декартово произведение это что
Декартово произведение множеств
Прямое или декартово произведение множеств — множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих разделах математики благодаря тому, что прямое произведение часто наследует структуры (алгебраические, топологические и т. д.), существующие на перемножаемых множествах.
Содержание
Прямое произведение в теории множеств
Произведение двух множеств
в | в | в | в | в | в | в | в |
---|---|---|---|---|---|---|---|
и | и | и | и | и | и | и | и |
к | к | к | к | к | к | к | к |
Произведение множества <в, и, к> на множество цветов радуги |
Отображения произведения множеств в его множители ( и
) называют координатными функциями.
Аналогично строятся произведения нескольких множеств.
Декартова степень
Прямое произведение семейства множеств
Прямое произведение отображений
Аналогично вышеизложенному, данное определение обобщается на многократные и бесконечные произведения.
Воздействие на математические структуры
Прямое произведение групп
Это определение распространяется на произвольное конечное число перемножаемых групп; ассоциативность декартова произведения следует из ассоциативности операций перемножаемых групп.
Прямое произведение других алгебраических структур
Аналогично произведению групп, можно определить произведения колец, алгебр, модулей и линейных пространств, причём в определении прямого произведения 1i (см. выше) следует заменить нулём. Однако, как правило, произведения этих структур называют прямой суммой.
Прямое произведение топологических пространств
Топология бесконечного произведения будет задаваться базой, составленной из всевозможных пересечений конечного числа открытых цилиндров (такая топология аналогична компактно-открытой топологии пространств отображений если считать индексное множество I имеющим дискретную топологию).
Теорема Тихонова утверждает компактность произведений любого количества компактных пространств; однако для бесконечных произведений её не удаётся доказать без использования аксиомы выбора (или равносильных ей утверждений теории множеств).
Также, теорема Александрова показывает, что любое топологическое пространство можно вложить в (бесконечное) произведение связных двоеточий, если только выполнена аксиома Колмогорова (а иные пространства и не рассматриваются).
Прямое произведение графов
Множество вершин прямого произведения двух графов G и H задаётся как произведение вершин графов сомножителей. Рёбрами будут соединены следующие па́ры вершин:
Иначе говоря, множество рёбер произведения графов является объединением двух произведений: рёбер первого на вершины второго, и вершин первого на рёбра второго.
Вариации и обобщения
Декартово произведение
Прямое или декартово произведение множеств — множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих разделах математики благодаря тому, что прямое произведение часто наследует структуры (алгебраические, топологические и т. д.), существующие на перемножаемых множествах.
Содержание
Прямое произведение в теории множеств
Произведение двух множеств
в | в | в | в | в | в | в | в |
---|---|---|---|---|---|---|---|
и | и | и | и | и | и | и | и |
к | к | к | к | к | к | к | к |
Произведение множества <в, и, к> на множество цветов радуги |
Отображения произведения множеств в его множители ( и
) называют координатными функциями.
Аналогично строятся произведения нескольких множеств.
Декартова степень
Прямое произведение семейства множеств
Прямое произведение отображений
Аналогично вышеизложенному, данное определение обобщается на многократные и бесконечные произведения.
Воздействие на математические структуры
Прямое произведение групп
Это определение распространяется на произвольное конечное число перемножаемых групп; ассоциативность декартова произведения следует из ассоциативности операций перемножаемых групп.
Прямое произведение других алгебраических структур
Аналогично произведению групп, можно определить произведения колец, алгебр, модулей и линейных пространств, причём в определении прямого произведения 1i (см. выше) следует заменить нулём. Однако, как правило, произведения этих структур называют прямой суммой.
Прямое произведение топологических пространств
Топология бесконечного произведения будет задаваться базой, составленной из всевозможных пересечений конечного числа открытых цилиндров (такая топология аналогична компактно-открытой топологии пространств отображений если считать индексное множество I имеющим дискретную топологию).
Теорема Тихонова утверждает компактность произведений любого количества компактных пространств; однако для бесконечных произведений её не удаётся доказать без использования аксиомы выбора (или равносильных ей утверждений теории множеств).
Также, теорема Александрова показывает, что любое топологическое пространство можно вложить в (бесконечное) произведение связных двоеточий, если только выполнена аксиома Колмогорова (а иные пространства и не рассматриваются).
Прямое произведение графов
Множество вершин прямого произведения двух графов G и H задаётся как произведение вершин графов сомножителей. Рёбрами будут соединены следующие па́ры вершин:
Иначе говоря, множество рёбер произведения графов является объединением двух произведений: рёбер первого на вершины второго, и вершин первого на рёбра второго.
Вариации и обобщения
Декартово (прямое) произведение множеств
ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ. СООТВЕТСТВИЯ, ФУНКЦИИ, ОТНОШЕНИЯ
ЦЕЛЬ ЛЕКЦИИ – изучение свойств декартова произведения множеств, и связанных с ним соответствий, функций и отношений.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Помимо рассмотренных в первой лекции традиционных операций над множествами существуют и другие действия с множествами, которые позволяют решать много задач, имеющих практическое применение. В частности, к таким действиям относится декартово (прямое) произведение множеств. Свое название декартово произведение получило оттого, что предложенное Декартом координатное представление точек плоскости, являлось исторически первым примером прямого произведения.
Декартово (прямое) произведение множеств
Декартово (прямое) произведение множеств Х и – это множество, обозначаемое
, элементами которого являются упорядоченные пары
, первая компонента которых принадлежит множеству Х, а вторая множеству
.
.
Согласно определению элементами прямого произведения множеств являются упорядоченные пары, составленные из элементов исходных множеств. В этих парах первый элемент (компонента) всегда принадлежит первому множеству, а второй элемент (компонента) второму. Порядок множеств определяется исходной записью и, если , то
, так как в упорядоченной паре
компонента
имеет номер 1, а компонента
– номер 2, но в упорядоченной паре
:
– номер 1, а
– номер 2.
Множество содержит mn элементов, где m и n – количество элементов Хи
соответственно.
Геометрическое представление этого множества приведено на рис. 2.1, а.
Пример 2.2. Пусть A и B – отрезки вещественной оси. Прямое произведение изобразится заштрихованным прямоугольником, показанным на рис. 2.1, б.
Пример 2.3. Найти декартово произведение множеств и
.
Решение. A × B .
Порядок перечисления элементов безразличен, важен только порядок элементов в паре (упорядоченная пара).
B × A .
Из приведенных примеров видно, что свойства прямого произведения отличаются от свойств обычного произведения в арифметическом смысле. В частности, прямое произведение изменяется при изменении порядка сомножителей, то есть , следовательно, декартово произведение не коммутативно. При этом он не только не коммутативно, но и не ассоциативно, но дистрибутивно относительно объединения, пересечения и симметрической разности множеств
;
;
.
Прямое произведение множеств – операция многоместная
.
В результате получаются множества, состоящие из упорядоченной последовательности вида
, где
;
;…;
.
Такие последовательности называются кортежами или векторами.
Кортеж длины – конечная последовательность элементов
, в которой каждый элемент занимает определенное место в соответствии с записью исходных множеств
декартова произведения.
Сами элементы при этом называются компонентами (координатами) кортежа, которые нумеруются слева направо (первая компонента, вторая компонента и т.д.).
Примеры кортежей: множество людей, стоящих в очереди, числа, выражающие координаты точки на плоскости и т.п. Во всех этих множествах место каждого элемента является вполне определенным и не может быть произвольно изменено.
Основные отличия понятий кортежа (вектора) и множества заключаются в следующем:
1) в множестве порядок элементов не играет роли, а кортежи, отличающиеся порядком элементов, различны, даже в случае, когда они имеют одинаковый состав;
2) в множестве все элементы различны, а в кортеже координаты могут повторяться.
Таким образом, в отличии от обычного множества в кортеже (векторе) могут быть одинаковые компоненты: два одинаковых слова в фразе, одинаковые численные значения координат точки на плоскости и т.п.
Таким образом, декартово произведение позволяет получать вектора любых размерностей. Эта операция отличается от операций объединения и пересечения тем, что в результате перемножения прямым способом получаются объекты, содержащие элементы, отличающиеся по своей природе от элементов исходных множеств.
Если перемножить n раз одно и то же множество, то получится множество , называемое степенью множества
.
Степенью декартового произведения называется число множеств n, входящих в это декартово произведение.
ДЕКАРТОВО ПРОИЗВЕДЕНИЕ
Смотреть что такое «ДЕКАРТОВО ПРОИЗВЕДЕНИЕ» в других словарях:
декартово произведение — Декартовым (или прямым) произведением называется выборка всех возможных комбинаций строк из двух таблиц. Оно получается, если единственное существующее отношение между двумя таблицами деактивизируется, а затем выполняется запрос, использующий… … Справочник технического переводчика
Декартово произведение — Прямое или декартово произведение множеств множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих … Википедия
Декартово произведение множеств — [cartesian product] произведение множеств A ´ B, рассматриваемое как множество всех упорядоченных пар элементов (a, b), из которых a принадлежит множеству A, b множеству B. Порядок следования пар может быть любым, но расположение элементов в… … Экономико-математический словарь
декартово произведение двух множеств — Прямое или декартово произведение множеств, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие широко благодаря тому, что прямое произведение часто наследует структуры (алгебраические,… … Справочник технического переводчика
Декартово произведение групп — Прямое или декартово произведение множеств множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих … Википедия
Декартово произведение множеств — Прямое или декартово произведение множеств множество, элементами которого являются всевозможные упорядоченные пары элементов исходных двух множеств. Данное понятие употребляется не только в теории множеств, но также в алгебре, топологии и прочих … Википедия
Произведение (теория категорий) — Произведение двух или более объектов это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов это в… … Википедия
Произведение мер — в функциональном анализе, теории вероятностей и смежных дисциплинах формальный способ построить меру на декартовом произведении двух пространств с мерами. Содержание 1 Построение 2 Замечания 3 Пример … Википедия
Лекция 2. Декартово произведение. Мощность множества
п.2. Декартово произведение. Мощность множества.
2.1. Декартово произведение множеств.
Упорядоченная пара интуитивно определяется как совокупность, состоящая из двух элементов x и y, расположенных в определенном порядке. Две пары
и
считаются равными тогда и только тогда, когда x=u и y=v.
Определение 2.1. Пусть A и B – два множества. Прямым (декартовым) произведением двух множеств A и B называется множество всех упорядоченных пар, в котором первый элемент каждой пары принадлежит A, а второй принадлежит B:
Пример. Пусть и
. Тогда
.
.
Пример. На координатной плоскости построить следующее множество:
Решение. Первое множество помещаем на оси OX, второе на оси OY. Множество всех пар, т. е. декартово произведение, изображается точками заштрихованного прямоугольника, но без левой и нижней стороны.