диоксины что это простыми словами
Диоксины
Диокси́ны — тривиальное название полихлорпроизводных дибензо[b, e]-1,4-диоксина. Название происходит от сокращённого названия тетрахлорпроизводного — 2,3,7,8-тетрахлордибензо[b, е]-1,4-диоксина; соединения с другими заместителями — галогенидами — также относятся к диоксинам. Являются кумулятивными ядами и относятся к группе опасных ксенобиотиков.
Содержание
Номенклатура
Название одного из диоксинов — «прародителя всего семейства»: 2,3,7,8-тетрахлородибензо-п-диоксин, сокращённо 2,3,7,8-TCDD. Химическая формула C12H4Cl4O2.
Общая характеристика
Диоксины — это глобальные экотоксиканты, обладающие мощным мутагенным, иммунодепрессантным, канцерогенным, тератогенным и эмбриотоксическим действием. Они слабо расщепляются и накапливаются как в организме человека, так и в биосфере планеты, включая воздух, воду, пищу. Величина летальной дозы для этих веществ достигает 10 −6 г на 1 кг живого веса, что существенно меньше аналогичной величины для некоторых боевых отравляющих веществ, например, для зомана, зарина и табуна (порядка 10 −3 г/кг).
Токсикология
Механизм действия
Причина токсичности диоксинов заключается в способности этих веществ точно вписываться в рецепторы живых организмов и подавлять или изменять их жизненные функции. [1]
Диоксины, подавляя иммунитет и интенсивно воздействуя на процессы деления и специализации клеток, провоцируют развитие онкологических заболеваний. Вторгаются диоксины и в сложную отлаженную работу эндокринных желез. Вмешиваются в репродуктивную функцию, резко замедляя половое созревание и нередко приводя к женскому и мужскому бесплодию. Они вызывают глубокие нарушения практически во всех обменных процессах, подавляют и ломают работу иммунной системы, приводя к состоянию так называемого «химического СПИД’а».
Недавние исследования подтвердили, что диоксины вызывают уродства и проблемное развитие у детей. [2]
В организм человека диоксины проникают несколькими путями: 90 процентов — с водой и пищей через желудочно-кишечный тракт, остальные 10 процентов — с воздухом и пылью через лёгкие и кожу. Эти вещества циркулируют в крови, откладываясь в жировой ткани и липидах всех без исключения клеток организма. Через плаценту [3] и с грудным молоком они передаются плоду и ребенку.
Острая токсичность
Предельные нормативы концентрации
Среда | Ед.изм. | США | Германия | Италия | СССР [5] /Россия |
---|---|---|---|---|---|
Атмосферный воздух населённых мест [6] | пг/м³ | 0,02 | — | 0,04 | 0,5 |
Воздух рабочих помещений | пг/м³ | 0,13 | — | 0,12 | — |
Вода | пг/л | 0,013 | 0,01 | 0,05 | 20 |
Почва сельскохозяйственных угодий | нг/кг | 27 | 5 | 10 | — |
Почва, не используемая в сельском хозяйстве | нг/кг | 1000 | — | 50 | — |
Пищевые продукты | нг/кг | 0,001 | — | — | — |
Молоко (пересчёт на жир) | нг/кг | — | 1,4 | — | 5,2 |
Рыба (пересчёт на жир) | нг/кг | — | — | — | 88 |
Источники диоксинов
Диоксины образуются в качестве побочного продукта при производстве гербицидов хлорфенольного ряда (прежде всего, производных 2,4-дихлорфеноксиуксусной и 2,4,5-трихлорфеноксиуксусной кислот, а также их эфиров).
Так, например, производство 2,4,5-трихлорфеноксиуксусной кислоты включает последовательные стадии гидролиза тетрахлорбензола в метанольном растворе щелочью с получением 2, 4, 5-трихлорфенолята натрия и последующее алкилирование 2,4,5-трихлорфенолята натрия хлоруксусной кислотой; 2,3,7,8-тетрахлордибензо-пара-диоксин образуется на обеих стадиях при самоконденсации 2,4,5-трихлорфенолята натрия:
В частности, во время войны во Вьетнаме с 1961 по 1971 годы в рамках программы по уничтожению растительности «Ranch Hand» в качестве дефолианта применялся Agent Orange — смесь 2,4-дихлорфеноксиуксусной кислоты (2,4-D) и 2,4,5-трихлорфеноксиуксусной кислоты (2,4,5-T), содержащая примеси полихлорбензодиоксинов. В результате из-за воздействия диоксинов пострадало значительное число как вьетнамцев, так и солдат, контактировавших с Agent Orange.
Диоксины также образуются как нежелательные примеси в результате различных химических реакций при высоких температурах и в присутствии хлора. Основные причины эмиссии диоксинов в биосферу, прежде всего, использование высокотемпературных технологий хлорирования и переработки хлорорганических веществ и, особенно, сжигание отходов производства. Наличие в уничтожаемом мусоре повсеместно распространённого поливинилхлорида и других полимеров, различных соединений хлора способствует образованию в дымовых газах диоксинов. Другой источник опасности — целлюлозно-бумажная промышленность. Отбеливание целлюлозной пульпы хлором сопровождается образованием диоксинов и ряда других опасных хлорорганических веществ.
Физические и химические свойства
Молярная масса 321,98; Температура плавления 320—325 °C (не разлагается при температурах до 750 °C); растворимость в воде около 0,001 %.
Аномально высокие токсичные свойства диоксинов связаны со строением этих соединений, с их специфическими химическими и физическими свойствами.
Исследования
В настоящее время идёт поиск генетической модификации некоторых видов бактерий с целью улучшить их способности к поглощению диоксинов. [7]
Также в настоящее время для определения содержания диоксинов применяют хромато-масс-спектрометрию и анализ с помощью биотестов (CALUX).
Диоксины и отравление Ющенко
Особую известность слово «диоксины» приобрело после осенней истории 2004 года с выборами на Украине. Некоторые сайты ведут независимый реестр событий по этой теме. [8] [9]
Катастрофа в Севезо
Диоксин: «гормон деградации»
Опасен не только своей высокой токсичностью, но и способностью чрезвычайно долго сохраняться в окружающей среде, эффективно переноситься по цепям питания и тем самым длительно воздействовать на живые организмы. Кроме того, даже в относительно безвредных количествах диоксин сильно повышает активность специфических ферментов печени, которые разлагают некоторые вещества синтетического и природного происхождения; при этом в качестве побочного продукта распада выделяются опасные яды. При невысокой концентрации организм успевает выводить их без вреда для себя. Но даже небольшие дозы диоксина резко увеличивают выброс ядовитых веществ. Это может привести к отравлению относительно безвредными соединениями, которые в небольшой концентрации всегда присутствуют в пище, воде и воздухе, — пестицидами, бытовыми химическими соединениями и даже лекарствами.
Данные последних лет показали, что основная опасность диоксинов заключается не столько в острой токсичности, сколько в кумулятивности действия и отдаленных последствиях хронического отравления малыми дозами.
Они аккумулируются в тканях (в основном жировых) живых организмов, накапливаясь и поднимаясь вверх по цепи питания. На самом верху этой цепи находится человек, и около 90 % диоксинов поступает к нему с животной пищей. Стоит однажды попасть диоксину в организм человека и он остается там навсегда и начинает свое долговременное вредное воздействие.
Причина токсичности диоксинов заключается в способности этих веществ точно вписываться в рецепторы живых организмов и подавлять или изменять их жизненные функции.
Около 90–95% диоксинов поступает в организм человека при потреблении загрязненной пищи (в основном животной) и воды через желудочно-кишечный тракт, остальные 5–10% — с воздухом и пылью через лёгкие и кожу. Попадая в организм, эти вещества циркулируют в крови, откладываются в жировой ткани и липидах без исключения всех клеток организма.
Диоксины плохо растворяются в воде и немного лучше в органических растворителях, поэтому эти вещества чрезвычайно химически стойкими соединениями. Диоксины практически не разлагаются в окружающей среде десятки, а то и сотни лет, оставаясь неизменными под влиянием физических, химических и биологических факторов среды.
Отчет Управления по охране окружающей среды США за 1998 год показывает, что взрослые американцы, которые получают диоксины только с пищей, главным образом с мясом, рыбой и молочными продуктами, уже несут в себе в среднем дозу диоксина, близкую к критической (вызывающей заболевания). Она оценивается в 13 нанограммов диоксинов на килограмм веса тела (нг/кг; нанограмм — миллиардная доля грамма; нг/кг — одна весовая часть на триллион). Казалось бы, 13 нг/кг — совершенно мизерная величина, и в абсолютном значении так оно и есть. Однако по сравнению с количествами, вызывающими серьезные нарушения в организме, 13 нг/кг — серьезная угроза здоровью. При этом 5% американцев 2,5 миллиона человек) несут в себе диоксиновую нагрузку, вдвое превышающую среднюю.
В организме теплокровных диоксины первоначально попадают в жировые ткани, а затем перераспределяются, накапливаясь преимущественно в печени, меньше — в тимусе (железе внутренней секреции) и других органах, и выводятся с большим трудом.
Действие диоксинов на человека обусловлено их влиянием на рецепторы клеток, ответственных за работу гормональных систем. При этом возникают эндокринные и гормональные расстройства, изменяется содержание половых гормонов, гормонов щитовидной и поджелудочной желёз, что увеличивает риск развития сахарного диабета, нарушаются процессы полового созревания и развития плода. Дети отстают в развитии, их обучение затрудняется, у молодых людей появляются заболевания, свойственные старческому возрасту. В целом повышается вероятность бесплодия, самопроизвольного прерывания беременности, врождённых пороков и прочих аномалий. Изменяется также иммунный ответ, а значит, увеличивается восприимчивость организма к инфекциям, возрастает частота аллергических реакций, онкологических заболеваний.
При остром отравлении диоксином наблюдаются потеря аппетита, слабость, хроническая усталость, депрессия, катастрофическая потеря веса. Летальный исход может наступить через несколько дней и даже несколько десятков дней, в зависимости от дозы яда и скорости его поступления в организм. Правда, все это происходит при диоксиновой нагрузке от 96 до 3000 нг/кг — в 7 раз более высокой, чем у среднего жителя США. В крови рабочих-мужчин, подвергшихся влиянию диоксина, обнаружено уменьшение уровня тестостерона и других половых гормонов. Особенно тревожно то, что эти люди имели диоксиновую нагрузку, лишь в 1,3 раза превышающую среднюю.
Последствия попадания диоксина в организм. Молекулярный механизм воздействия диоксина. Легко растворяясь в жирах, диоксин беспрепятственно проникает в клетки сквозь цитоплазматическую мембрану. Там он накапливается в липидах либо связывается с различными молекулярными структурами клетки. Образовавшиеся комплексы внедряются в цепочки ДНК, активизируя тем самым целый каскад реакций, приводящих к нарушению обмена веществ, работы нервной системы, вызывая гормональные расстройства, изменения кожных покровов, ожирение. К наиболее тяжелым последствиям приводит активация гена цитохрома Р4501А1, фермента, косвенно способствующего генетическим мутациям клеток и развитию рака. Из-за высокой стабильности молекулы диоксина процесс активации генов может продолжаться очень длительное время, нанося непоправимый вред организму.
Диоксин попадает в организм по преимуществу с пищей. 95–97% диоксина мы получаем из мяса, рыбы, яиц и молочных продуктов. Особенно сильно диоксин накапливается в рыбе. Это связано с тем, что ТХДД — гидрофобное вещество, оно «боится» воды. Попав в водную среду, диоксин всячески стремится ее покинуть — например, проникая в организмы обитателей водоемов. В итоге содержание диоксина в рыбе может в сотни тысяч раз превышать его содержание в окружающей среде. Жители Швеции и Финляндии 63% диоксинов и 42% фуранов получают через рыбные продукты.
Не обладая генотоксическим действием, диоксины не поражают генетический материал клеток организмов непосредственно. Тем не менее, они особенно эффективно поражают именно генофонд аэробных популяций, поскольку именно они разрушают общий механизм защиты генофонда от воздействия внешней среды. Условия среды могут резко усилить мутагенное, эмбриотоксичное и тератогенное действие.
Для токсического действия диоксинов характерен длительный период скрытого действия. Кроме того, признаки диоксиновой интоксикации очень многообразны и в значительной степени определяются, на первый взгляд, их совокупностью, а также отягощенной предрасположенностью организма к тому или иному заболеванию.
Полностью избежать контакта с диоксинами вероятнее всего не удастся никому. Общая загрязненность окружающей среды и продуктов питания не оставляет никому такого шанса. Однако уменьшить поступление ядовитых веществ в организм все же возможно. Соблюдая определённую «гигиену» есть надежда получить меньшие дозы диоксина.
Прежде всего, следует стараться снизить риск попадания диоксина в организм. Для этого нужно вести здоровый образ жизни, питаться органической, преимущественно растительной (растения накапливают меньше диоксинов, чем животные и рыба), экологически чистой — выращенной на чистых почвах, пищей. Жирные сорта рыбы особенно опасны, часто содержат в жире большое количество токсичных соединений. Также это связано с антропогенным загрязнением окружающей среды, а, следовательно, даже дорогая красная рыба может быть составом диоксинов.
Можно полностью перейти преимущественно на растительную пищу — в ней диоксинов намного меньше, потому что в растениях почти нет жиров. Не разлагают диоксин и другие способы приготовления мяса — жарка, запекание в духовке, не помогут в этом и пароварки, микроволновые печи, скороварки.
По той же причине не стоит покупать евро продукты, поступающие на российский рынок, куда может быть добавлен жир, яйца и даже молоко — это майонез, макароны, бульонные кубики, готовые супы, торты, мороженое, и т.п.
Пить необходимо только очищенную воду, ни в коем случае не пить кипяченую хлорированную воду (диоксины могут образовываться при кипячении хлорированной воды). При кипячении хлорированной воды, органические соединения вступают в реакцию с хлором (в мегаполисах в водопроводной воде обнаруживают более 240 соединений) и образует хлорорганические соединения, такие, как трихлорметан и диоксин (при попадании фенола в воду образуется диоксин). Во многих странах уже отказались от обеззараживания воды хлорированием.
Можно очищать воду фильтрами для очистки воды, но менять в нем картриджи нужно часто, чтобы вместо очищенной воды не получить массу бактерий из загрязненного фильтра. На сегодня существует такой современный материал — активированные углеродные волокна, превосходящие по качеству очистки активированный уголь. Волокна способны поглощать ионы тяжелых металлов и подавлять жизнедеятельность бактерий.
Также шунгит не хуже активированного угля обладает способностью очищать воду от многих органических веществ — в том числе тяжелых металлов
Благодаря организованной особым образом кристаллической решетке, в основе которой лежит углерод, шунгит имеет способность очищать воду и насыщать ее специфическим минеральным составом, придавая ей уникальные целебные качества.
Что такое диоксины и чем они опасны
Наталья Гусева
LookBio возобновляет рубрику «Ингредиенты», где будет рассказывать про вредные и полезные, опасные и не очень вещества в косметике, еде и окружающей среде. Сегодня поговорим про диоксины. Наверняка многие из вас слышали про них и слышали, что они опасны для человека. Но что это за вещества? Где их можно встретить? Чем, собственно, они опасны и как их избежать?
Немного химии или что такое диоксины
С точки зрения химии, диоксины – это «шестичленный гетероцикл, в котором два атома кислорода связаны двумя двойными углерод-углеродными связями». Думаю, это не очень-то понятно, поэтому вот вам картинка того, что написано выше:
Название этого диоксина (а их много) – 2,3,7,8-тетрахлородибензо-n-диоксин, сокращённо 2,3,7,8-ТХДД (аббревиатура от ТетраХлорДибензо-n-Диоксин). Химическая формула C12H4Cl4O2.
На картинке как раз хорошо видны атомы кислорода (О) и двойные связи углерод-углерод, обозначаемые двойными же линиями. Если вы немного помните курс школьной органической химии, то помните, что вот эти шестигранники называются бензольные кольца, и в каждом их «углу» находятся атомы углерода. Но чтобы бедным химикам не пришлось рисовать много-много углеродов каждый раз, их просто опускают. А на тех «углах», где ничего нет, на самом деле есть атомы водорода. Вот отсюда и получается формула – 12 атомов углерода, 4 атома водорода, 4 атома хлора и 2 атома кислорода. Не так уж и сложно. На этом заканчиваем минутку химии и переходим к более насущным вопросам.
Откуда берутся диоксины
Диоксины относятся к группе ксенобиотиков, т.е. веществ, которые чужды естественной среде и не присутствуют в круговороте существования живых организмов. Диоксины – результат антропогенной деятельности, они появляются в результате трех причин:
На практике это означает, что диоксины выделяются с выхлопами автомобилей, при хлорировании питьевой воды, при работе домашних печей на древесине, пропитанной пестицидами и другими галогенорганическими веществами, при обработке с/х угодий диоксинсодержащими гербицидами или гербицидами, способными превращаться в диоксины. Источников, как видите, масса.
Чем опасны диоксины
Во-первых, диоксин является наиболее сильным синтетическим ядом, он очень стабилен, долго сохраняется в окружающей среде (т.е. не разлагается на составляющие, а сохраняет свою структуру молекул), легко переносится по цепям питания, а следовательно, длительно воздействует на живые организмы. Через сточные воды и выбросы в атмосферу диоксины попадают в окружающую среду, накапливаются в водных экосистемах, а, являясь кумулятивным ядом, он накапливается в растениях, через них попадают в животных, и в итоге все это попадает к нам на стол и в организм и продолжает накапливаться там.
Во-вторых, даже в малых количествах диоксин сильно повышает активность узкоспецифичных монооксигеназ печени. Монооксигеназа – это, если грубо, разновидность фермента, катализирующего окислительно-восстановительную реакцию в организме. В данном случае вся эта непонятная фраза означает лишь, что диоксин способствует тому, что эти самые ферменты-монооксигеназы превращают многие вещества как природного, так и синтезированного происхождения в опасные для организма яды.
Диоксин как яд
После истории с отравлением в 2004 году президента Украины Виктора Ющенко диоксинами, химики и врачи очень подробно изучили это вещество. В результате мы знаем, что следы диоксина остаются в организме долго, их можно найти спустя годы. При этом не существует эффективных антидотов, т.е. противоядия, как и методов детоксикации. Ситуацию усложняет и то, что время действия и характер поражения диоксином у разных людей будет разный, поэтому заметить иногда даже острое отравление очень сложно. Даже хлоракне – кожное заболевание, жертвой которого стал Ющенко, не всегда является необходимым симптомом отравления.
Диоксин не имеет запаха, но случайно отравиться им довольно сложно. Это может произойти, если в вашу пищу попали следы опасных химикатов в содержанием диоксинов (например, технические масла на основе ПХБ – полихлорбифенила) или при несчастном случае на производстве. Т.е. если вы не работаете на химическом предприятии и у вас нет профессиональных рисков контакта с диоксинами, в обычной жизни случайно получить острое отравление диоксинами практически невозможно. С другой стороны, хроническому воздействию диоксинов подвержено большинство населения индустриальных стран нашей планеты.
Как избежать диоксинов
Дикосин является органохлоридом, т.е. выделяется при соединении хлора с органикой. В быту это чаще всего происходит, например, когда хлор в составе вашего стирального порошка смешивается с частичками органики на вашей грязной одежде. После стирки вы открываете стиральную машину – вуаля! – пары диоксина летят прямо на вас.
Чтобы этого избежать, не покупайте моющие средства (для чистки унитазов, дезинфецирующие средства, отбеливатели и т.д.), содержащие хлор, который сам по себе очень вреден и для вас, и для окружающей среды. Имейте в виду, что в составе средства вряд ли будет написано «хлор», а будет написано что-то вроде «гипохлорит натрия», «хлористый водород» или «дихлоризоцианурат натрия».
Ну и еще хорошо бы не жить на самых больших магистралях города (например, на Кутузовском проспекте, 14 полос которого дают одну из самых высоких концентраций диоксинов в Москве из-за высокого уровня выхлопов автомобилей). Да, было бы смешно, если бы не было так грустно.
В качестве заключения скажем, что, во-первых, летальная доза диоксина отличается от дозы острого отравления примерно на три порядка (т.е. в тысячу раз), и точно так же отличаются друг от друга доза острого отравления, доза «приемлемого риска» онкологии, получаемые сотрудниками на химических предприятиях (один к миллиону) и доза, получаемая нами с вами – жителями больших городов. Ну а во-вторых, человеческий организм, если дать ему достаточно времени, способен адаптироваться почти к чему угодно. Так что все будет хорошо.
Диоксины: что нужно знать о «гормоне деградации»
В химии и токсикологии под термином «диоксины»понимают немного разное. В органической химии диоксинами называют шестичленный гетероцикл, в котором два атома кислорода связаны двумя двойными углерод-углеродными связями. В токсикологии под диоксином понимают производное этого соединения, а именно 2,3,7,8-тетрахлордибензо-пара-диоксин (2,3,7,8 ТХДД), который является представителем обширной группы чрезвычайно опасных ксенобиотиков (чужеродных для живых организмов химических веществ, не входящих в естественный биотический круговорот).
Молекулярная структура этих соединений выглядит так:
Во-вторых, даже в очень небольших количествах диоксины оказывают токсическое воздействие на все, без исключения, внутренние органы человека и особенно на печень.
В нормальных условиях печень – это «главный токсиколог» организма, идентифицирующий те или иные ксенобиотики, поступающие в организм с водой, пищей или воздухом и способствующий их нейтрализации и выведению из организма. При систематическом поражении печени диоксинами ее защитные функции не просто нарушаются – они начинают работать как бы наоборот: превращать чужеродные для организма вещества в различные промежуточные метаболиты, которые способствуют вторичному токсическому поражению органов и тканей.
Помимо поражения кожи, наблюдаются нарушения в работе печени, желудочно-кишечного тракта, сердечно-сосудистой, нервной системах, потере аппетита, потере в весе, боли в мышцах, нарушения в пищеварении, головная боль, половая дисфункция, расстройство зрения, изменения в восприятии звука, вкуса, обоняния, расстройство сна, потеря активности, депрессия и приступы гнева.
Исследования последних лет показывают, что сами диоксины практически не выводятся из организма человека, поскольку для этого у нас нет необходимых биохимических инструментов: наш организм не обладает ферментами, способными разрушать соединения по типу диоксинов, поскольку такие вещества никогда не существовали в истории биосферы до начала XX века, и человеческие организмы к ним просто не приспособлены.
Они не обнаруживаются ни в тканях египетских мумий, ни древнеиндийских захоронениях, не говоря уже об останках мамонтов и прочих представителей древней фауны.
Первое вещество из класса диоксинов было синтезировано в Германии в 1872 году. А первые проблемы, связанные с диоксинами, возникли в 1930-х годах при разработке средства для химической обработки древесины. Уже в 1936-ом году появилось открытое упоминание о массовых заболеваниях рабочих, трудящихся в этой сфере.
В наши дни диоксины обнаруживаются повсеместно, включая антарктические льды. Сегодня каждый из нас имеет в организме определенный уровень диоксинов. Накапливаются они в печени, тимусе, кроветворных органах, коже, но наибольшее их количество сконцентрировано в жировых тканях и крови.
Откуда берутся диоксины?
Ежедневно в планетарном масштабе образуется несколько килограммов диоксинов, которые включаются в биогенный оборот и накапливаются в воде и почве.
Чаще всего диоксины синтезируются в результате неполного сгорания органических веществ в присутствии хлора. Источники диоксинов весьма разнообразны: горящие свалки, мусоросжигательные заводы, нефтеперерабатывающая, целлюлозно-бумажная и металлургическая промышленность, природные пожары, автомобильные выхлопы и даже сельскохозяйственная деятельность с применением пестицидов.
Другой путь синтеза хлорорганических соединений предоставляет жилищно-коммунальное хозяйство. Загрязненная отходами промышленности вода, отбираемая для нужд населения из поверхностных источников, проходит обработку хлором. При этом некоторые содержащиеся в воде химические соединения вступают в реакцию с хлором и образуют диоксины причем чем большее количество загрязнений содержится в воде, тем большее количество диоксинов может синтезироваться.
В качестве примера экстремального загрязнения питьевой воды диоксинами можно привести события, случившиеся в Уфе в 1989-1990 гг., которые по праву считаются крупнейшей экологической катастрофой.
21 ноября 1989 г. на станции перекачки ПО «Химпром» произошла мощная утечка – сброс нескольких сотен тонн фенола. Часть этого фенола попала в реку Белую (концентрация фенола в реке достигала в этот момент 380 ПДК!) и поскольку никаких мер принято не было, экстремально загрязненная вода попала в водозабор г. Уфы.
Оценки показали, что даже 3-4 недели спустя после начала ЧП содержание диоксинов в воде в тысячи раз превышало допустимые уровни. Последствия той аварии до конца не ликвидированы и по сей день
Так сегодня выглядит территория бывшего ПО «Химпром»
Интересно, что в СССР тема диоксинов долгое время была под запретом. Лишь в 1985 году вышла статься «Диоксин — проблема научная или социальная» за авторством А.В. Фокина и А.Ф. Коломийца, а в 1989 году прошла научная сессия «Наука и экология», где впервые был остро поставлен вопрос об угрозе диоксинов, в 1994 году правительство РФ принимает гигиенические нормативы, действующие и по сей день, согласно которым норма содержания диоксинов в атмосфере составляет 0,5 пикограмм на кубический метр. В США эта норма составляет 0,02 пикограмм на кубический метр воздуха, а в Италии 0,04. В 1995 году правительство РФ принимает федеральную программу «Защита окружающей природной Среды и населения от диоксинов и диоксиноподобных токсикантов на 1996-1997 годы», признав тем самым наличие диоксиновой проблемы и необходимости в принятии мер.
Ярким примером того, что диоксины могут быть боевым средством, является история войны во Вьетнаме в 1965-1975 годы. Американские военнослужащие применяли химический агент, названный «оранжадом», для уничтожения тропической растительности: оно вызывало опад листвы и гибель деревьев, и местные партизаны не могли прятаться на обработанных участках джунглей.
По расчетам, проведенным в 1985 году, в общей сложности над Вьетнамом за время военной кампании было распылено 57 тысяч тонн оранжада, в которых содержалось около 500 тонн диоксинов. Последствиями распыления оранжада стал всплеск онкологических заболеваний среди населения, вьетнамских и американских солдат, рождение детей и животных с отклонениями, массовая гибель скота. Последствия диоксинового загрязнения территории Вьетнама проявляются до сих пор.
Распыление оранжада над джунглями Вьетнама и его последствия
Как спастись от невидимого убийцы? Слово эксперта
Как обезопаситься от диоксинов или, по крайней мере, минимизировать их негативное воздействие на организм человека, рассказывает химик, автор патентов на изобретения в области водоподготовки и обработке сточных вод, генеральный директор ООО «ЮгАкваСистемы» Андрей Филимонов:
— Диоксины очень устойчивы в окружающей среде. Они не разрушаются ни в щелочной, ни в кислотной среде. Прежде считалось, что диоксины подвергаются деструкции при температуре около 750°C, однако позднейшие исследования показали, что даже при температуре в 1200°C процесс терморазрушения является обратимым: для необратимого разрушения нужно поддерживать эту температуру в течение нескольких секунд – вот почему проблема очистки выбросов мусоросжигательных заводов стоит чрезвычайно остро, и не на всяком МСЗ возможно применения высоких температур для «дожига» и полного обезвреживания газов, выбрасываемых в атмосферу.
В России сильно завышены нормативы по сравнению с развитыми странами предельно допустимые концентрации диоксинов в воде, воздухе и почве. Принятые десятилетия назад нормы не соответствуют фактической ситуации в мире и противоречат современным требованиям ВОЗ. Пересмотр нормативов ПДК позволит наконец обратить внимание чиновников, контролирующих органов и загрязнителей окружающей среды на проблему диоксинового загрязнения и снизить выбросы.
Необходимо пересмотреть подходы к обеззараживанию воды, особенно из открытых источников (река, озеро). Необходимо постепенно переходить к применению более безопасных обеззараживающих агентов, нежели хлор (озон, ультрафиолетовое излучение, микроволны, магнитное поле и т.д.).
Разумеется, встанет ряд технических проблем, в частности, связанных с необходимостью обеспечить пролонгированность действия окислителя, с блокировкой развития патогенной микробиоты в распределенных водопроводных сетях. Но используя современные наработки, эти проблемы можно решить. Такие примеры за пределами России уже есть.
Да и в нашей стране в последние годы уделяется огромное внимание вопросам качества питьевой воды, так что вопрос диоксинового загрязнения можно было бы включить в соответствующие госпрограммы.
Наконец, огромную опасность представляют технологии мусоросжигания. В условиях слабого государственного контроля зачастую предлагаются технические решения, которые не обеспечивают защиты от диоксинового загрязнения. Гораздо более безопасным и наиболее экологичным способом является раздельный сбор отходов и переработка вторсырья.
Автор: Даниил Обирин
Л.А. Федоров «Диоксины как экологическая опасность: ретроспектива и перспективы», 1993
Школа защиты экологических прав,
Понравился материал? Возьмите его в свои соцсети: