дальность перелета у дирижабля выше чем у современного самолета
17200 часов на дирижабле
История «Графа Цеппелина» LZ 127 (нем. Graf Zeppelin), одного из крупнейших и наиболее передовых дирижаблей в мире, началась в 1928 году.
Воздушный корабль был назван в честь немецкого пионера дирижаблей жесткой системы графа Цеппелина. Его постигла самая счастливая судьба из всех существовавших жестких дирижаблей.
Девять лет этот корабль использовался по назначению, провел в воздухе около 17200 часов, совершил 590 полётов в разные страны мира, преодолел почти 1,7 млн. км, перевез 13110 пассажиров и около 70 т грузов и почты; при этом он 143 раза пересёк Атлантический океан и 1 раз — Тихий.
Длина дирижабля составляла 236,6 м, максимальный диаметр — 30,5 м, объём — 105 000 м³, несущий газ (водород) размещался в 17 отсеках. Силовая установка состояла из 5 моторов «Майбах» VL II мощностью 530 л.с. каждый.
От других дирижаблей он отличался тем, что для работы двигателей наряду с жидким использовалось и газообразное горючее (блау-газ), которое обладало плотностью близкой к воздушной, а теплотворная функция была значительно выше, чем у бензина. Это выгодное решение способствовало увеличению дальности перелетов и избавляло от необходимости затяжелять дирижабль по мере выработки топлива (затяжеление дирижаблей осуществлялось путем выпуска части несущего газа, что создавало ряд экономических и пилотажных неудобств). Кроме того, естественно, что применение этого газа вело к меньшей нагрузке на каркас, в отличие от той, которая имела место при установке многочисленных баков с бензином.
Блау-газ находился в 12 отсеках в нижней трети каркаса дирижабля, объём которых мог быть доведён до 30 000 м³ (для водорода в таком случае оставалось 105 000 м³—30 000 м³ = 75 000 м³). Бензин брался на борт в качестве дополнительного топлива.
Полезная нагрузка дирижабля составляла порядка 25 т (при заполнении водородом мешков, предназначенных для блау-газа — около 55 т), максимальная скорость — 128 км/ч, крейсерская — около 115 км/ч. Дальность полёта — более 10 000 км. Экипаж насчитывал 40—45 человек.
В передней части снизу к корпусу дирижабля крепилась передняя гондола, длина которой составляла 40 м, ширина — 6 м и максимальная высота — 2,25 м (самая большая в истории дирижаблестроения гондола).
Управление дирижаблей осуществлялось из рубки, которая находилась в передней части гондолы, за ней — служебные и далее — пассажирские помещения. По комфортабельности LZ 127 значительно превосходил тогдашние (а в некоторых отношениях и современные) самолёты.
Возрождение дирижаблей. Дирижабли как важная часть вооружённых сил XXI века
В одной из недавних статей были рассмотрены дирижабли и аэростаты как средство обеспечения зенитно-ракетных комплексов (ЗРК) возможностью поражения низколетящих целей на большом удалении, без привлечения самолётов военно-воздушных сил (ВВС). Однако возможности дирижаблей не исчерпываются только радиолокационной разведкой, в связи с чем появилось желание рассмотреть это направление подробнее.
История вопроса
Считается что дирижабль, управляемый мускульной силой, был изобретён в XVIII веке французским математиком и дивизионным генералом Жаном Батистом Мари Шарлем Мёнье. Своё развитие дирижабли получили спустя полвека, когда появились паровые, а затем и электрические двигатели, двигатели внутреннего сгорания. Пика развития дирижабли достигли в период между двумя Мировыми войнами, когда появились дирижабли гиганты, типа модели «Граф Цеппелин», способной перевозить до 25 тонн груза на расстояние более 10 000 км.
Ещё большими возможностями обладал дирижабль «Гинденбург», способный перевозить груз массой 100 тонн. К сожалению, именно катастрофа, произошедшая 6 мая 1937 года с «Гинденбургом», ознаменовала закат эры дирижаблей.
Главной проблемой дирижаблей того времени было то, что их ёмкости заполнялись взрывоопасным водородом. С учётом того, что гарантировать отсутствие утечки столь летучего и горючего вещества на всём сроке службы не представляется возможным, катастрофа была предопределена.
Технически в 1937 году уже был получен негорючий гелий, однако его выработку в промышленных масштабах смогли освоить только США, которые отказали в его поставках Германии, производившей крупнейшие дирижабли. Существуют и конспирологические теории о том, что катастрофы дирижаблей явились следствием конкуренции с производителями самолётов. Однако наиболее вероятным выглядит то, что на горизонте маячила большая война, при всех преимуществах дирижаблей их «боевые» возможности существенно уступали возможностям самолётов, что и предопределило преимущественное развитие последних. Вкладывать значительные средства в получение дорогого (даже сейчас) гелия в условиях предвоенного времени вряд ли было оправданно.
Возврат к дирижаблям. Проекты стран Запада
Тем не менее, история движется по спирали, и в XXI веке присутствует определённый интерес к возрождению строительства дирижаблей на новом технологическом уровне. Компаниями разработчиками и ВВС рассматривается несколько направлений строительства перспективных дирижаблей. Во-первых, это дирижабли, предназначенные для размещения средств разведки и связи, во-вторых, это транспортные дирижабли-гиганты, способные перевозит сотни тонн грузов на огромные расстояния.
В 2005 году небезызвестное агентство передовых оборонных исследовательских проектов DARPA объявило об открытии программы строительства сверхтяжёлого транспортного дирижабля «Walrus» с грузоподъёмностью от 500 до 1000 тонн и дальностью полёта до 22 тысяч километров.
В рамках программы создания сверхтяжёлого дирижабля упомянутое агентство DARPA выдало грант в 3 миллиона долларов США компании Lockheed Martin. Субподрядчик компании Lockheed Martin – компания Worldwide Aeros Corp предложила проект дирижабля Aeroscraft. Компания Worldwide Aeros Corp планировала построить дирижабль Aeroscraft в трёх версиях, модель ML866 грузоподъемностью 66 тонн, модель ML868 грузоподъемность 250 тонн и модель ML86X грузоподъемностью 500 тонн.
К сожалению, им удалось создать лишь дирижабль-прототип Dragon Dream длиной в 81 метр и объемом в 17 тысяч кубических метров. В 2015 году обрушилась часть крыши ангара, в котором базировался прототип Dragon Dream, что привело к его разрушению и свёртыванию работ. К слову, компания Worldwide Aeros Corp была основана в 1992 году нынешним генеральным директором и главным инженером Игорем Пастернаком, который приехал в Америку из Украины после развала СССР.
Первый полёт дирижабля Dragon Dream
Очевидно, что создание дирижаблей грузоподъёмностью 500-1000 тонн потребует решения огромного количества сложных технических задач. С учётом того, что отрасль дирижаблестроения пребывает в забвении достаточно продолжительное время, на пути к созданию дирижаблей сверхбольшой грузоподъёмности должны быть поэтапно построены образцы меньшей грузоподъёмности.
Одним из реализованных проектов является дирижабль Airlander 10 спроектированный и изготовленный британской компанией Hybrid Air Vehicles. Дирижабль «Airlander 10» является гибридным – использует аэродинамическую подъёмную силу при подъёме и затем находится в воздухе за счёт наполненного гелием объёма. Его длина составляет 92 метра, грузоподъёмность десять тонн. Крейсерская высота полета дирижабля составляет 6 100 м, крейсерская скорость 148 км/ч. Он может находиться в полете до двух недель в беспилотном режиме и около пяти дней с экипажем.
Изначально дирижабль разрабатывался для армии США по программе LEMV для ведения разведки и наблюдения в интересах наземных войск. Однако в 2013 году армия США отказалась от данного дирижабля, предположительно из-за его высокой стоимости. В дальнейшем проект развивался как коммерческий, обновлённая версия дирижабля совершила несколько полётов, однако в 2017 году дирижабль Airlander 10 оторвался от причальной мачты и был полностью разрушен в результате удара о взлётное поле.
Первый полёт гибридного дирижабля Airlander 10
Американская компания JP Aerosapce разрабатывает стратосферный дирижабль Ascender, предназначенный для запуска космических ракет-носителей, с высоты порядка 50-60 километров. Несмотря на то, что сама концепция вызывает много вопросов, полученные наработки могут быть использованы для создания дирижаблей с более реалистичными сценариями применения, например, используемых в качестве ретрансляторов связи или носителей средств высотной разведки.
С высоты 50-60 километров дальность видимости составит почти 1000 км, что позволит осуществлять разведку в глубине территории противника, не нарушая его границ. Указанные высоты вполне досягаемы для аппаратов легче воздуха – в 2009 году исследовательский беспилотный шар BU60-1, разработанный Агентством аэрокосмических исследований Японии, поднялся на высоту 53 километра.
Дирижаблестроение в России
Презентация перспективного российского дирижабля «Атлант»
Другой перспективный беспилотный дирижабль, «Беркут», должен быть способен подниматься на высоту 20-23 километра и оставаться в воздухе до полугода. Большая продолжительность полёта должна обеспечиваться за счёт отсутствия экипажа (беспилотный дирижабль) и системе энергоснабжения от солнечных батарей. Основные предполагаемые задачи дирижабля «Беркут» – обеспечение ретрансляции связи и высотная разведка.
Дирижабли являются достаточно уязвимой платформой в случае конфликта с высокотехнологичным противником из-за своих огромных размеров и низкой скорости полёта, что, впрочем, никак не приуменьшает их роль как средства предупреждения об атаке низколетящими средствами воздушного нападения (СВН). Легко уязвимыми целями можно считать и любые крупные стационарные объекты, например, такие, как РЛС станций предупреждения о ракетном нападении, что вовсе не повод от них отказываться.
В случае, если разработка дирижаблей грузоподъёмностью 500-1000 тонн будет успешно реализована, они также могут стать важнейшим элементом логистической системы современных вооружённых сил, объединив в себе преимущества транспортных самолётов, вертолётов и кораблей. В этом случае уязвимость платформы может компенсироваться выбором оптимальных маршрутов полёта для избегания столкновения с силами противника.
Дирижабли в локальных конфликтах
Можно предположить, что крайне важную роль дирижабли могут сыграть в локальных конфликтах против противника, не обладающего современными средствами противовоздушной обороны (ПВО).
Одной из глобальных проблем современных ВВС является высокая стоимость не только самолётов и вертолётов, но и высокая стоимость их эксплуатации.
В результате локальные войны против боевиков, самым современным вооружением которых могут быть противотанковые управляемые ракеты (ПТУР) и переносные зенитно-ракетные комплексы (ПЗРК), становятся финансово неподъёмными даже для сверхдержав, что подтверждается опытом СССР и США в Афганистане. Можно не сомневаться, что расходы на авиационную поддержку сирийских правительственных войск также влетают России в «копеечку».
Каким образом применение дирижаблей может повлиять на ситуацию? В материале Боевые «Гремлины» ВВС США: возрождение концепции воздушных авианосцев рассматривались концепции американских ВВС по строительству перспективных воздушных авианосцев – носителей беспилотных летательных аппаратов (БПЛА). По проектам агентства DARPA размещение недорогих многоразовых БПЛА на борту транспортных самолётов, бомбардировщиков и тактических самолётов позволит уменьшить вероятность потерь и упростить прорыв ПВО противника. Можно предположить, что такая концепция оправдана и с точки зрения снижения стоимости ведения боевых действий в воздухе/с воздуха.
Тем не менее, в борьбе против нерегулярных формирований, даже применение воздушных авианосцев на базе транспортных самолётов и бомбардировщиков будет весьма затратным. Как было рассмотрено в том же материале, первыми воздушными авианосцами были как раз дирижабли.
Концепция дирижабля-авианосца вполне может быть воссоздана на современном технологическом уровне для решения именно задач в локальных конфликтах.
Предположительно создание дирижабля типа «Атлант» грузоподъёмностью 60 тонн и высотой полёта свыше 5000 метров позволит разработать на его базе дирижабль-носитель с размещением нескольких типов БПЛА малой и средней размерности, а также топлива и вооружения для них из расчёта автономного использования в течение 2-4 недель. Конструкция самих БПЛА должна быть максимально упрощена для снижения их стоимости.
Количество БПЛА на борту может варьироваться в зависимости от их массогабаритных характеристик. Для БПЛА типа «Форпост-М» оптимальным можно считать количество порядка 12-16 БПЛА, для обеспечения возможности круглосуточного нахождения в воздухе 3-4 БПЛА в трёхсменном варианте или 6-8 в двухсменном. Операторы управления БПЛА, количество которых определяется в соответствие с количеством БПЛА и смен работы, также должны размещаться на борту дирижабля-носителя.
Сценарий применения дирижабля-носителя БПЛА
К примеру, в ходе локального конфликта необходимо захватить контроль над городом, ставшим оплотом боевиков и требующим значительных сил для его захвата правительственными войсками. Прямой штурм может привести к большим потерям среди личного состава, применение боевых самолётов и вертолётов требует значительных финансовых средств. Кроме того, современные истребители плохо приспособлены для поражения разрозненных групп боевиков, а штурмовики типа Су-25 и боевые вертолёты уязвимы для огня противника.
Дирижабль-носитель занимает заданную позицию над городом (или в стороне, на небольшом удалении). Высота полёта свыше пяти километров делает его неуязвимым для средств ПВО, имеющихся у боевиков. Помимо этого, он может быть оснащён средством противодействия атакам ПЗРК, типа «Президент-С».
Презентация системы «Президент-С»
После выхода на позицию дирижабль-носитель осуществляет запуск БПЛА на патрулирование. Патрульные БПЛА должны быть оснащены вооружением с минимальной стоимостью – управляемыми и неуправляемыми авиабомбами малого диаметра, неуправляемыми авиационными ракетами, стрелково-гранатомётным вооружением и т.п. Обнаружение противника ведётся как средствами разведки БПЛА, так и средствами разведки дирижабля-носителя, который после обнаружения цели направляет на неё ближайший БПЛА. Дирижабль-носитель осуществляет дежурство в течении двух недель, после чего его сменяет другой дирижабль-носитель.
Основная задача дирижабля-носителя и его авиакрыла – осуществлять постоянное, круглосуточное, изматывающее воздействие на противника. Любая обнаруженная цель должна быть уничтожена в кратчайшее время. Средства радиолокационной и тепловизионной разведки должны обеспечить круглосуточное обнаружение противника, а нахождение дирижабля-носителя вблизи зоны ответственности обеспечит минимальное время реакции.
После нескольких недель непрерывного воздействия можно ожидать что противник будет значительно деморализован и понесёт большие потери в живой силе и вооружении. В случае, если принято решение о наземном штурме, БПЛА с дирижабля-носителя должны оказывать непосредственную авиационную поддержку наземным войскам. Учитывая специфику выполняемых задач, дирижабль-носитель БПЛА должен входить не в состав ВВС, а в состав сухопутных войск, действуя непосредственно в их интересах, что позволит добиться максимального уровня взаимодействия операторов БПЛА и наземных бойцов.
Альтернативное размещение БПЛА на наземной базе потребует или привлечения моделей с большей дальностью полёта, а, следовательно, и с большей стоимостью полёта, или оборудования базы рядом с зоной ответственности, и её обороны. В любом случае будет увеличено время реакции и уменьшены возможности по обнаружению противника.
Как мы видели в вышеприведённой таблице, стоимость полёта среднеразмерного БПЛА типа «Predator» составляет порядка 4000 долларов, стоимость полёта БПЛА малой размерности должна быть сравнима или ниже стоимости полёта лёгкого штурмовика OV-10 Bronco (1000 долларов) из той-же таблицы. Сочетание низкой стоимости полёта БПЛА и низкой стоимости эксплуатации дирижабля, что обычно преподносится их создателями как преимущество этого типа летательных аппаратов, позволит существенно уменьшить совокупные затраты на авиационную поддержку в локальных конфликтах. Потеря БПЛА малой размерности также гораздо менее чувствительна, нежели потеря БПЛА средней размерности, не говоря уже о потере пилотируемых самолётов и вертолётов.
В мирное время дирижабли-носители могут применяться для контроля протяжённых участков государственной границы России, обеспечивая обнаружение, а при необходимости и уничтожение контрабандистов, боевиков или террористических групп. К примеру, зона контроля дирижабля носителя с БПЛА типа «Форпост-М» может составить круг диаметром 300-400 км.
Отличия дирижаблей от самолетов, преимущество, недостатки
1. Технические основы полета дирижабля
Дирижабль принадлежит к типу воздушных судов легче воздуха в отличие от аппаратов тяжелее воздуха, которыми являются например самолеты. В то время как аппараты тяжелее воздуха приобретают подъемную силу благодаря поступательному движению с большой скоростью, сообщаемой аппарату посредством мощного двигателя, суда легче воздуха получают подъемную силу помощью наполнения их газом, более легким чем воздух<1>. Подъем, спуск, а также сохранение ими устойчивого положения в воздухе происходят согласно закону Архимеда, который гласит, что всякое тело, погруженное в жидкость или газ, испытывает давление, вытесняющее его вверх и равное весу жидкости или газа (воздуха) в объеме этого тела. Выпуская наружу некоторое количество газа, воздушное судно этого типа можно заставить опуститься до слоя воздуха, обладающего такой плотностью и весом, что вытесненный объем его будет равен по весу воздушному судну, в результате чего последнее останется в устойчивом равновесии, т. е. не будет ни подниматься, ни опускаться.
Если про самолет говорят, что он летает, то про аппараты легче воздуха уместнее говорить, что они «плавают» в воздухе, чему и соответствует наименование «воздухоплавательные аппараты».
2. Сравнение дирижабля с самолетом по техническим принципам полета
Как самолеты, так и дирижабли являются средствами воздушного передвижения, продолжающими развиваться и совершенствоваться. Но в силу того, что технические основы полета тех и других совершенно различны, естественно возникает вопрос о сравнении свойств самолетов и дирижаблей. [6]
Самолет держится в воздухе благодаря большой поступательной скорости. Это является источником всех трудностей и сложности полета на самолете. Чтобы взлететь в воздух, самолету надо разбежаться, для чего нужно хорошее, ровное поле. Вследствие того что самолет не может неподвижно держаться в воздухе, а должен все время иметь большую поступательную скорость, посадка его на землю является очень трудной и сложной операцией. Всякая канавка, бугорок, недостаточные размеры площади, на которую производится посадка, всякая малейшая оплошность летчика могут привести к полному разрушению самолета, а порой и к гибели экипажа.
Всякое уменьшение скорости в полете меньше предельной для данного типа самолета приводит к тому, что он прекращает движение и падает. Если это происходит низко над землей, то это падение опять-таки может закончиться гибелью и машины и экипажа. Порча мотора немедленно влечет за собою необходимость посадки. Иногда это происходит над таким районом (горы, город и т. д.), где без гибели или тяжелых ранений экипажа в большинстве случаев эта посадка невозможна.
Самолет может держаться в воздухе, пока работает мотор. Время же работы мотора определяется наличием на самолете запаса бензина, который всегда имеется лишь в ограниченном количестве.
Дирижабль же «плавает» в воздухе. Благодаря подъемной силе газа он может вертикально подниматься вверх, может по желанию или в случае остановки имеющихся у него моторов, работой которых он приобретает поступательное движение, совершенно остановиться в воздухе и не падать. Он значительно грузоподъемнее самолета, имеет возможность совершать продолжительные безостановочные перелеты, выгодно используя попутные ветры.
Посадка в тумане для самолета как правило сопряжена с аварией или полной гибелью; для дирижабля туман — лишь затруднение, которое не делает однако посадку невозможной. Взлет в тумане для самолета также на много сложнее и опаснее, чем для дирижабля.
3. Виды воздушных судов легче воздуха
Плавающих в воздухе аппаратов существует в настоящее время три вида: сферические аэростаты, привязные змейковые аэростаты и управляемые аэростаты, или дирижабли.
Сферический аэростат (рис. 1) представляет собой шар, наполненный газом легче воздуха. Сферический аэростат поднимается до высоты, на которой его вес будет равен [7] весу воздуха, вытесненному аэростатом. Это равновесие наступает благодаря тому, что с высотой воздух становится менее плотным и вес вытесняемого аэростатом воздуха уменьшается. Для спуска — пилоты, сидящие в привязанной к шару корзине, понемногу выпускают из шара газ, уменьшая таким образом подъмную силу. В горизонтальной плоскости сферический аэростат может перемещаться только силой ветра.
Привязной змейковый аэростат (рис. 2) имеет обычно форму удлиненного элипсоида<2>, несколько изогнутую, и так же, как сферический аэростат, наполняется газом легче воздуха. Привязной аэростат под действием ветра получает дополнительную подъемную силу по принципу змея, отсюда и его название «змейковый». Наматывая или разматывая трос лебедкой, дают возможность змейковому аэростату подниматься или же опускают его.
Управляемые аэростаты (дирижабли) отличаются от первых двух типов воздухоплавательных аппаратов тем, что имеют собственное поступательное движение, которое приобретается посредством тяги воздушных винтов, вращаемых мощными двигателями, устанавливаемыми на дирижабле. Для перемены направления полета на дирижабле имеются [8] рули поворота, устроенные и действующие на подобие корабельных рулей с той естественной разницей, что на рули вместо воды действует (давит) сильный встречный поток воздуха, создаваемый поступательным движением дирижабля Подъем вверх или опускание вниз дирижабль может выполнять двумя способами. Первый — это маневрирование балластом и газом: сбрасывая за борт ту или иную часть балласта (мешки с песком, вода), дирижабль можно заставить подниматься; выпуская понемногу газ, можно уменьшить подъемную силу, в результате чего дирижабль опустится. Второй способ осуществляется действием горизонтальных рулей, или иначе — «рулей глубины». Действие их основано на том же принципе, что и рулей поворота, но первые поставлены на дирижабле вертикально и поворачиваются вправо и влево; вторые же укреплены горизонтально и поворачиваются вниз и вверх, заставляя дирижабль снижаться или итти на подъем.
4. Системы дирижаблей
В строительстве дирижаблей установились три отличных друг от друга системы: жесткая, полужесткая и мягкая.
Жесткие — обычно крупные дирижабли — имеют жесткий каркас, разделенный на ряд газовых отделений (отсеков), внутри которых помещаются отдельные баллоны с газом. Каркас обтягивается полотном (за последнее время стал применяться листовой дюраль).
Полужесткие — имеют мягкую оболочку и при ней жесткую опору в виде специальной примкнутой к оболочке стрелы и платформы. Такую же роль выполняют длинная гондола и несколько жестких распорок внутри дирижабля. Назначение этих креплений — обеспечить неизменность формы дирижабля, что достигается еще наличием внутри дирижабля баллонетов — особых мешков, помещаемых внутри оболочки и надуваемых воздухом<3>.
Мягкие — с мягкой оболочкой при полным отсутствии в ней жестких частей и с короткой, низко подвешенной к оболочке гондолой. Неизменность формы оболочки достигается наличием только одного или нескольких баллонетов. [9]