диэлектрическая проницаемость в чем измеряется
Лекция 1.3.2. диэлектрическая проницаемость
Введение[править]
В диэлектрической среде показана ориентация заряженных частиц при создании поляризационных эффектов. Такая среда может иметь более высокий коэффициент электрического потока для зарядки (диэлектрической проницаемости), чем пустое место
где εr — относительная диэлектрическая проницаемость материала en:Relative_permittivity, и ε = 8.8541878176.. × 10-12 F/m — диэлектрическая проницаемость вакуума en:Vacuum_permittivity.
Фарадправить
Фара́д (обозначение: Ф, F) — единица измерения электрической ёмкости в системе СИ (система единиц) (ранее называлась фара́да).
1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт.
Единица названа в честь английского физика Майкла Фарадея
Эффект поляризации диэлектрика и проницаемость
Под воздействием электрического поля в диэлектрике имеет место поляризация — явление, связанное с ограниченным смещением зарядов или поворотом электрических диполей. Данное явление характеризует вектор электрической поляризации P <\displaystyle \mathbf
>, равный дипольному моменту единицы объёма диэлектрика. В отсутствие внешнего поля диполи ориентированы хаотично (см. верхний рис.), за исключением особых случаев спонтанной поляризации в сегнетоэлектриках. При наличии поля диполи в большей или меньшей степени поворачиваются (нижний рис.), в зависимости от восприимчивости χ(ω) <\displaystyle \chi (\omega )>конкретного материала, а восприимчивость, в свою очередь, определяет проницаемость ε(ω)<\displaystyle \varepsilon (\omega )>. Помимо дипольно-ориентационного, имеются и поляризации. Поляризация не изменяет суммарного заряда в любом макроскопическом объёме, однако она сопровождается появлением связанных электрических зарядов на поверхности диэлектрика и в местах неоднородностей. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле, как правило, направленное против внешнего наложенного поля. В итоге тот факт, что εa≠ε<\displaystyle \varepsilon _\neq \varepsilon _<0>>, является следствием электрической поляризации материалов.
Роль диэлектрической проницаемости среды в физике
Относительная диэлектрическая проницаемость ε <\displaystyle \varepsilon >среды, наряду с её относительной магнитной проницаемостью μ <\displaystyle \mu >и удельной электропроводностью σ<\displaystyle \sigma >, влияет на распределение напряжённости электромагнитного поля в пространстве и используется при описании среды в системе уравнений Максвелла. Среду со значениями μ=1 <\displaystyle \mu =1>и σ= <\displaystyle \sigma=0> называют идеальным диэлектриком (диэлектриком без поглощения, диэлектриком без потерь), для неё ε <\displaystyle \varepsilon >определяет такие вторичные параметры, как коэффициент преломления среды, скорость распространения, фазовую скорость и коэффициент укорочения длины электромагнитной волны в среде, волновое сопротивление среды. Относительная диэлектрическая проницаемость реальных диэлектриков (диэлектриков с потерями, диэлектриков с поглощением, для которых σ><\displaystyle \sigma >0>) также влияет на значение тангенса угла диэлектрических потерь и погонное затухание электромагнитной волны в среде. Относительная диэлектрическая проницаемость среды влияет на электрическую ёмкость расположенных в ней проводников: увеличение ε <\displaystyle \varepsilon >приводит к увеличению ёмкости. При изменении ε <\displaystyle \varepsilon >в пространстве (то есть если ε <\displaystyle \varepsilon >зависит от координат) говорят о неоднородной среде, зависимость ε <\displaystyle \varepsilon >от частоты электромагнитных колебаний — одна из возможных причин дисперсии электромагнитных волн, зависимость ε <\displaystyle \varepsilon >от напряженности электрического поля — одна из возможных причин нелинейности среды. Если среда является анизотропной, то в материальном уравнении ε <\displaystyle \varepsilon >будет не скаляром, а тензором. При использовании метода комплексных амплитуд в решении системы уравнений Максвелла и наличии потерь в среде (σ><\displaystyle \sigma >0>) оперируют комплексной диэлектрической проницаемостью.
Таким образом, ε <\displaystyle \varepsilon >является одним из важнейших «электромагнитных параметров» соответствующей среды.
Численное значение
В Международной системе единиц
До изменения СИ 2018—2019 годов
Поскольку в СИ для магнитной постоянной было справедливо точное равенство μ=4π × 10−7 <\displaystyle \mu _<0>=4\pi \ \times \ 10^<-7>\ >Гн/м, то для электрической постоянной выполнялось соотношение
также являвшееся точным.
Учитывая, что скорости света в СИ приписано точное значение, по определению равное 299 792 458 м/с, из последнего соотношения следует численное значение ε<\displaystyle \varepsilon _<0>> в СИ:
Или, выражая то же через основные единицы СИ,
ε ≈ 8,85418781762039 · 10−12 м−3·кг−1·с4·А2.
После изменений СИ 2018—2019 годов
С 2019 года вступили в силу изменения в СИ, включающие, в частности, переопределение ампера на основе фиксации численного значения элементарного заряда. Это привело к тому, что значение электрической постоянной стало экспериментально определяемой величиной, хотя численно её значение осталось прежним с высокой точностью. Значение электрической постоянной, рекомендованное CODATA:
В системе СГС электрическая постоянная как коэффициент, связывающий напряжённость и индукцию электрического поля в вакууме, также может быть введена. При этом в различных вариантах системы СГС электрическая постоянная имеет разную размерность и значение. Конкретно, Гауссова система единиц и система СГСЭ построены так, что электрическая постоянная безразмерна и равна 1, а в системе СГСМ она равна ε = 1/c2 ≈ 1,11265005605362 · 10−21 с2·см−2.
Словари
Диэлектрическая проницаемость показывает, во сколько раз поле ослабляется диэлектриком (см. ДИЭЛЕКТРИКИ), количественно характеризуя свойство диэлектрика поляризоваться в электрическом поле.
Значение относительной диэлектрической проницаемости вещества, характеризующее степень его поляризуемости, определяется механизмами поляризации (см. ПОЛЯРИЗАЦИЯ). Однако величина в большой мере зависит и от агрегатного состояния вещества, так как при переходах из одного состояния в другое существенно меняется плотность вещества, его вязкость и изотропность (см. ИЗОТРОПИЯ).
Диэлектрическая проницаемость газов
Газообразные вещества характеризуются весьма малыми плотностями вследствие больших расстояний между молекулами. Благодаря этому поляризация всех газов незначительна и диэлектрическая проницаемость их близка к единице. Поляризация газа может быть чисто электронной или дипольной, если молекулы газа полярны, однако и в этом случае основное значение имеет электронная поляризация. Поляризация различных газов тем больше, чем больше радиус молекулы газа, и численно близка к квадрату коэффициента преломления для этого газа.
Зависимость газа от температуры и давления определяется числом молекул в единице объема газа, которое пропорционально давлению и обратно пропорционально абсолютной температуре.
Диэлектрическая проницаемость жидких диэлектриков
Жидкие диэлектрики могут состоять из неполярных или полярных молекул. Значение e неполярных жидкостей определяется электронной поляризацией, поэтому оно невелико, близко к значению квадрата преломления света и обычно не превышает 2,5. Зависимость e неполярной жидкости от температуры связана с уменьшением числа молекул в единице объема, т. е. с уменьшением плотности, а ее температурный коэффициент близок к температурному коэффициенту объемного расширения жидкости, но отличается знаком.
Поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной составляющими. Такие жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента диполей (см. ДИПОЛЬ) и чем больше число молекул в единице объема. Температурная зависимость в случае полярных жидкостей носит сложный характер.
Диэлектрическая проницаемость твердых диэлектриков
В твердых телах может принимать самые разные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика. В твердых диэлектриках возможны все виды поляризации.
e различных неорганических стекол, приближающихся по строению к аморфным диэлектрикам, лежит в сравнительно узких пределах от 4 до 20.
Полярные органические диэлектрики обладают в твердом состоянии дипольно-релаксационной поляризацией. e этих материалов в большой степени зависит от температуры и частоты приложенного напряжения, подчиняясь тем же закономерностям, что и у дипольных жидкостей.
диэлектрическая проницаемость
Полезное
Смотреть что такое «диэлектрическая проницаемость» в других словарях:
ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ — величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде e связана с диэлектрической восприимчивостью c соотношением: e = 1 + 4pc. Диэлектрическая проницаемость… … Большой Энциклопедический словарь
ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ — величина e, характеризующая поляризацию диэлектриков под действием электрич. поля Е. Д. п. входит в Кулона закон как величина, показывающая, во сколько раз сила вз ствия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление вз… … Физическая энциклопедия
ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ — ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Современная энциклопедия
ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ — (обозначение e), в физике одно из свойств различных материалов (см. ДИЭЛЕКТРИК). Выражается отношением плотности ЭЛЕКТРИЧЕСКОГО ПОТОКА в среде к напряженности ЭЛЕКТРИЧЕСКОГО ПОЛЯ, которое его вызывает. Диэлектрическая проницаемость вакуума… … Научно-технический энциклопедический словарь
диэлектрическая проницаемость — Величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению. [ГОСТ Р 52002 2003]… … Справочник технического переводчика
Диэлектрическая проницаемость — ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Иллюстрированный энциклопедический словарь
Диэлектрическая проницаемость — величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению. Источник:… … Официальная терминология
диэлектрическая проницаемость — абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь
Диэлектрическая проницаемость — Абсолютная диэлектрическая проницаемость Относительная диэлектрическая проницаемость Диэлектрическая проницаемость вакуума … Википедия
диэлектрическая проницаемость — dielektrinė skvarba statusas T sritis chemija apibrėžtis Elektrinio srauto tankio tiriamojoje medžiagoje ir elektrinio lauko stiprio santykis. atitikmenys: angl. dielectric constant; dielectric permittivity; permittivity rus. диэлектрическая… … Chemijos terminų aiškinamasis žodynas
В простейшем случае поле электрического смещения D, возникающее в результате приложенного электрического поля E, равно
Диэлектрическая проницаемость часто представлена относительной диэлектрической проницаемостью ε r, которая представляет собой отношение абсолютной диэлектрической проницаемости ε и диэлектрической проницаемости вакуума ε 0.
κ знак равно ε р знак равно ε ε 0 <\ displaystyle \ kappa = \ varepsilon _ <\ mathrm .
По определению, идеальный вакуум имеет относительную диэлектрическую проницаемость ровно 1, тогда как в STP относительная диэлектрическая проницаемость воздуха составляет κ air ≈ 1.0006.
Относительная диэлектрическая проницаемость напрямую связана с электрической восприимчивостью ( χ ) соотношением
иначе написано как
ε знак равно ε р ε 0 знак равно ( 1 + χ ) ε 0 <\ displaystyle \ varepsilon = \ varepsilon _ <\ mathrm
СОДЕРЖАНИЕ
Единицы измерения
F м знак равно C V ⋅ м знак равно C 2 N ⋅ м 2 знак равно C 2 ⋅ s 2 кг ⋅ м 3 <\ displaystyle <\ frac <\ text > ^ <2>> <<\ text
Объяснение
В общем, диэлектрическая проницаемость не является постоянной величиной, так как она может меняться в зависимости от положения в среде, частоты приложенного поля, влажности, температуры и других параметров. В нелинейной среде диэлектрическая проницаемость может зависеть от напряженности электрического поля. Диэлектрическая проницаемость как функция частоты может принимать действительные или комплексные значения.
Диэлектрическая проницаемость вакуума
k е знак равно 1 4 π ε 0 <\ displaystyle k _ <\ text
Относительная диэлектрическая проницаемость
Восприимчивость среды связана с ее относительной диэлектрической проницаемостью ε r соотношением
Итак, в случае вакуума
Электрическое смещение D связано с плотностью поляризации P от
Диэлектрическая проницаемость ε и магнитная проницаемость µ среды вместе определяют фазовую скорость v = c / п от электромагнитного излучения через эту среду:
Практическое применение
Определение емкости
Емкость конденсатора зависит от его конструкции и архитектуры, что означает, что она не меняется при зарядке и разрядке. Формула для емкости конденсатора с параллельными пластинами записывается как
Закон Гаусса
Если гауссова поверхность равномерно охватывает изолированное симметричное расположение зарядов, формулу можно упростить до
E А потому что ( θ ) знак равно Q приложить ε 0 <\ displaystyle EA \ cos (\ theta) = <\ frac >> <\ varepsilon _ <0>>>>
Если все силовые линии электрического поля пересекают поверхность под углом 90 °, формулу можно упростить до
E знак равно Q приложить ε 0 А <\ displaystyle E = <\ frac >> <\ varepsilon _ <0>A>>>
Дисперсия и причинность
В общем, материал не может поляризоваться мгновенно в ответ на приложенное поле, поэтому более общая формулировка как функция времени такова:
Удобно взять преобразование Фурье по времени и записать это соотношение как функцию частоты. Благодаря теореме о свертке интеграл становится простым произведением:
Эта частотная зависимость восприимчивости приводит к частотной зависимости диэлектрической проницаемости. Форма восприимчивости по частоте характеризует дисперсионные свойства материала.
Комплексная диэлектрическая проницаемость
В отличие от реакции вакуума, реакция обычных материалов на внешние поля обычно зависит от частоты поля. Эта частотная зависимость отражает тот факт, что поляризация материала не изменяется мгновенно при приложении электрического поля. Отклик всегда должен быть причинным (возникающим после приложенного поля), который может быть представлен разностью фаз. По этой причине диэлектрическую проницаемость часто рассматривают как сложную функцию (угловой) частоты приложенного поля ω :
(поскольку комплексные числа позволяют указать величину и фазу). Таким образом, определение диэлектрической проницаемости становится
Реакция среды на статические электрические поля описывается низкочастотным пределом диэлектрической проницаемости, также называемым статической диэлектрической проницаемостью ε s (также ε DC ):
Поскольку реакция материалов на переменные поля характеризуется комплексной диэлектрической проницаемостью, естественно разделить ее действительную и мнимую части, что условно осуществляется следующим образом:
На данной частоте мнимая часть ε ″ приводит к потерям на поглощение, если она положительна (в приведенном выше соглашении о знаках), и к усилению, если она отрицательна. В более общем плане следует учитывать мнимые части собственных значений тензора анизотропной диэлектрической проницаемости.
Тензорная диэлектрическая проницаемость
Классификация материалов
ε r ″ / ε r ′ | Текущая проводимость | Распространение поля |
---|---|---|
0 | идеальная диэлектрическая среда без потерь | |
≪ 1 | материал с низкой проводимостью плохой проводник | низкие потери средний хороший диэлектрик |
≈ 1 | проводящий материал с потерями | среда распространения с потерями |
≫ 1 | материал с высокой проводимостью хороший проводник | высокие потери средний плохой диэлектрик |
∞ | идеальный дирижер |
Потерянная среда
В случае среды с потерями, т. Е. Когда ток проводимости нельзя пренебречь, общая плотность протекающего тока составляет:
J малыш знак равно J c + J d знак равно σ E + я ω ε ′ E знак равно я ω ε ^ E <\ displaystyle J _ <\ text
Обратите внимание, что здесь используется соглашение по электротехнике о комплексной сопряженной неоднозначности ; соглашение по физике / химии подразумевает комплексное сопряжение этих уравнений.
Величина тока смещения зависит от частоты приложенного поля E ; в постоянном поле нет тока смещения.
В этом формализме комплексная диэлектрическая проницаемость определяется как:
В общем, поглощение электромагнитной энергии диэлектриками покрывается несколькими различными механизмами, которые влияют на форму диэлектрической проницаемости в зависимости от частоты:
Квантово-механическая интерпретация
На умеренных частотах энергия слишком высока, чтобы вызвать вращение, но слишком низка, чтобы напрямую влиять на электроны, и поглощается в виде резонансных молекулярных колебаний. В воде здесь показатель поглощения начинает резко падать, а минимум мнимой диэлектрической проницаемости приходится на частоту синего света (оптический режим).
Хотя выполнение полного ab initio (то есть из первых принципов) моделирования теперь возможно с помощью вычислений, оно еще не получило широкого применения. Таким образом, феноменологическая модель считается адекватным методом фиксации экспериментального поведения. Модель Дебай и модель Лоренц использование первого порядок и второй порядок (соответственно) сосредоточенные параметры системы линейного представления (например, RC и резонансный контур LRC).
Измерение
Что такое диэлектрическая проницаемость
Любое вещество или тело, окружающее нас, обладает определенными электрическими свойствами. Это объясняется молекулярной и атомной структурой: наличием заряженных частиц, находящихся во взаимно связанном или свободном состоянии.
Когда на вещество не действует никакое внешнее электрическое поле, то эти частицы распределяются так, что уравновешивают друг друга и во всем суммарном объеме не создают дополнительного электрического поля. В случае приложения извне электрической энергии внутри молекул и атомов возникает перераспределение зарядов, которое ведет к созданию собственного внутреннего электрического поля, направленного встречно внешнему.
Если вектор приложенного внешнего поля обозначить «Е0», а внутреннего — «Е’», то полное поле «Е» будет складываться из энергии этих двух величин.
В электричестве принято делить вещества на:
Такая классификация существует издавна, хотя она довольно условна потому, что многие тела обладают другими или комбинированными свойствами.
В роли проводников выступают среды, имеющие в наличии свободные заряды. Чаще всего проводниками выступают металлы, ведь в их структуре всегда присутствуют свободные электроны, которые способны перемещаться внутри всего объема вещества и, одновременно, являются участниками тепловых процессов.
Когда проводник изолирован от действия внешних электрических полей, то в нем создается баланс положительных и отрицательных зарядов из ионных решеток и свободных электронов. Это равновесие сразу разрушается при внесении проводника в электрическое поле — благодаря энергии которого начинается перераспределение заряженных частиц и возникают несбалансированные заряды положительных и отрицательных величин на внешней поверхности.
Образованные в проводнике индукционные заряды формируют собственное поле Е’, компенсирующее действие внешнего Е0 внутри проводника. Поэтому значение полного, суммарного электростатического поля скомпенсировано и равно 0. При этом потенциалы всех точек как внутри, так и снаружи одинаковы.
Полученный вывод свидетельствует, что внутри проводника, даже при подключенном внешнем поле, отсутствует разность потенциалов и нет электростатических полей. Этот факт используется при экранировании — применении способа электростатической защиты людей и чувствительного к наведенным полям электрооборудования, особенно высокоточных измерительных приборов и микропроцессорной техники.
Экранированная одежда и обувь из тканей с токопроводящими нитями, включая головной убор, используется в энергетике для защиты персонала, работающего в условиях повышенной напряженности, создаваемой высоковольтным оборудованием.
Так называют вещества, обладающие изоляционными свойствами. Они имеют в своем составе только связанные между собой, а не свободные заряды. У них все положительные и отрицательные частицы скреплены внутри нейтрального атома, лишены свободы передвижения. Они распределены внутри диэлектрика и не перемещаются под действием приложенного внешнего поля Е0.
Однако, его энергия все же вызывает определенные изменения в структуре вещества — внутри атомов и молекул изменяется соотношение положительных и отрицательных частиц, а на поверхности вещества возникают излишние, несбалансированные связанные заряды, образующие внутреннее электрическое поле Е’. Оно направлено встречно приложенной извне напряженности.
Она внутри диэлектриков бывает двух видов:
Первый тип имеет дополнительное название дипольной поляризации. Он присущ диэлектрикам со смещенными центрами у отрицательных и положительных зарядов, которые образуют молекулы из микроскопических диполей — нейтральной совокупности из двух зарядов. Это характерно для воды, диоксида азота, сероводорода.
Без действия внешнего электрического поля у таких веществ молекулярные диполи ориентируются хаотичным образом под влиянием действующих температурных процессов. При этом в любой точке внутреннего объема и на внешней поверхности диэлектрика нет электрического заряда.
Эта картина изменяется под влиянием приложенной извне энергии, когда диполи немного изменяют свою ориентацию и на поверхности возникают области не скомпенсированных макроскопических связанных зарядов, образующих поле Е’ со встречным направлением к приложенному Е0.
При такой поляризации большое влияние на процессы оказывает температура, вызывающая тепловое движение и создающая дезориентирующие факторы.
Электронная поляризация, упругий механизм
Она проявляется у неполярных диэлектриков — материалов другого вида с молекулами, лишенными дипольного момента, которые под влияние внешнего поля деформируются так, что положительные заряды ориентируются по направлению вектора Е0, а отрицательные — в противоположную сторону.
В итоге каждая из молекул работает как электрический диполь, сориентированный по оси приложенного поля. Они, таким способом, создают на внешней поверхности свое поле Е’ со встречным направлением.
Численное значение внутреннего поля обоих видов диэлектриков по величине вначале изменяется прямо пропорционально возрастанию внешнего поля, а затем, при достижении насыщения, проявляются эффекты нелинейного характера. Они наступают тогда, когда все молекулярные диполи выстроились вдоль силовых линий у полярных диэлектриков или произошли изменения структуры неполярного вещества, обусловленные сильной деформацией атомов и молекул от большой приложенной извне энергии.
На практике такие случаи возникают редко — обычно раньше наступает пробой или нарушение изоляции.
1. абсолютным значением;
2. относительной величиной.
Термином абсолютной диэлектрической проницаемости вещества εa пользуются при обращении к математической записи закона Кулона. Она, в форме коэффициента εа, связывает вектора индукции D и напряженности E.
Вспомним, что французский физик Шарль де Кулон с помощью собственных крутильных весов исследовал закономерности электрических и магнитных сил между небольшими заряженными телами.
Определение относительной диэлектрической проницаемости среды используется для характеристики изоляционных свойств вещества. Она оценивает соотношение силы взаимодействия между двумя точечными зарядами при двух различных условиях: в вакууме и рабочей среде. При этом показатели вакуума принимаются за 1 (εv=1), а у реальных веществ они всегда выше, εr>1.
Численное выражение εr отображается безразмерной величиной, объясняется эффектом поляризации у диэлектриков, используется для оценки их характеристик.
Значения диэлектрической проницаемости отдельных сред (при комнатной температуре)
Вещество | ε | Вещество | ε |
Сегнетова соль | 6000 | Алмаз | 5,7 |
Рутил (вдоль оптической оси) | 170 | Вода | 81 |
Полиэтилен | 2,3 | Спирт этиловый | 26,8 |
Кремний | 12,0 | Слюда | 6 |
Стекло | 5-16 | Углекислый газ | 1,00099 |
NaCl | 5,26 | Водяной пар | 1,0126 |
Бензол | 2,322 | Воздух (760 мм рт. ст.) | 1,00057 |
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: