанные с органической частью топлива или образующиеся при ее разложении в процессе углеобразования.
Последняя группа минералов называется внутренней золой; она равномерно распределена по органической массе топлива. Первая группа минералов, в зависимости от равномерности их распределения по топливу, может быть источником как внутренней, так и внешней золы. Вторая группа минералов относится к внешней золе.
Еще одна важная деталь: количество золы, получаемой при полном сжигании угля, не равно количеству содержащихся в угле минеральных примесей. Дело в том, что в состав минеральной части входят глинистые минералы, слюды, карбонаты, сульфаты и ряд других веществ. При нагревании глинистых минералов и слюд в топке сначала происходит потеря кристаллизационной воды (до 500–600 °С), затем разрушается первоначальная кристаллическая решетка и образуются вторичные минералы (муллит, шпинель и др.). При дальнейшем повышении температуры (сверх 1100 °С) начинается плавление. Еще раньше, в диапазоне температур 400–900 °С, разлагаются карбонаты и образуются весьма тугоплавкие оксиды. При температурах 700–800 °С в окислительной среде полностью выгорает пирит. Все эти процессы при горении топлива приводят к значительному изменению состава и массы минеральных примесей. Таким образом, правильнее считать, что зола — твердый продукт реакций минеральной части топлива, образующийся при сжигании этого топлива.
Многочисленные исследования показали, что при сжигании каменных углей минеральная масса обычно оказывается больше, чем зольность, а для малозольных бурых углей — меньше.
Для общей оценки химических свойств золы введены понятия «кислого» и «основного» состава шлака. Поведение золы в топке в значительной степени определяет величина отношения оксидов кислотного характера к основным:
. (2.6)
Таблица 2.2. Теплота сгорания и плотность газов
*Значения плотности даны при 0° С и 101,3 кПа.
Попутные (нефтепромысловые) газы состоят из метана и других составляющих. В этих газах значительно меньше СН4, но зато количество тяжелых углеводородов составляет уже десятки процентов. Количество и качество попутного газа зависят от состава сырой нефти и ее стабилизации на месте добычи (только стабилизированная нефть считается подготовленной для дальнейшей транспортировки по трубопроводам или в танкерах).
Таблица 2.3. Состав и плотность попутных газов
Таблица 2.4. Состав и плотность промышленных газов
Кроме природных и попутных газов, в промышленности иногда используют различные искусственные газы. На предприятиях металлургической промышленности (доменное производство и коксовые печи) образуется большое количество низкокалорийного доменного газа (Qi r = 4,0÷5,0 МДж/м 3 ) и среднекалорийного коксового газа (Qi r = 17÷19 МДж/м 3 ), содержащего Н2, СН4, СО и другие горючие газообразные компоненты ( табл. 2.4 ). Перед использованием в котлах доменный и коксовый газ должны быть очищены от пыли.
Однако в условиях российской действительности, при сравнительно низких ценах на природный газ, все виды генераторного газа оказываются неконкурентоспособны по сравнению с природным газом. Тем не менее в некоторых случаях (при отсутствии вблизи объекта газовых магистралей или необходимости утилизировать содержащие органические вещества отходы производства), практикуют установку газификаторов с воздушным или паровоздушным дутьем для получения газовой смеси, содержащей Н2, СО и небольшое количество углеводородов, что позволяет обеспечить газообразным топливом отопительные котлы с автоматизированными горелками и высоким КПД.
Сырьем для получения пропан-бутановых смесей, широко используемых пока что только в жилищно-бытовом секторе, является, главным образом, попутный газ нефтедобычи. Другой источник сжиженного газа — нефтеперерабатывающие заводы (НПЗ), на которые поступает сырая нефть, содержащая сжиженные нефтяные газы. В процессе дистилляции они улавливаются, причем их выход составляет 2–3 % объема перерабатываемой нефти. Теплота сгорания этого топлива и другие его характеристики зависят от соотношения между содержанием бутана и пропана.
Жидкое топливо — это, как правило, продукт переработки сырой нефти (хотя в некоторых странах освоена технология получения жидкого топлива из угля, сланцев или других органических веществ). Сырая нефть является смесью органических соединений, а также некоторого количества сернистых и азотных соединений, парафинов и смол. После переработки сырой нефти на НПЗ получаются легкие сорта топлива: бензин, керосин и дизельное топливо. Эти виды топлива используются, главным образом, на транспорте, в коммунально-бытовом секторе и в двигателях внутреннего сгорания различных промышленных предприятий.
Затем на НПЗ получают топочные мазуты, которые являются тяжелыми крекинг-остатками или смесями крекинг-остатков с мазутами прямой перегонки. Помимо высокой вязкости и плюсовой температуры застывания, в топочных мазутах допускается более высокое содержание механических примесей, серы и воды. Топочные мазуты поступают на тепловые электростанции и крупные котлы промышленных котельных. При этом бо́льшая часть минеральных примесей, содержащихся в исходной нефти, концентрируется именно в мазуте.
В соответствии с Российскими стандартами на электростанции поставляются мазуты марок 40 и 100. Марка в данном случае определяется предельной вязкостью мазута при температуре 80 °С. Для мазута марки 40 она не должна превышать 8,0 градусов условной вязкости (°ВУ), а для мазута марки 100 — 15,5 °ВУ При подогреве мазута вязкость снижается до уровня, который обеспечивает устойчивый транспорт мазута по трубопроводам и тонкое распыливание в механических форсунках (рис. 2.1).
Рис. 2.1. Диаграмма «Вязкость — температура» для жидкого топлива
По содержанию серы мазуты разделяются на малосернистые (S r ≤0,5 %), сернистые (до 2,0 % серы) и высокосернистые (до 3,5 % серы). Уровень сернистости зависит, главным образом, от содержания серы в исходной нефти: при ее переработке от 70 до 90 % сернистых соединений переходит в мазут, создавая тем самым серьезные трудности для эксплуатационного персонала ТЭС.
Типы тепловых электростанций. НА ОРГАНИЧЕСКОМ ТОПЛИВЕ Ñ Ключевые понятия
УСТРОЙСТВО И ФУНКЦИОНИРОВАНИЕ СОВРЕМЕННОЙ ТЭС, РАБОТАЮЩЕЙ
НА ОРГАНИЧЕСКОМ ТОПЛИВЕ
Ñ | Ключевые понятия |
Химическая энергия топлива, электрическая энергия.
Паровая турбина, котельный агрегат.
Типы тепловых электростанций
Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.
Тепловые электростанции характеризуются большим разнообразием, их можно классифицировать по различным признакам.
1. По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.
Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ) (рис. 1.1, 1.7). Как правило, ГРЭС и районные ТЭЦ имеют мощность 1 млн кВт.
Промышленные электростанции – это электростанции, обслу-живающие тепловой и электрической энергией конкретные производ-ственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.
Ниже рассматриваются только районные электростанции (рис. 1.2–1.6).
2. По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.
За конденсационными электростанциями, работающими на органи-ческом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими по принципу преобразования тепловой энергии в электрическую.
В качестве органического топлива для ТЭС используют газо-образное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его дороговизны только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный или отходы высококалорийного каменного угля (антрацитовый штыб – АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.
3. По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.
Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.
Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл. мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).
Парогазовые тепловые электростанции комплектуются парогазо-выми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В России имеется только одна работающая ПГУ-ТЭЦ (ПГУ-450Т) мощностью 450 МВт. На Невинномысской ГРЭС работает энергоблок ПГУ-170 мощностью 170 МВт, а на Южной ТЭЦ Санкт-Петербурга – энергоблок ПГУ-300 мощностью 300 МВт.
4. По технологической схеме паропроводов ТЭС делятся на блочные ТЭС и на ТЭС с поперечными связями.
Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по-другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.
5. По уровню начального давления различают ТЭС докритического давления и сверхкритического давления (СКД).
Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на
СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняются с промежуточным перегревом и по блочной схеме. Часто ТЭС или ТЭЦ строят в несколько этапов – очередями, параметры которых улучшаются с вводом каждой новой очереди.
Рис. 1.1. Ново-Богословская ТЭЦ мощностью 1000 МВт (проект).
Рис. 1.2. Пермская ГРЭС. Мощность 2400 МВт. Топливо – природный газ.
Установлено 3 блока К-800-240, мощностью 800 МВт с начальным давлением 240 ат
Рис. 1.3. Среднеуральская ГРЭС
Рис. 1.4. Машинный зал Пермской ГРЭС. Турбогенератор К-800-240
Рис. 1.5. Щит управления
Рис. 1.6. Сургутская ГРЭС мощностью 4800 МВт. 6 блоков по 800 МВт.
Топливо – природный газ
Рис.1.7. Тюменская ТЭЦ-1. Главный корпус. Блочный щит управления
Дата добавления: 2015-09-07 ; просмотров: 2788 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Устройство и функционирование современной ТЭС, работающей на органическом топливе
Типы тепловых электростанций
Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.
Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.
По назначению и виду отпускаемой энергии
По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.
Районные электростанции — это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название — ГРЭС (государственные районные электростанции ). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.
Промышленные электростанции — это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы. Ниже рассматриваются только районные электростанции.
По виду используемого топлива
По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.
За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС — тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.
В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива — мазут, используя последний ввиду его дороговизны только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь — низкокалорийный уголь или отходы высококалорийного каменного угля (антрацитовый штыб — АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.
По типу теплосиловых установок
По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.
Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).
Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В России имеется только одна работающая ПГУ-ТЭЦ (ПГУ-450Т) мощностью 450 МВт. На Невинномысской ГРЭС работает энергоблок (см. лекцию 7) ПГУ-170 мощностью 170 МВт, а на Южной ТЭЦ Санкт-Петербурга — энергоблок ПГУ- 300 мощностью 300 МВт.
По технологической схеме паропроводов
По технологической схеме паропроводов ТЭС делятся на блочные ТЭС и на ТЭС с поперечными связями.
Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок — энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по-другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.
По уровню начального давления
По уровню начального давления различают ТЭС докритического давления и сверхкритического давления (СКД).
Критическое давление — это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД — 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняются с промежуточным перегревом и по блочной схеме. Часто ТЭС или ТЭЦ строят в несколько этапов — очередями, параметры которых улучшаются с вводом каждой новой очереди.
Общее представление о тепловой электростанции
Рассмотрим типичную конденсационную ТЭС, работающую на органическом топливе, пока практически не интересуясь процессами, происходящими в ее оборудовании. Схема этого предприятия показана на рис. 2.1.
Рис. 2.1 Тепловой баланс газомазутной и пылеугольной (цифры в скобках) ТЭС
ТЭС — это огромное промышленное предприятие по производству электроэнергии. Основным «сырьем» для работы ТЭС является органическое топливо, содержащее запас химической энергии, измеряемый теплотой сгорания Qсг.
Топливо подается в котел и для его сжигания сюда же подается окислитель — воздух, содержащий кислород. Воздух берется из атмосферы. В зависимости от состава и теплоты сгорания для полного сжигания 1 кг топлива требуется 10—15 кг воздуха и, таким образом, воздух — это тоже природное «сырье» для производства электроэнергии, для доставки которого в зону горения необходимо иметь мощные высокопроизводительные нагнетатели. В результате химической реакции сгорания, при которой углерод С топлива превращается в оксиды СО2 и СО, водород Н2 — в пары воды Н2О, сера S — в оксиды SO2 и SO3 и т.д., образуются продукты сгорания топлива — смесь различных газов высокой температуры. Именно тепловая энергия продуктов сгорания топлива является источником электроэнергии, вырабатываемой ТЭС.
Далее внутри котла осуществляется передача тепла от дымовых газов к воде, движущейся внутри труб. К сожалению, не всю тепловую энергию, высвободившуюся в результате сгорания топлива, по техническим и экономическим причинам удается передать воде. Охлажденные до температуры 130—160 °С продукты сгорания топлива (дымовые газы) через дымовую трубу покидают ТЭС. Часть теплоты, уносимой дымовыми газами, в зависимости от вида используемого топлива, режима работы и качества эксплуатации, составляет 5—15 %.
Для работы конденсатора, который не только обеспечивает низкое давление за турбиной, но и заставляет пар конденсироваться (превращаться в воду), требуется большое количество холодной воды. Это — третий вид «сырья», поставляемый на ТЭС, и для функционирования ТЭС он не менее важен, чем топливо. Поэтому ТЭС строят либо вблизи имеющихся природных источников воды (река, море), либо строят искусственные источники (прудохладитель, воздушные башенные охладители и др.).
Основная потеря тепла на ТЭС возникает из-за передачи теплоты конденсации охлаждающей воде, которая затем отдает ее окружающей среде. С теплом охлаждающей воды теряется более 50 % тепла, поступающего на ТЭС с топливом. Кроме того, в результате происходит тепловое загрязнение окружающей среды.
Часть тепловой энергии топлива потребляется внутри ТЭС либо в виде тепла (например, на разогрев мазута, поступающего на ТЭЦ в густом виде в железнодорожных цистернах), либо в виде электроэнергии (например, на привод электродвигателей насосов различного назначения). Эту часть потерь называют собственными нуждами.
На рис. 2.1 показана диаграмма превращения теплоты топлива на ТЭС с тремя газомазутными энергоблоками электрической мощностью по 800 МВт, осредненная за годовой период. Отношение количества энергии, отпущенной ТЭС за некоторый промежуток времени, к затраченной за это время теплоте, содержащейся в сожженном топливе, называется коэффициентом полезного действия нетто ТЭС по выработке электроэнергии. Для ТЭС, рассмотренной на рис. 2.1, он составляет 38,4 %.
Понятие КПД нетто ТЭС обычно используется как универсальная оценка для сравнения ТЭС в различных странах, при научном анализе и в некоторых других случаях. В повседневной практике на ТЭС используют другой показатель — удельный расход условного топлива bу, измеряемый в г/(кВт·ч). Условное топливо — это топливо, имеющее теплоту сгорания Qсг = 7000 ккал/кг = 29,33 МДж/кг. Если, например, на ТЭС сожгли 100 т угля с теплотой сгорания Qсг = 3500 ккал/кг, т.е. использовали Ву = 50 т у.т., и при этом отпущено в сеть Э = 160 000 кВт·ч электроэнергии, то удельный расход условного топлива составит
bу = 50 · 10 6 /160 000 = 312,5 г/(кВт·ч)
Между КПД ТЭС нетто и удельным расходом условного топлива существует элементарная связь:
Полезно и легко запомнить, что удельному расходу bу = 333 г/(кВт·ч) соответствует КПД нетто ηТЭС ≈ 37 %. Примерно такой уровень имеет типичная ТЭС России.
Рассмотрим несколько примеров.
В 1999 г. ТЭС АО-энерго России выработали 517,53 млрд кВт·ч электроэнергии при среднем расходе удельного условного топлива bу = 341,7 г/(кВт·ч). Следовательно, для этого пришлось сжечь
Экономия условного топлива всего в 1 г/(кВт·ч) в масштабах России дает экономию условного топлива
ΔВт = (1/341,7) · 176,8 = 0,52 млн т,
т.е. примерно полмиллиона тонн.
Повышение КПД нетто ТЭС на 1 % означает уменьшение удельного расхода условного топлива на bу = 0,01 · 341,7 ≈ 3,4 г/(кВт·ч), что дает экономию условного топлива в масштабах России ΔВТ = 0,52 · 3,4 1,8 млн т у.т.
На пылеугольной Рефтинской ГРЭС общей мощностью 3800 МВт удельный расход условного топлива bу = 336,5 г/(кВт·ч). Если энергоблоки ГРЭС работают с полной нагрузкой, то суточный расход условного топлива составит
Если в данном случае для простоты считать, что теплота сгорания используемого и условного топлива совпадает, а уголь перевозится в вагонах емкостью 60 т, то для перевозки потребуется 20 700/60 ≈ 311 вагонов, т.е. примерно 10 железнодорожных составов. Иными словами, ГРЭС должна принимать и соответственно сжигать каждый час по одному составу.
Тепловая электростанция пропускает через себя огромное количество воды. Можно считать, что для отпуска 1 кВт·ч электроэнергии требуется примерно 0,12 м 3 охлаждающей воды, которая поступает к конденсатору с температурой, примерно равной температуре окружающей среды. В конденсаторе она нагреется на 8—10 °С и покинет его.
Например, всего один энергоблок мощностью 300 МВт за 1 с использует 10 м 3 охлаждающей воды. Для его работы требуется расход воды, примерно равный среднегодовому расходу Москва-реки в черте города. Для работы насосов, обслуживающих этот энергоблок, требуется электродвигатель мощностью 2,5 МВт.
Огромно и количество используемого воздуха. Для выработки 1 кВт·ч электроэнергии требуется примерно 5 м 3 воздуха.
Например Рефтинская ГРЭС, работающая на полную мощность 3800 МВт каждую 1 с использует
V = 5 · 3600 · 3,8 · 10 6 = 5300 м 3 /с
чистого воздуха с содержанием кислорода 21 % (по массе) и выбрасывает в атмосферу дымовые газы, практически не содержащие кислорода, но отравленные диоксидом углерода, оксидами азота и другими вредными соединениями.
Для нормальной работы ТЭС, кроме «сырья» (топливо, охлаждающая вода, воздух) требуется масса других материалов: масло для работы систем смазки, регулирования и защиты турбин, реагенты (смолы) для очистки рабочего тела, многочисленные ремонтные материалы.
Наконец, мощные ТЭС обслуживаются большим количеством персонала, который обеспечивает текущую эксплуатацию, техническое обслуживание оборудования, анализ технико-экономических показателей, снабжение, управление и т.д. Ориентировочно можно считать, что на 1 МВт установленной мощности требуется 1 персона и, следовательно, персонал мощной ТЭС составляет несколько тысяч человек.
Технологический процесс преобразования химической энергии топлива в электроэнергию на ТЭС
Любая конденсационная паротурбинная электростанция включает в себя четыре обязательных элемента:
энергетический котел, или просто котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения — химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540 °С и давлением 13—24 МПа по одному или нескольким трубопроводам подается в паровую турбину;
турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя;
конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;
питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной.
Таким образом, в ПТУ над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию.
Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности.
Рассмотрим технологический процесс производства электроэнергии на ТЭС, работающей на газе (рис. 2.2).
Рис. 2.2 Технологическая схема ТЭС, работающая на газе
Основными элементами рассматриваемой электростанции являются котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии.
Основным элементом котельной установки является котел. Газ для работы котла подается от газораспределительной станции, подключенной к магистральному газопроводу (на рисунке не показан), к газораспределительному пункту (ГРП) 1. Здесь его давление снижается до нескольких атмосфер и он подается к горелкам 2, расположенным в поде котла (такие горелки называются подовыми).
Собственно котел представляет собой (вариант) П-образную конструкцию с газоходами прямоугольного сечения. Левая ее часть называется топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в данном случае газа. Для этого к горелкам специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25. На рис. 2.2 показан так называемый вращающийся воздухоподогреватель, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота она нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки котла подается в его топку — камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.
Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.
Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровой турбине.
Мощная паровая турбина обычно состоит из нескольких как бы отдельных турбин — цилиндров.
К первому цилиндру — цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД — 23,5 МПа, 540 °С, т.е. 240 ат/540 °С). На выходе из ЦВД давление пара составляет 3—3,5 МПа (30—35 ат), а температура — 300—340 °С. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в так называемый промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540 °С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0,2—0,3 МПа (2—3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.
Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему.
И котел, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем лишь ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в энергоблоке 1200 МВт за 1 с испаряется, проходит через турбину и конденсируется более 1 т воды). Поэтому нормальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты.
Пар, покидающий ЦНД турбины, поступает в конденсатор 12 — теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из реки, водохранилища или специального охладительного устройства (градирни). На рис. 2.2 показана так называемая система оборотного водоснабжения с градирней. Градирня — это железобетонная пустотелая вытяжная башня (рис. 2.3 и 2.4) высотой до 150 м и выходным диаметром 40—70 м, которая создает самотягу для воздуха, поступающего снизу через воздухо-направляющие щиты.
Рис. 2.4 Внешний вид башенной градирни
Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД).
Регенеративный подогрев конденсата в ПНД и ПВД — это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей!), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240—280 °С. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата.
Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140—160 °С и направляются с помощью дымососа 27 к дымовой трубе 26. Дымовая труба создает разрежение в топке и газоходах котла; кроме того, она рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях.
Если на ТЭС используется твердое топливо, то она снабжается топливоподачей и пылеприготовительной установкой. Прибывающий на ТЭС в специальных вагонах уголь разгружается, дробится до размера кусков 20—25 мм и ленточным транспортером подается в бункер, вмещающий запас угля на несколько часов работы. Из бункера уголь поступает в специальные мельницы, в которых он размалывается до пылевидного состояния. В мельницу непрерывно специальным дутьевым вентилятором подается воздух, нагретый в воздухоподогревателе. Горячий воздух смешивается с угольной пылью и через горелки котла подается в его топку в зону горения.
Пылеугольная ТЭС снабжается специальными электрофильтрами, в которых происходит улавливание сухой летучей зоны. Зола, образующаяся при горении топлива и не унесенная потоком газов, удаляется из донной части топки и транспортируется на золоотвалы.
В скобках на рис. 2.1 приведены показатели, осредненные за годовой период работы пылеугольной ТЭС, состоящей из шести энергоблоков мощностью 300 МВт и четырех энергоблоков мощностью 500 МВт. Видно, что показатели пылеугольной ТЭС существенно хуже (в нашем случае абсолютный КПД пылеугольной ТЭС на 1,6 % ниже газомазутной) вследствие худшей работы котла и больших расходов топлива на собственные нужды, которые перекрыли даже экономию от более глубокого вакуума в конденсаторе.
Рис. 2.5 Тепловая схема паротурбинной установки ТЭС, приведенной на рис. 2.2
Схематическое изображение оборудования и связей между ним, представленное на рис. 2.2, достаточно наглядно. Но представление всех связей даже для схемы, показанной на рис. 2.2, вызывает немалые трудности. Поэтому, для изображения оборудования электростанции во всей его взаимосвязи по пару, конденсату, питательной воде используют тепловые схемы — графическое изображение отдельных элементов и трубопроводов с помощью условных обозначений. Привыкнув к условным обозначениям, легко прочитать даже самую сложную тепловую схему. Пример тепловой схемы рассмотренной ТЭС приведен на рис. 2.5. При этом для более легкой идентификации мы сохранили одинаковые номера для одинакового оборудования.
Главный корпус ТЭС
Основным строительным сооружением ТЭС является главный корпус, поперечный разрез по которому показан на рис. 2.6. Он состоит из трех отделений: турбинного, деаэраторного и котельного.
Рис. 2.6 Поперечный разрез по главному корпусу ТЭС
Турбинное отделение включает в себя рамный фундамент — железобетонное сооружение, состоящее из нижней фундаментной плиты, установленной на грунт, вертикальных колонн и верхней фундаментной плиты, опирающейся на колонны. На верхнюю фундаментную плиту, расположенную в данном случае на высотной отметке 13,5 м, устанавливают цугом паровую турбину, электрогенератор и возбудитель (эту совокупность называют турбоагрегатом).
Помещение, в котором располагается турбина, называется машинным залом (машзалом). Общий вид машзала типичной ТЭС показан на рис. 2.7. Турбоагрегаты, закрытые металлическими кожухами, размещаются поперек машзала, между ними имеются свободные пространства на всю высоту здания от нулевой отметки до кровли для установки оборудования, имеющего большую высоту (например, ПВД). Справа и слева от турбоагрегатов в машзале имеются свободные проходы.
Рис. 2.7 Машинный зал ТЭС
Котельное отделение находится в правой части главного корпуса (см. рис. 2.6). Здесь размещаются котлы. За стеной котельного отделения на открытом воздухе располагаются воздухоподогреватели, дымососы и дымовая труба (обычно общая для нескольких энергоблоков).
Между турбинным и котельным отделением размещают деаэраторное отделение. На деаэраторной этажерке в данном случае высотной отметке 26,1 м размещают деаэраторы. Конденсат, подвергаемый деаэрации, и пар для его нагрева (см. рис. 2.2 и 2.5) деаэраторы получают из турбинного отделения. Из деаэраторов питательная вода поступает к питательному насосу и затем в ПВД (а из них — в котлы). В деаэраторном помещении на высотной отметке машзала располагают щиты управления котлами и турбинами со всеми необходимыми приборами и автоматикой. Здесь находятся операторы, управляющие работой ТЭС.
Знакомство с основным оборудованием ТЭС
Паровая турбина — самая значимая и самая дорогая часть ТЭС. Неотъемлемой частью конденсационной турбины является конденсатор.
Общий вид турбины ЛМЗ мощностью 800 МВт, установленной в машинном зале Углегорской ГРЭС (Украина), показан на рис. 2.8.
Рис. 2.8 Общий вид турбины мощностью 800 МВт, установленной в машзале ТЭС
На рис. 2.9 показана трехцилиндровая турбина на сборочном стенде без кожуха (каждая турбина в обязательном порядке после изготовления проходит контрольную сборку и опробование на холостых оборотах, разбирается, консервируется, упаковывается и отправляется для монтажа на ТЭС). Турбина выполняется многоцилиндровой (в данном случае трехцилиндровой).
Рис. 2.9 Трехцилиндровая турбина на сборочном стенде турбинного завода
На переднем плане виден ЦВД 4, в который по паропроводам 3 подводится пар высокого давления из котла. Пройдя ЦВД, пар возвращается в котел для промежуточного перегрева. Это позволяет уменьшить влажность пара в конце процесса расширения в турбине и уменьшить эрозию рабочих лопаток каплями влаги; одновременно промежуточный перегрев позволяет на несколько процентов уменьшить удельный расход топлива.
После промежуточного перегрева пар по четырем паропроводам 6 (на рис. 2.9 видны только два паропровода, подводящие пар в верхнюю половину цилиндра) поступает в ЦСД 3. Пройдя ЦСД, пар с помощью двух выходных труб подается в две длинные ресиверные трубы 7, из которых пар направляется в ЦНД 9. Под ЦНД расположены конденсаторы, принимающие этот пар.
На рис. 2.10, а показан общий вид двухходового конденсатора мощной паровой турбины. Он состоит из стального сварного корпуса 8, по краям которого закреплены трубные доски (видна только передняя трубная доска 14) с отверстиями, в которых закрепляются конденсаторные трубки, совокупность которых образует трубный пучок. Для того чтобы трубки (а их длина может составлять 10—12 м при диаметре 20—24 мм) не провисали и не вибрировали, параллельно основным трубным доскам устанавливают промежуточные перегородки 12 с точно таким же рисунком отверстий, как и в основных трубных досках 14. Установленные промежуточные трубные доски хорошо видны на рис. 2.10, б. Через одну из трубных досок вводят трубку, протаскивают ее через отверстия всех промежуточных перегородок и вводят в соответствующее отверстие во второй трубной доске. Затем трубка полностью закрепляется в основных (крайних) трубных досках вальцовкой или сваркой.
Рис. 2.10 Конденсатор мощной паровой турбины фирмы Siemens
Совокупная внешняя поверхность всех трубок представляет собой поверхность конденсации пара, поступающего сверху из ЦНД. Конденсат собирается на дне конденсатора и постоянно откачивается из него конденсатными насосами (см. рис. 2.2).
Для подвода и отвода охлаждающей воды служит передняя водяная камера 4, разделенная вертикальной перегородкой. Вода подается снизу в правую часть камеры 4 и через отверстия в трубной доске попадает внутрь охлаждающих трубок и движется внутри них до задней (поворотной) камеры 9. Собравшись в ней, вода проходит через вторую часть трубок и поступает во вторую половину передней водяной камеры, откуда направляется в градирню, реку или пруд-охладитель. Пар поступает в конденсатор сверху, встречается с холодной поверхностью трубок и конденсируется на ней. Поскольку конденсация идет при низкой температуре, которой соответствует низкое давление конденсации (см. рис. 1.2), то в конденсаторе образуется глубокое разрежение (3—5 кПа), что в 25—30 раз меньше атмосферного давления). Конденсатор турбины имеет огромные размеры, увидеть которые легко на рис. 2.10, б.
Свойства топлив, сжигаемых на тепловых электростанциях
На ТЭС сжигают три вида топлива: газообразное, жидкое и твердое (рисунок 1).
Рисунок 1 — Виды энергетических топлив
Газообразное топливо
Газообразное топливо существует в нескольких формах: природный газ; попутный газ, получаемый из недр земли при добыче нефти; доменный и коксовый газы, получаемые при металлургическом производстве. На ТЭС России преимущественно используется природный газ (свыше 60 % в топливном балансе России и 70—80 % в ее европейской части). Природный газ в основном состоит из метана СН4, который при правильной организации процесса горения сжигается полностью, превращаясь в воду и двуокись углерода.
Главное преимущество природного газа состоит в его относительной экологической безопасности: при его сжигании, не возникает вредных выбросов, если не считать образования ядовитых оксидов азота, с которыми можно бороться соответствующей организацией процесса горения. Поэтому его используют для котельных и ТЭЦ крупных городов. Дополнительное преимущество — легкость транспортировки по газопроводам с помощью газовых компрессоров, устанавливаемых на газоперекачивающих станциях. Организация сжигания природного газа на электростанциях также сравнительно проста: перед подачей в топки котлов ТЭС необходимо снизить его давление до 0,2—0,3 МПа (2—3 ат) в газораспределительном пункте ТЭС или, наоборот, если давление в газовой магистрали недостаточно, повысить его давление до 2—2,5 МПа (20—25 ат) с помощью газовых компрессоров, если газ подается в камеры сгорания ГТУ.
Еще несколько лет назад считалось, что в России возникла «газовая пауза», когда газ можно использовать на ТЭС в необходимом количестве.
С твердого топлива на природный газ было переведено много ТЭС, особенно в европейской части России. Основанием к тому было то, что Россия обладает 35 % мировых запасов газа. Однако «газовая пауза» закончилась, не начавшись, и сегодня идет речь об обратном переводе ТЭС с природного газа на твердое топливо и о замещении выработки электроэнергии на газомазутных ТЭС выработкой на АЭС.
Жидкое топливо
Из многочисленных жидких топлив на ТЭС используют мазут и дизельное топливо. Мазут — это в основном смесь тяжелых углеводородов, остаточный продукт перегонки нефти, остающийся после отделения бензина, керосина и других легких фракций. Мазут сжигают в топках энергетических котлов газомазутных энергоблоков в периоды недостатка газа (например, при сильных длительных холодах и временной нехватке природного газа, заготовленного в подземных хранилищах). Часто его используют для «подсветки» — добавки к сжигаемому твердому топливу при некоторых режимах работы для обеспечения устойчивого горения. Сжигать мазут постоянно сегодня нерентабельно из-за большой его стоимости по сравнению и с газом, и с твердыми топливами.
Мазут — достаточно вязкое топливо, и поэтому перед подачей его к форсункам котла его разогревают до 100—120 °С и распыляют в топке с помощью паровых форсунок. Мазуты делятся на малосернистые (до 0,5 % серы) и высокосернистые (2—3,5 % серы). При сжигании образующиеся оксиды попадают в атмосферу.
Твердое топливо
Твердые топлива (рисунок 1) отличаются большим разнообразием, вызванным различной геологической историей их месторождений. Если выполнить анализ определенной навески твердого топлива (так называемой рабочей массы ), то прежде всего, можно обнаружить, что она содержит определенное количество влаги (воды) и золы (минеральных негорючих веществ). И влага, и зольность серьезно ухудшают потребительские и технические качества твердых топлив. Прежде всего, это баласт, который необходимо перевозить, перерабатывать вместе с горючими элементами топлива, а затем выбрасывать в горячем состоянии либо в дымовую трубу (водяные пары), либо в золовые отвалы. Если из рабочей массы вычесть влажность и зольность (рисунок 2, а), то останется так называемая горючая масса топлива. Основным «горючим» элементом в твердом топливе является углерод.
1 — мазут, 2 — торф, 3 — сланец, 4 — бурый уголь, 5 — каменный уголь, 6 — антрацит
Рисунок 2 — Сравнительная характеристика мазута и твердых топлив
Содержание горючей массы в рабочей определяет теплоту сгорания Qсг — то количество тепловой энергии, которая выделяется при полном сгорании единицы рабочей массы (1 кг) жидкого или твердого топлива. Из рисунка 2,б видно, что наибольшей «калорийностью» обладают мазут и антрацит, наименьшей — торф.
Ближайшие и отдаленные перспективы строительства ТЭС
Для оценки перспектив ТЭС, прежде всего, необходимо осознать их преимущества и недостатки в сравнении с другими источниками электроэнергии.
К числу преимуществ следует отнести следующие:
Наряду с этими достоинствами, ТЭС имеет и ряд недостатков.
Перспективы строительства мощных конденсационных ТЭС тесно связаны с видом используемых органических топлив. Несмотря на большие преимущества жидких топлив (нефти, мазута) как энергоносителей (высокая калорийность, легкость транспортировки) их использование на ТЭС будет все более и более сокращаться не только в связи с ограниченностью запасов, но и в связи с их большой ценностью как сырья для нефтехимической промышленности. Для России немалое значение имеет и экспортная ценность жидких топлив нефти. Поэтому жидкое топливо (мазут) на ТЭС будет использоваться либо как резервное топливо на газомазутных ТЭС, либо как вспомогательное топливо на пылеугольных ТЭС, обеспечивающее устойчивое горение угольной пыли в котле при некоторых режимах.
Использование природного газа на конденсационных паротурбинных ТЭС нерационально: для этого следует использовать парогазовые установки утилизационного типа, основой которых являются высокотемпературные ГТУ.
Таким образом, далекая перспектива использования классических паротурбинных ТЭС и в России, и за рубежом, прежде всего, связана с использованием углей, особенно низкосортных. Это, конечно, не означает прекращения эксплуатации газомазутных ТЭС, которые будут постепенно заменяться ПГУ.