давление холодного воздуха на земную поверхность чем холодного
Атмосферное давление. Ветер
Содержимое разработки
Взвешивание воздушного шарика пустого и накаченного воздухом и горки песка, как доказательство того, что воздух имеет вес.
Воздух имеет вес, значит он давит на все тела под ним:
это сила, с которой воздух давит на земную поверхность и все находящиеся на ней предметы.
1 м3 воздуха на уровне моря = 1 кг 300г
Нормальное атмосферное давление –
Барометр – анероид – прибор для измерения атмосферного давления.
Чем выше, тем воздух легче.
При подъёме на 10,5 метров – атмосферное давление понижается на 1 мм ртутного столба.
Атмосферное давление зависит от температуры воздуха
Тёплый воздух легче холодного,
давление тёплого воздуха на земную поверхность меньше, чем холодного
перемещение воздуха в горизонтальном направлении.
Вы уже знаете, что тёплый воздух более лёгкий, и он поднимается вверх, а более холодный воздух соседних областей перемещается на его место. Движение воздуха является причиной образования известного вам процесса – ветра.
Ветер характеризуют по следующим показателям: направление, скорость и сила.
по 12-балльной шкале.
Ураган – самый разрушительный ветер – имеет силу 12 баллов.
Скорость ветра – измеряется в м/с, км/ч
Самое ветреное место на Земле –
Направление ветра – это направление, откуда дует ветер (западные дуют с запада, восточные – с востока).
график, на котором показаны направления ветров, господствующих в данной местности.
Днём бриз дует с моря на сушу,
а ночью – с суши на море.
Муссоны – (от араб.маусим. –сезон) – ветры, меняющие своё направление два раза в год.
Фён – тёплый и сухой сильный, порывистый ветер, дующий с гор в долины.
Бора – сильный порывистый ветер, возникающий, когда холодный воздух перетекает через горный хребет и вытесняет находящийся по другую сторону тёплый и менее плотный воздух.
Зимой приносит сильное похолодание.
Ветры обычно делят на три группы:
Атмосферное давление. География
С помощью барометра было установлено, что средняя высота ртутного столба в барометре на уровне моря составляет 760 мм. Это давление стали называть нормальным атмосферным давлением. А любое другое — «ненормальное»: повышенное или пониженное.
Теперь можно поговорить о второй закономерности.
От чего ещё зависит атмосферное давление? Вспомните, почему воздушный шар поднимается вверх? Правильно, потому что он наполнен горячим воздухом (рис. 118). А если мы не будем его нагревать, что произойдёт? Воздух внутри шара остынет, и шар опустится вниз. И тут самое главное, чтобы он опускался не слишком быстро.
Тёплый воздух легче холодного. То есть вес воздуха зависит от температуры. Чем температура ниже, тем вес воздуха больше. Поэтому холодный воздух давит на земную поверхность сильнее, чем тёплый.
1. Атмосферное давление — это давление, оказываемое земной атмосферой на единицу площади.
2. Атмосферное давление зависит от высоты над уровнем моря. Чем выше мы поднимаемся, тем ниже давление.
3. Атмосферное давление зависит и от температуры воздуха. Холодный воздух тяжелее тёплого, поэтому его давление на земную поверхность — больше.
4. Атмосферное давление измеряется барометром. Нормальное атмосферное давления составляет 760 мм рт. ст.
Атмосферное давление, эванджелиста торричелли, барометр
1. Сколько приблизительно весит кубический метр воздуха? 2. Что такое атмосферное давление? 3. Чему приблизительно равно атмосферное давление? 4. Какое атмосферное давление называют нормальным? 5. Почему с высотой атмосферное давление уменьшается?
А теперь более сложные вопросы
1. Чем же всё-таки объясняются различные результаты описанных в начале параграфа опытов с линейкой и листом бумаги? 2. Как связаны температура воздуха и атмосферное давление? 3. Санкт-Петербург расположен буквально на уровне моря, а Москва — на высоте почти 300 м над уровнем моря. Где при прочих равных условиях атмосферное давление должно быть больше, а где меньше?
1. Наименьшее атмосферное давление наблюдается на:
а) берегу моря;
б) низменности;
в) холме;
г) вершине горы.
2. От чего НЕ зависит атмосферное давление:
а) от температуры воздуха;
б) от высоты над уровнем моря;
в) от времени суток;
г) зависит от всего перечисленного.
3. На метеостанциях атмосферное давление определяют с помощью:
а) барометра;
б) термометра;
в) батометра;
г) гигрометра.
Глава 5. Атмосфера Земли. Климатообразующие факторы
Атмосфера (от греч. atmos — пар) — внешняя воздушная оболочка Земли, состоящая из смеси различных газов: азота (78,08 %), кислорода (20,95 %), аргона (0,93 %) и углекислого газа (0,03 %). В состав воздуха также входят в небольшом количестве инертные газы: гелий, неон, ксенон, криптон, водород, озон и другие, которые в общей сложности составляют около 0,01 %. Кроме того, в воздухе содержатся водяные пары и некоторое количество пыли.
Солнечное излучение, солнечная радиация — единственный источник энергии для экзогенных процессов на земной поверхности и в атмосфере. Строго говоря, излучением называется процесс теплоотдачи одним и поглощения другим телом невидимых тепловых (инфракрасных) лучей. Чем выше температура тела, тем интенсивнее оно излучает. Поверхность Земли получает тепло за счет солнечного излучения, а ночью она остывает, испуская тепловые лучи в атмосферу. Солнечная радиация обычно выражается в калориях за единицу времени на единицу поверхности. Всего Земля получает от Солнца 2,4 е 1018 калорий лучистой энергии в 1 минуту.
Суммарная радиация. Кроме прямых солнечных лучей (прямой радиации), к земной поверхности приходит и часть радиации, рассеянной в атмосфере. В районах, где часто бывает облачность, годовая величина рассеянной радиации больше величины прямой радиации. Приходящую на земную поверхность радиацию, прямую и рассеянную, называют суммарной радиацией. По поверхности планеты суммарная радиация распределяется не строго зонально: в разных местах под одной и той же широтой она бывает неодинакова.
Отраженная земной поверхностью радиация называется отраженной, а поглощенная земной поверхностью — поглощенной радиацией. Особенно сильно отражает радиацию снег (до 90 %), слабее — песок (35 %), трава (20 %), еще слабее — чернозем (4 %).Способность поверхности отражать солнечные лучи называется альбедо (рис. 21). Поглощенная радиация нагревает почву, растительный покров, верхние слои воды. На территории нашей страны годовая суммарная радиация изменяется от 60 ккал/см 2 на севере до 160 ккал/см 2 на юге.
Амплитуда суточных колебаний зависит от ряда факторов:
1) Характера подстилающей поверхности: над океанами и морями она равна всего 1—2°, а над степями и пустынями достигает 15-20°.
2) Рельефа местности: вследствие опускания в долину холодного воздуха со склонов.
3) Облачности. С увеличением облачности суточная амплитуда уменьшается.
Так атмосфера Земли имеет толшину около 1 тысячи километров, на каждого из нас давит столб воздуха весом 15 тонн. Почему же мы не ощущаем это давление? Объясняется это тем, что давление внутри организма человека равно атмосферному. Внутреннее и внешнее давления уравновешиваются.
Постоянные ветры Земли — пассаты и западные ветры — зависят от положения поясов атмосферного давления. Так как в экваториальном поясе преобладает низкое давление, а близ 30° с. ш. и ю. ш. — высокое, то у поверхности Земли в течение всего года ветры дуют от тридцатых широт к экватору. Это пассаты. Под влиянием вращения Земли вокруг своей оси пассаты отклоняются: в Северном полушарии вправо, на запад, и дуют с северо- востока на юго-запад, а в Южном полушарии — влево и направлены с юго-востока на северо-запад (рис. 22). От поясов высокого давления (25-30° с. ш. и ю. ш.) ветры дуют не только к экватору, но и в сторону полюсов, т. к. у 65° с. ш. и ю. ш. преобладает низкое давление. Однако вследствие вращения Земли они постепенно отклоняются к востоку и создают воздушный поток, перемещающийся с запада на восток. Поэтому в умеренных широтах преобладают западные ветры.
Циклоны и антициклоны.
В тропосфере средних и высоких широт постоянно образуются области низкого и высокого атмосферного давления диаметром в несколько тысяч километров. Циклон (от греч. kyklon — кружащийся) — область низкого давления атмосферы; антициклон — область высокого давления атмосферы (рис. 23). В центре циклона самое низкое давление, в центре антициклона — самое высокое.
В каждом циклоне и антициклоне воздух движется в виде огромного вихря. В Северном полушарии это вращение воздуха в циклонах происходит против часовой стрелки, а в антициклонах — по часовой стрелке. Скорости ветра в циклонах могут быть весьма значительными. В антициклонах ветры слабее, во внутренних их частях наблюдаются даже штили (безветрие).
В атмосферном воздухе всегда находится некоторое количество водяного пара. До 86 % пара поступает в атмосферу с поверхности морей и океанов. Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.
Таким образом, по происхождению различают осадки (рис. 24):
— конвективные — характерны для жаркого пояса, где интенсивен нагрев и испарение, но нередко бывают и в умеренном поясе;
— фронтальные — образуются при встрече двух воздушных масс с разными температурами и выпадают из более теплого воздуха. Характерны для умеренных и холодных поясов;
— орографические — выпадают на наветренных склонах гор. Они очень обильны, если воздух идет со стороны теплого моря и обладает высокой абсолютной и относительной влажностью.
Формирование различных типов климата происходит под влиянием многих факторов. Все их разнообразие можно свести к трем группам: 1) количество солнечного тепла, поступающего на земную поверхность (географическая широта); 2) циркуляция атмосферы; 3) характер подстилающей поверхности и рельеф.
Зависимость климата от географической широты.
Распределение солнечного света и тепла на Земле неравномерно. Больше всего тепла получают территории по обе стороны от экватора. Это экваториальный, субэкваториальный, тропический и субтропический пояса.
Тип климата | Климатический пояс | Средняя t, ° | |
января | июля | ||
Экваториальный | Экваториальный | +26 | +26 |
Тропический муссонный | Субэкваториальный | +20 | +30 |
Тропический сухой | Тропический | + 12 | +35 |
Средиземноморский | Субтропический | + 7 | +22 |
Субтропический сухой | Субтропический | 0 | +40 |
Умеренный морской | Умеренный | +2 | + 17 |
Умеренный континентальный | Умеренный | -15 | +20 |
Умеренный муссонный | Умеренный | -20 | +23 |
Субарктический | Субарктический | -25 | +8 |
Арктический (антарктический) | Арктический (антарктический) | -40 | 0 |
Режим и количество осадков | Циркуляция атмосферы | Примеры территорий |
2000 мм в течение года | В области пониженного атм. давления формируются теплые и влажные экваториальные воздушные массы | Экваториальные области Африки, Южной Америки и Океании |
2000 мм во время летнего муссона | Муссоны | Северная Африка, Центральная Австралия |
200 мм в течение года | Пассаты | Южная и Юго-Вост. Азия, Зап. и Центр. Африка, Сев. Австралия |
500 мм преимущественно зимой | Летом — антициклоны при высоком атмосферном давлении; зимой — циклоны | Средиземноморье, Южный берег Крыма, Южная Африка, Юго- Зап. Австралия |
120 мм в течение года | Сухие континентальные воздушные массы | Внутренние части материков |
1000 мм в течение года | Западные ветры | Западные части Евразии и Сев. Америки |
400 мм в течение года | Западные ветры | Внутренние части материков |
560 мм преимущественно во время летнего муссона | Муссоны | Восточная окраина Евразии |
200 мм в течение года | Преобладают циклоны | Северные окраины Евразии и Сев. Америки |
100 мм в течение года | Преобладают антициклоны | Акватория Сев. Ледовитого океана и Антарктида |
1. Из каких слоев состоит атмосфера планеты Земля?
2. Каков процентный состав воздуха, которым мы дышим?
3. Как называется слой атмосферы, поглощающий ультрафиолетовую часть солнечной радиации?
4. Почему с увеличением высоты температура воздуха понижается?
5. Как изменяется атмосферное давление по мере увеличения высоты?
6. Чем объясняется смещение воздушных масс зимой — к югу, а летом — к северу?
7. Опишите механизм образования постоянных ветров Земли.
8. Как называется атмосферный вихрь, в котором воздух в Северном полушарии движется против часовой стрелки?
9. В каком направлении по вертикали движется воздух в циклоне: вверх или вниз? Как распространяется дым, выходящий из труб, при циклональных условиях погоды?
10. Что такое атмосферный фронт?
11. Что входит в понятие «циркуляция атмосферы»?
12. Где зарегистрирована самая низкая температура у земной поверхности?
13. Что будет происходить со столбиком барометра, если подниматься с ним от берега моря в гору?
14. Какой воздух может содержать больше влаги: теплый или холодный?
15. Чем отличается относительная влажность от абсолютной?
16. Перечислите виды атмосферных осадков. Как образуются осадки?
17. Как называются ветры, связанные с сезонными различиями в температуре и давлении между материками и океанами?
18. Назовите климатообразующие факторы.
19. В каком из перечисленных городов наблюдаются самые холодные зимы: Москва, Белгород, Мурманск, Улан-Батор?
20. Чем объясняется обилие осадков на восточных склонах Большого Водораздельного хребта в Австралии?
Теплый и холодный воздух
1. Какой воздух легче холодный или теплый?
Бессмысленно продолжать делать то же самое и ждать других результатов (Эйнштейн)
Рис. 1. Условно показана молекула кислорода на рычажных весах (детские качели) при разных температурах окружающей атмосферы. a – из наблюдений; b – по Эйнштейну.
Зададимся вопросом в стиле Якова Перельмана: какой воздух тяжелее холодный или теплый? После этого посмотрим ответы на форуме в интернете (ответы обозначены цифрами): 1) теплый; 2) холодный;3) холодный конечно; 4) тёплый воздух поднимается вверх, он легче; 5) холодный, поэтому он внизу всегда; 6) конечно теплый!; 7) тяжелей холодный, он опускается вниз, а теплый поднимается, значит легче; 8) тяжелее влажный воздух!; 9) холодный, вспомни, когда зимой открываешь форточку; 10) это и в садике знают, что тёплый легче, поэтому вверх стремится.
На тяжесть холодного воздуха ставок гораздо больше.
Мы народ северный и нас на таком вопросе не проведешь, открывая зимой форточку, наблюдаем, как холодный воздух буквально врывается в комнату, падает вниз к нашим ногам и расстилается по полу комнаты.
А может он хочет нам поклониться за широкое гостеприимство? Не знаю, но это подтверждается визуально, когда холодный воздух, увлекая частицы пара, превращает их в видимый шлейф при конденсации. После чего выносится вердикт: холодный воздух тяжелее теплого, поэтому он устремляется вниз.
Очередная зима, подкрепляет наши наблюдения и укрепляет правоту сказанного. Объясняем мы это плотностью – холодный воздух более плотный, теплый более разреженный.
Иногда для объяснения притягивают влажность воздуха. Поскольку, в зимний период на улице влаги больше, то влажный воздух должен весить якобы больше. Воздух – это смесь газов, состоящая на три четверти из азота и почти на четверть из кислорода и некоторого количества водяного пара.
Количество остальных газов пренебрежимо мало, их не учитываем. Средняя молекулярная масса воздуха 29, молекулярная масса водяного пара 18. Об этом говорит и, упомянутый выше, Я.
Перельман: «При одинаковом давлении и температуре кубометр влажного воздуха не тяжелее, а легче, чем кубометр сухого воздуха» [1].
Для выяснения сути данного явления в бытовых условиях можно пойти в баню, и пока не вспотели, понаблюдать за движением пара. Кто в баню не ходит пусть поставит эксперимент на своей кухне и нагреет кастрюлю с водой. Как только кастрюля закипит, пар с завихрениями устремится вверх, под купол вытяжной вентиляции.
В бане этот процесс выражен еще более контрастно, первый ковш воды, брошенный на раскаленные камни, выбрасывает вверх белый шлейф пара.
Мы видим восходящий паровой поток, который буквально вонзается в потолок, растекается по нему, стараясь его приподнять, и, постепенно охлаждаясь, начинает оседать, а затем конденсироваться на холодных металлических трубах.
По сравнению с окружающим воздухом пар перегрет, поэтому его молекулы более энергонасыщены.
Можно ли доверять нашим органолептическим органам? Для начала необходимо разобраться, почему холодный воздух уплотняется?
2. Почему плотность холодного воздуха больше чем теплого?
На самом ли деле теплый воздух легче холодного. Давайте проверим это утверждение и взвесим две молекулы кислорода теплую, при температуре +20º С и холодную, при температуре 0º С. Но как это сделать, на каких весах измерить разницу веса между молекулами? Судя по рисунку, автору удалось это сделать с помощью рычажных весов (детской качели).
Трудность заключается еще и в том, что мы не сможем в земных условиях точно оценить вес даже, заключенных в оболочку, достаточно больших одинаковых объемов воздуха. Оценке мешает эффект плавучести (статья «Гравитационная температура»).
Остается одно, разобраться с этим явлением с энергетической точки зрения.
Если мы возьмем молекулы одного и того же газа, но при разных температурах, то понятно, что молекула, имеющая более высокую температуру, будет более энергонасыщена и будет иметь более высокую скорость перемещения.
А за счет какой энергии вообще молекулы перемещаются? Классическая молекулярно-кинетическая теория на этот вопрос не дает вразумительного ответа. Этот физический процесс был основательно исследован в главе «Броуновское движение». Молекулы двигаются благодаря энергии импульсов придачи «вперед за снарядом».
Под действием этих импульсов электромагнитного крафонного (краснофотонного) излучения, молекулы пара стремительно разлетаются в разные стороны, но в большей степени вверх (область пониженного давления), тем самым, разреживая и освобождая пространство, в которое устремляется новые молекулы. Те, в свою очередь, поступают как первые. Тем самым мы видим восходящий поток пара.
Этот процесс в динамике идет по нормали до первой преграды – потолка.
Попутно еще один вопрос: за счет чего уплотняется холодный воздух?
Конвективные перемещения осуществляются за счет разности давлений, разности температур и гравитации. Холодный воздух из открытой форточки непрерывным потоком падает на пол нашей комнаты.
Да, температура холодного воздуха ниже, чем теплого и что из этого следует? Ранее было выяснено, что гравитация квантуется, т.е. передается импульсами. Количество этих импульсов гравитационного излучения земли и нашего пола распределяется по всей поверхности примерно одинаково.
Тогда остается излучение самих молекул воздуха. Молекулы имеют маленькую массу и охотно отзываются на собственный импульс придачи, после чего устремляются в том же направлении отстрела этого импульса. Статистически у теплых молекул частота излучения выше, чем у холодных.
Они чаще отстреливают свои импульсы в пространство, где меньше давление, поэтому теплые молекулы летят в сторону потолка, освобождая место холодным.
Получается, за счет этого электромагнитное, гравитационное излучение земли подтягивает к полу в большей степени холодный воздух, соответственно, теплый выталкивается вверх. Холодные молекулы имеют меньшую скорость, поэтому находятся в более плотном состоянии. Вот по такой технологии идет конвекция в любой газовой среде.
Теплый воздух в комнате выходит из температурного равновесия и постепенно внедряется в ряды холодного, отдавая часть своей теплоты.
3. Эйнштейн против Клайперона и Менделеева
Рис. 2. На рисунке условно показано равное количество молекул азота (1) и молекул кислорода (2), находящихся при разных температуре и занимающих не равные объемы. a – при высокой температуре; b – при низкой температуре.
Обычно объясняют, что холодный воздух выталкивает теплый и тот поднимается вверх. На самом деле никто никого не толкает и не выталкивает. Весь воздух подвержен притяжению Земли и эта энергия его подпитывает.
В зависимости от энергонасыщенности происходит температурная сегрегация по высоте расположения.
Молекулы теплого воздуха имеют большую скорость перемещения, они разлетаются на большие расстояния, происходит больше столкновений между ними и они занимают больший объем (рис. 2а).
А теперь для доказательства равенства масс молекул, находящихся под разным тепловым потенциалом, я призвал на помощь два уравнения из классической физики.
1) уравнение состояния для идеального газа Клайперона-Менделеева.
Где, m – масса газа, P – давление, V – объем, M – молярная масса, R – универсальная газовая постоянная, Т – температура.
Замечание, сейчас принято обозначать температуру греческой буквой Θ (Тэта). Чтобы не нарушать написание известной формулы оставим символ Т.
Из (2) видно, что при повышении температуры, увеличивается V (при постоянном давлении P). При этом масса газа (воздуха) остается постоянной.
2) Уравнение Эйнштейна. Энергия излучения связана с его массой.
Подставив в формулы (3, 4) реальные значения, можно убедиться без лишних доказательств, что кубовый объем газа, имеющий меньшую энергию Е (температуру и скорость молекул) будет иметь и меньшую массу.
Тогда можно заключить, что холодный воздух легче теплого, и должен подниматься вверх, а он падает вниз. Вот где нелогичная конвекция и Эйнштейн против Клайперона и Менделеева.
В чем же дело? А дело в серьезном разбирательстве, связанном со знаменитой формулой. Если в расчете использовать формулу (3), то килограммовый куб воздуха будет иметь энергию 9·1016 Дж. Данная величина приблизительно равна электрической энергии 3∙1010 кВт∙ч! Такое количество электроэнергии потребляют США за один день! Невероятно, но где энергия? А ее, увы, не видно.
Этому разбирательству посвящена отдельная статья под названием: «Энергия покоя». А сейчас, чтобы выбраться из создавшейся коллизии введем в данное уравнение энергетический коэффициент GE.
T – температура тела в Кельвинах
Tmax – максимально возможная температура вещества в природе.
Используя в расчетах уравнение (7) можно убедиться, что при прочих равных условиях, массы холодного и теплого воздуха будут равны. Такой же расчет дает по формуле (2) Клайперона-Менделеева и противостояние с Эйнштейном прекращается.
И что самое главное, энергия газового куба снижается до удобоваримого значения, на десять порядков! Все расчеты привели меня к заключению, что уравнение Эйнштейна не общее, а частное, для максимального значения температуры при GE=1.
Электромагнитное, крафонное излучение Земли постоянно мониторит пространство и подтягивает атмосферу с паром вниз, но теплый воздух всегда оказываются наверху. Это происходит потому, что холодные молекулы реже отстреливают свои крафоны придачи в окружающее пространство из-за их меньшей энергонасыщенности.
Теплый воздух в комнате находится в термодинамическом равновесии, поэтому его молекулы продолжают хаотично двигаться, постепенно внедряясь в ряды холодного, отдавая часть своей теплоты.
Несмотря на то, что холодный воздух находится всегда внизу, масса теплых и холодных молекул остается одинаковой.
Конвективные перемещения в жидкости можно объяснить аналогичным способом.
Объемная плотность газа существенно зависит от температуры газа.
Как было указано выше, более горячий газ устремляется вверх не из-за его легкости, а по причине поднятия молекул за счет крафонного излучения. По сути, о какой легкости или тяжести мы говорим, каждая молекула находится во взвешенном состоянии, но не в какой-то среде, а фактически, в вакууме.
Равные по массе и одинаковой температуре молекулы будут иметь одинаковый объемный вес. Известно, если охладить кубометр воздуха, то получим 1,2 литра в жидком состоянии.
Как возникает ненастная погода. Фронт в атмосфере
Если иногда громадные потоки теплых и холодных воздушных течений подходят близко друг к другу, тогда на карте погоды между ними можно провести четкую линию раздела, или, как говорят метеорологи, линию фронта.
Вот с такими фронтами непосредственно и связана ненастная погода, обложные дожди или снегопады.
Граница между теплой и холодной воздушными массами представляет собой поверхность. Эта поверхность почти горизонтальная и лишь слегка, совсем незаметно, опускается к линии фронта.
Холодный воздух находится под фронтальной поверхностью; он имеет форму, напоминающую лезвие топора, а теплый воздух расположен выше этой поверхности. Там, где фронтальная поверхность опускается до самой земли, т. е. вдоль «лезвия топора», проходит линия фронта.
Так как воздушные массы все время находятся в движении, то и граница между ними сдвигается то в сторону теплого воздуха, то в сторону холодного.
На любой карте погоды можно подметить одну очень важную и характерную особенность: через центр области пониженного давления обязательно проходит линия фронта, и, наоборот, через центры областей повышенного давления фронты никогда не проходят.
Теплый фронт
Если фронт движется в направлении от теплого воздуха к холодному, т. е. холодный воздух отступает, а теплый надвигается вслед за ним, то такой фронт называют теплым фронтом.
Именно такой теплый фронт и приносит нам чаще всего самые продолжительные дожди.
Когда теплый фронт движется через какую-нибудь местность, то там наступает потепление: на смену холодной воздушной массе приходит теплая масса.
Теплый воздух движется быстрее холодного, догоняет его, и ему приходится как бы «взбираться на спину» отступающего холодного воздуха. А подъем воздуха приводит к его охлаждению; следовательно, в теплом воздухе над фронтальной поверхностью образуются облака.
Теплый воздух взбирается вверх очень медленно и постепенно, поэтому облачность теплого фронта и имеет вид ровной гладкой пелены перисто-слоистых и высокослоистых облаков. Эта пелена тянется вдоль линии фронта широкой полосой в несколько сотен метров ширины и иногда на тысячи километров в длину.
Чем дальше впереди от линии фронта находятся облака, тем выше они над Землей и тем тоньше. Самые высокие облака называют перистыми. Они находятся на высоте 7-9 км и состоят из ледяных кристаллов.
Перисто-слоистые облака тоже состоят из ледяных кристаллов, но расположены они несколько ниже и ближе к фронту. Высокослоистые облака еще ниже — на высоте 2-4 м и на расстоянии 100-400 км от фронта.
У самого фронта расположены слоисто-дождевые облака. Низкие разорванные облака «плохой погоды» несутся над землей на высоте всего 100-200 м.
Они закрывают вершины холмов, верхушки радиомачт и иногда верхние части фабричных труб.
После прохождения фронта ветер меняет свое направление, причем он поворачивается всегда вправо. Если перед фронтом ветер дул с юго-востока, то после прохождения фронта он уже дует с юга; если же ветер был южным, то он становится юго-западным или западным.
Высокие прозрачные облака, движущиеся на 800-900 км впереди линии теплого фронта,— это те высланные вперед «гонцы», которые задолго предупреждают нас о наступлении ненастья. Именно по их появлению можно за 10-14 часов вперед предсказать начало дождя летом или снегопада зимой.
Мы рассмотрели образование осадков, которые обычно создают длительное ненастье.
Холодный фронт
Часто ясный день сменяется бурным ливнем, грозой и шквалом, вслед за которыми наступает похолодание. Такая погода связана с холодным фронтом. Если теплый воздух отступает, а холодный растекается вслед за ним, то такой фронт называется холодным фронтом. Приход этого фронта всегда вызывает похолодание, так как теплая воздушная масса заменяется холодной.
Нижняя часть холодного фронта вследствие трения о земную поверхность движется медленнее верхней и отстает от нее.
Поэтому наверху поверхность холодного фронта «выпячивается» вперед, холодный воздух в «голове» холодного фронта обрушивается вниз, и фронтальная поверхность принимает выпуклую форму катящегося вала.
Этот вал движется быстрее отступающего теплого воздуха, нагоняет его и бурно вытесняет прямо вверх. Образуется вал клубящихся темных туч (кучево-дождевых облаков) с ливнем, грозой и градом (летом) или снежным шквалом и метелью (зимой).
Самые сильные грозы и шквалы всегда бывают связаны с холодным фронтом.
Предсказание погоды
Зная взаимную связь явлений погоды и внимательно наблюдая за ее изменениями, можно предсказать наступление ненастья или улучшение погоды.
Нужно только помнить, что ни один из признаков изменения погоды нельзя использовать отдельно от других явлений погоды.
Надо всегда сначала ясно себе представить все, что происходит в данный момент в атмосфере, и только на основании этого можно предсказывать изменения погоды.
Всякое сильное ухудшение погоды обусловлено приходом циклонов и связанных с ними фронтов, которые сменяют антициклоны, а проследить за их движением можно только по специальным синоптическим картам. Для местного предсказания погоды можно использовать лишь некоторые признаки приближения фронтов и циклонов.
Летом во время хорошей погоды признаком возможного наступления ненастья будет нарушение обычного суточного хода погоды, для которого характерно повышение температуры днем и понижение ее ночью, усиление ветра днем и ослабление его ночью, образование днем кучевых облаков, выпадение ночью росы и образование утренних туманов.
О приближении теплого фронта, а следовательно, и циклона всегда говорит ночное потепление. В циклоне ветры обычно сильнее, чем в антициклоне, поэтому с приближением циклона ветер заметно усиливается.
Слишком резкое по сравнению с прошедшими сутками усиление ветра днем или слишком незначительное его ослабление ночью указывает на приближение циклона. Отсутствие росы и тумана ночью также служит признаком приближения циклона.
На это же указывает иногда и слабое развитие кучевой облачности днем.
Зимой суточный ход явлений погоды выражен слабо и приближающийся циклон обычно дает знать о себе усилением ветра и повышением температуры.
Все эти признаки, даже если они резко выражены и наблюдаются одновременно, все же не дают уверенности в наступлении ненастья.
Самые верные признаки близкого ненастья — это появление на небе перистых и перисто-слоистых облаков, которые сгущаются в определенной — чаще всего в западной — части горизонта.
При этом ветер должен дуть таким образом, что если стать к нему спиной, то сгущение облаков должно оказаться слева и несколько впереди — там, где должно быть низкое давление.
Признаки прекращения ненастья: резкое похолодание во время выпадения дождя и снега; изменение направления ветра на северо-западное или северное; изменение характера осадков; переход равномерного, со сплошной облачностью, дождя в резко меняющиеся по силе ливни, иногда с грозой и градом, сплошного снегопада — в отдельные сильные вспышки пурги.
, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.