Что является самым жарким элементом в структуре планеты земля
Почему ядро Земли горячее?
Земля уже существует 4 миллиарда 600 миллионов лет. Долгое время, и все же, по какой-то причине, её поверхность не остыла и до сих пор удивляет активностью.
Внутренности многих планет остаются горячими из-за ядерных реакций, а точнее радиогенных процессов. В случае Земли это в основном распады изотопов урана, тория и калия.
Как быстро камень может остыть? Даже если он достаточно процветающий, скажем, размером с планету?
Миллионов, не говоря уже о миллиардах лет, должно быть более чем достаточно, чтобы полностью охладить и укрепить его. Это вызвано нашей интуицией, поддерживаемой вторым непобедимым законом термодинамики. Мы все знаем, что каждое тело отдает тепло своему окружению, и каждый костер должен когда-нибудь погаснуть.
Тем не менее, несмотря на здравый смысл, «вечное тепло», похоже, царит глубоко под поверхностью земной коры. Итак, давайте посмотрим на саму суть нашей планеты.
Никель-железный шар диаметром 7 тыс. километров, объединяющий почти 1/3 массы всего земного шара, остается постоянно освещенным до температуры свыше 5,5 тыс. С. Через 4,6 миллиарда лет внутренняя часть нашей планеты все еще генерирует густые тераватты энергии и горит немного меньше, чем поверхность Солнца. И пусть не будет никаких сомнений, что тепло от мантии и ядра протекает максимально, даже в процессе конвекции.
Расплавленное вещество под нашими ногами неутомимо поднимается, отдавая часть температуры, затем сгущается и снова начинает падать к центру.
Планеты не имеют достаточной массы (или в нашем случае достаточного количества топлива), чтобы обеспечить необходимые условия для поддержания синтеза. Однако у нас есть примеси тяжелых радиоактивных изотопов, которые легко подвергаются самопроизвольному распаду, что сопровождается выделением определенных порций энергии.
Любознательные читатели могут задаться вопросом, откуда, черт возьми, мы знаем о ядерных реакциях, происходящих совершенно за пределами нашего поля зрения. Действительно, это довольно необычно, потому что большая часть современных геологических моделей была создана с использованием нейтринных детекторов, а точнее электронных антинейтрино. Чаще всего мы связываем эти крошечные проникающие частицы с космическими источниками (например, солнечными нейтрино), но их излучение сопровождает многие физические явления, особенно отдельные ядерные распады.
Следует отметить еще два факта.
Прежде всего, наши теории о тепловом балансе Земли не являются полными и все еще оставляют место для обсуждения. Радиоактивность — мощная сила, но, вероятно, не ответственная за всю произведенную энергию. Во-вторых, распады изотопов происходят в мантии нашей планеты, но не в ядре. По мнению физиков и геологов, уран, торий и калий практически отсутствуют в самом ядре Земли, поэтому все радиогенное тепло должно подниматься немного выше.
Так каков правильный ответ на заглавный вопрос?
Кажется, что ядро фактически горит исходным теплом, которое является реликтом после рождения планеты. Тем не менее, оно не остыло, потому что оно остается завернутым в толстый слой расплавленных пород, постоянно нагреваемых ядерными распадами. Поэтому мантию можно рассматривать здесь даже не как обычное одеяло, а как электрическое одеяло с собственным источником нагрева.
Означает ли все это, что Земля никогда не замерзнет?
Конечно нет, но процесс охлаждения её интерьера невероятно медленный. Учитывая скорость тепловыделения и все остальное, ядру понадобится от 55 до 90 миллиардов лет, чтобы полностью затвердеть. Потому что высокая температура и конвекционные движения миллиардов тонн расплавленного железа являются условием существования магнитосферы Земли.
Ядро Земли: строение, состав и температура внутри
В наше время констатирование факта, что есть ядро Земли, никого не удивит. А вот подкрепить это констатирование каким-нибудь доказательством значительно сложнее.
Для того, чтобы доказать наличие металлического и притом жидкого ядра, следует обратиться к оправдавшей себя дисциплине, какой является сейсмология.
Ядро Земли центральная геосфера находящаяся под мантией радиусом порядка 3500 км и состоящая, вероятно, из расплавленного железа и никеля температурой порядка 6000 градусов.
Попробуем собрать те немногие аргументы, которые говорят в пользу существования, состояния и состава земного ядра.
Доказательства по составу
Основные физические данные — масса, форма Земли, средняя плотность, момент количества движения — показывают, что по направлению вглубь планеты увеличивается количество материала, масса которого весьма отличается от массы верхних слоев горных пород. Это должна быть материя, которая значительно тяжелее, чем та, которая встречается на поверхности. Даже породы, из которых состоит верхняя мантия, не обладают такой высокой плотностью, какая соответствовала бы физическим свойствам требуемым средней плотностью всего земного шара. Конечно, состав и строение Солнца как звезды очевидно совсем другое.
Поэтому предположение о наличии тяжелого центра нашей планеты является, с физической точки зрения, в сущности, единственным решением. Возможно есть вырожденное вещество со свободными электронами. И с космохимической точки зрения, при сравнении количества элементов в метеоритах и состава звезд следует, что Земля должна иметь внутри гораздо больше тяжелых элементов, чем находится на ее поверхности: например, больше железа, чем встречается в верхних горных породах и в породах верхней мантии. Но где-то на планете оно должно быть.
Доказательство о наличии ядра Земли исходит от сейсмологии, из изучения распространения сейсмических волн при прохождении через планету.
Доказательство было получено в начале 20 века. Граница между мантией и внешним ядром лежит на глубине 2900 км. Ее называют разделом Вайхерта-Гуттенберга. Она значительно выразительнее, чем граница между земной корой и мантией (раздел Мохоровичича). Здесь происходит сильное изгибание и отклонение сейсмических волн. А волны одного типа, так называемые S-волны, через эту границу даже не проникают.
Именно это и является доказательством, что внешняя часть ядра Земли находится в жидком состоянии, поскольку S- волны в жидкости не распространяются.
Состав центра планеты
Лабораторные опыты, во время которых в течение более длительного времени проверялись физические условия, существующие на границе мантии и внешнего ядра, то есть на глубине 2900 км, удалось провести пока лишь в отдельных случаях и на короткий период, поэтому геологи надеются на изучение явлений, имеющих место при крупных взрывах.
Итак, внешнее ядро является жидким, тогда как внутренняя часть — субядро, называемое ядрышком, вероятно, твердое.
Но само железо не имеет соответствующих свойств, поэтому предполагается, что в земном ядре присутствует еще один металл — никель, а некоторые ученые полагают, что там есть еще довольно значительное количество (около 10-20%) металлического кремния. При этом проводится сравнение с металлическими метеоритами, которые, помимо железа, содержат значительное количество никеля.
А поскольку весьма возможно, что железные метеориты являются остатками какой-то небольшой, распавшейся или разбитой в результате столкновения планетки (результат столкновения в Космосе), ученые считают, что центр Земли обладает железно-никелевым составом. Однако ответ на эти вопросы ученые смогут получить только в будущем, сначала экспериментальным путем в лаборатории. Может быть, удастся сконструировать и такую аппаратуру, которая проникнет в фантастические глубины мантии или даже в само ядро.
В нынешнее время бурение к центру планеты невозможно технически. Самое глубокое бурение было на глубину в 12 262 метра на Кольском полуострове в СССР и закончилось в далеком уже 1991 году.
В настоящее время нет информации про бурение к центру Земли в каких-либо странах.
Ядро Земли
В строении каждой планеты предусмотрено ядро. В большинстве случаев оно многослойное. Это своеобразный фундамент для шарообразного небесного тела. Вещества, находящиеся в составе ядра, обладают необычными свойствами. К примеру, железо, которое находится на огромнейшей глубине в центральной части планеты, может преобразовываться в кристаллы либо находиться в жидком состоянии.
Что такое ядро Земли
Это наиболее глубоко расположенная центральная часть земного шара находящаяся под мантией нашей планеты состоящая в основном из железного и никелевого сплава. При этом оно состоит из двух слоев.
Процедура изучения свойств и состав ядра — задача не из легких, так как оно находится на глубине в 2900 км. Опускаясь в недра планеты, с каждым километром увеличивается температура, из-за чего электронные приборы и техническое оборудование выходят из строя.
Все известные параметры центральной части Земли были получены в результате наблюдений за изменениями сейсмической волны. Также ученые следят за магнитным полем, что позволяет исследовать вращение ядра.
Состав и структура
Несмотря на сложности при исследовании центральной части нашей планеты, ученым удалось выяснить физические параметры “сердца” земного шара. Основным материалом, который образует центральный участок нашей планеты, является железо в жидком и кристаллообразном виде. Ученые полагают, что в составе центра нашего небесного тела находиться также никель.
Радиус
Средняя окружность сферы ядра составляет 3500 км. Радиус внутренней твердой части равна 1300 км. Толщина верхнего жидкого слоя не превышает 2200 км.
Расстояние до ядра Земли
Достичь наиболее глубокий центральный участок небесного тела еще никому не удавалось. Лавы, извергающихся вулканов, плавятся на глубине 220-300 км, образование драгоценных пород (бриллиантов) происходит не ниже 500 км. Все, что находится глубже — это тайна. Однако, ученые нашли способ ответить на вопрос “Сколько километров до ядра Земли” с помощью сейсмологии.
Во время землетрясений образуются мощные ударные волны по всей планете. Подобные колебания должны проходить по всей территории земного шара. Но, если толчки от землетрясений происходят на одной стороне планеты, то на противоположной — колебательные волны подавляются. Исследовав эти данные, ученые пришли к выводу, что S-волны реверберируют, сталкиваясь с твердым и жидким слоями.
После того, как специалисты воссоздали карту движений колебательных волн, стало ясно, что на расстоянии 3000 км находятся жидкие породы.
Масса
Наблюдая за гравитационным полем нашего небесного тела, ученые пришли к выводу что масса земного шара составляет 5,9 секстиллионов тонн (59 20 ). Плотность поверхностного слоя меньше, чем общие средние показатели. Это говорит о том, что в недрах планеты находятся твердые и плотные породы. Общий вес жидкого слоя составляет 30% от массы всего шара.
Температура ядра Земли
Известно, что самая глубокая центральная часть нашей планеты состоит из двух слоев: внешнего жидкого и внутреннего твердого. При воздействии давления 3,3 млн атмосфер, температура между ними колеблется в пределах +6000°-+6500°С. Это горячее, чем на Солнце. Внешнее ядро горячее и не остывает, так как от него исходят мощные потоки магмы, которые растекаются в стороны, приближаясь к поверхности мантии. При трении между внешним слоем и центром Земли, температура повышается. Ввиду этих процессов, “сердце” нашей планеты не остывает. Земля не успевает охлаждаться, ее внутренний твердый слой образовывается из охлажденных, кристаллизованных остатков железа. Ученые предполагают, что со временем, весь центральный участок может стать твердым и это станет началом конца.
Магнитное поле
Известно, что надежной защитой от радиационного воздействия Солнца является магнитное поле. Оно генерируется благодаря жидкому слою железа и никеля. Кроме этого, внешний слой “подогревает” мантию на столько сильно, что потоки магмы извергаются вулканами. Активная магнитосфера стала залогом зарождения жизни на земном шаре, в отличие от других небесных тел.
Ядро Земли
Ядро Земли представляет собой её центральную часть, которая является наиболее глубокой. Это своего рода геосфера, расположенная под мантией, включающая в состав сплав из железа, никеля, а также примеси других элементов в меньшей концентрации. В статье будут рассмотрены особенности этой части земного шара.
Описание и характеристики
Ядро Земли имеет следующие характеристики.
Информации, связанной с описанием ядра, известно немного, даже после проведения многочисленных наблюдений.
Структура Земли
Историческая справка
Ядро Земли было обнаружено Генри Кавендишем. Именно он предположил, что у планеты, вероятно, имеется область, где наблюдается повышенное значение плотности. Этот специалист также занялся работами по вычислению массы, средней плотности, которая оказалась намного выше, нежели у поверхности. Официальное подтверждение эта теория получила в 1897 году силами немецкого сейсмолога Э. Вихерта. Но тогда ничего не было известно о глубине залегания. Данные о ней появились только в 1910 г. с помощью американского геофизика Б. Гутенберга.
Аналогично никакой информации не было известно и доступно об образовании ядерной части планеты. Только в 1922 г. основоположником геохимии В. М. Гольдшмидтом было сделано открытие. Оно связано с тем, что образование ядра произошло вследствие гравитационной дифференциации первичной Земли на этапе её роста или позднее. Альтернативная версия была предложена в 1960-1970 гг. Её разработкой занимался Е. Орован, а также советский гений А. П. Виноградов. В итоге было получено заключение о том, что ядро появилось в протопланетном облаке.
В 2016 г. британские и американские учёные смогли создать условия, приближённые к ядру. Это позволило понять, что ядро и мантия обладают схожим химическим составом, а на их границе наблюдается серьёзный перепад давления и консистенции веществ. В 2015 г. были получены сведения о том, что в жидкой области присутствует третий слой.
Особенности состава ядерной части Земли
Ядро Земли, как и любой другой объект, имеет определённый состав, однако данных о нём немного. Об этом имеются лишь косвенные сведения, которые были получены различными путями. Вероятнее всего, наиболее близкий состав имеют метеориты из железа, это своего рода элементы астероидных ядер. Однако они не могут обеспечить детальное представление о веществе, из которого земное ядро состоит. Ведь образование их произошло в значительно меньших телах и иных условиях.
Наряду с этим ядро Земли, а точнее его состав, может быть оценён в соответствии с геохимическими и космохимическими предпосылками. Если бы была возможность определения первичного состава Земли и вычисления доли элементов, приходящихся на прочие геосферы, возникли бы шансы на построение схем состава ядра. Помощь и поддержку в этом направлении обеспечивают эксперименты, связанные с распределением элементов между железными материалами и фазами силикатов.
Магнитное поле планеты Земля
Ядро Земли тесно связано с её магнитным полем, которое формируется за счёт внутренних структур планеты. Среди учёных есть заблуждение, связанное с тем, что оно формируется вследствие активности материалов из внутреннего ядра по принципу магнита. Общепринятая версия получила название ГЕОДИНАМО. В соответствии с ней образование магнитного поля произошло вследствие движения электропроводящей среды в зоне внешнего ядра.
Ядро Земли
Ядро́ Земли́ — центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2900 км. Средний радиус сферы — 3,5 тыс. км. Разделяется на твердое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяется переходная зона. Температура в центре ядра Земли достигает 5000 С, плотность около 12,5 т/м³, давление до 361 ГПа (3,7 млн атм). Масса ядра — 1,932·10 24 кг.
Известно о ядре очень мало — вся информация получена косвенными геофизическими или геохимическими методами. Образцы вещества ядра недоступны.
Содержание
Обычное заблуждение
История изучения
Вероятно, одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность, характерная для пород, выходящих на земную поверхность.
Существование было доказано в 1897 году немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 году американским геофизиком Б. Гутенбергом.
Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.
Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Е. Орован и советский учёный А. П. Виноградов (1960-е—70-е годы).
В 1941 году Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядро состоит из металлического водорода. Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако позже эта гипотеза была адаптирована для объяснения строения планет-гигантов — Юпитера, Сатурна и других. Сейчас [когда?] предполагается, что магнитное поле таких планет возникает именно в металлическом водородном ядре.
Кроме того В. Н. Лодочников и У. Рамзай предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1.36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизованное силикатное ядро).
Состав ядра
Состав ядра непосредственно неизвестен, и может быть предположительно оценён из нескольких источников. Во-первых, видимо, наиболее близкими веществу ядра образцами являются железные метеориты, которые, представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут быть полностью эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических параметрах.
С другой стороны, из данных гравиметрии известна плотность ядра, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 10 % меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты.
Наконец, состав ядра можно оценить, исходя из геохимических соображений. Если каким-либо образом рассчитать первичный состав Земли и вычислить, какая доля элементов находится в других геосферах, то тем самым можно построить оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.
О.Г. Сорохтин предложил гипотезу о составе внешнего ядра из так называемого «ядерного вещества», не существующего при нормальных условиях. «Ядерное вещество» представляет собой оксид одновалентного железа Fe2O. При давлении 250-300 ГПа «ядерное вещество» разлагается на железо и кислород, поэтому внутреннее ядро, давление в котором превышает упомянутое значение, состоит из железа с примесью никеля. По мнению Сорохтина, со временем оксиды железа из мантии Земли под действием силы тяжести опускаются в ядро, превращаясь в «ядерное вещество». При этом выделяется кислород, причём по мере уменьшения количества оксидов железа в мантии его выделяется всё больше. Часть этого кислорода поступает в атмосферу. До начала фанерозоя кислорода образовывалось крайне мало, затем увеличение его концентрации в атмосфере вызвало резкий всплеск развития жизни на Земле («кембрийский взрыв»). Но именно ещё большее увеличение парциального давления кислорода в атмосфере Земли через 500-600 миллионов лет (до значения порядка 0,5 МПа) вызовет глобальное потепление и вымирание всех живых организмов, а затем и полное выкипание океана задолго до превращения Солнца в красный гигант.