дип монтаж что это
DIP-монтаж плат: особенности, плюсы и минусы
Современные микросхемы характеризуются повышенной функциональностью, но, вместе с тем, небольшими габаритами. Вследствие этого нередко они имеют сложную конфигурацию. В частности, большое распространение получили многослойные платы, у которых металлизированные цепи нанесены не только на поверхности, но и внутри пластин, между слоями диэлектрика.
Изготовление таких микросхем осуществляется методом DIP-монтажа – https://solderpoint.ru/montazh-pechatnyx-plat-vyvodnoj-dip. Его еще называют выводным. Это обусловлено тем, что контакты электронных компонентов припаиваются в металлизированные отверстия, а не на поверхностные площадки, как при SMD-монтаже.
Производство плат DIP-методом (или TNT-методом) осуществляется преимущественно вручную. Существуют полуавтоматические станки, которые выполняют точечную пайку. Однако их удобно применять далеко не всегда, они дорогие и все равно требуют участия в процессе профессионального электроинженера. В таких условиях выводную пайку целесообразно выполнять в ручном режиме: опыт, умелые руки мастера и паяльник – лучшая команда!
Плюсы ДИП-монтажа
Минусы ДИП-монтажа
Отличительной особенностью такого метода пайки является ручной труд, что выглядит несколько устаревшим на фоне массовой автоматизации производства. С одной стороны, монтаж плат вручную характеризуется более высоким качеством, ведь опытный мастер контролирует все этапы, исключая брак. С другой – оплата услуг специалиста (или команды таковых), в долгосрочной перспективе, обходится дороже, чем приобретение функционального станка, применяемого при СМД-пайке.
Однако ручной труд обеспечивает важное преимущество – гибкость, адаптивность. Мастер с паяльником может подстраиваться под любую рабочую ситуацию. Поэтому пайка электронных компонентов вручную открывает возможности для изготовления микросхем любых форм и конфигураций. В случае комбинирования монтажных способов DIP осуществляется после SMD.
Почему SMD, а не DIP?
В статье речь пойдёт исключительно о уличных (outdoor) LED модулях.
Для начала разберемся в чем техническая разница монтажа DIP и SMD светодиодов на печатную плату.
Вернёмся к светодиодным модулям, на примере Qiangli, в чем же существенная разница в модульных экранах из DIP и SMD модулей?
SMDмодули имеют больший, почти 160 градусов, угол обзора, что даёт больший эффект транслируемому на нём контенту, достигается это за счёт того, что SMD пиксели плоские и их не надо защищать большими ресничками. DIP не могут похвастаться таким углом из-за того что три разных диода (Red, Green, Blue) с разных углов обзора перекрывают друг друга.
DIP модули весят значительно больше чем SMD и это существенно сказывается при сборке/транспортировке/монтаже экрана. Ниже вы можете видеть на сколько высока разница.
Единственный минус SMD модулей, их очень трудно ремонтировать, и тут несомненно DIP модули за счёт монтажа в PCB плату – выигрывают.
Глубина цвета, данный пункт может показаться субъективным, но надо признать, SMD модули выдают более насыщенную картинку за счёт контраста белых пикселей на чёрной маске.
В данный момент линейка светодиодных SMD модулей у завода QIANGLI очень широкая, уличные модули 6мм, 8мм, два вида 10мм модулей (с средней и высокой яркостью).
Подводя итоги можно смело сказать что SMD уступает только по ремонтопригодности и не значительно по яркости (что опять же спорно, зачем надо еще ярче если в лоб против солнца всё отчетливо видно).
Корпуса микросхем
В этой статье мы рассмотрим самые основные корпуса микросхем, которые очень часто используются в повседневной электронике.
DIP корпус
DIP ( англ. Dual In-Line Package) — корпус с двумя рядами выводов по длинным сторонам микросхемы. Раньше, да наверное и сейчас, корпус DIP был самым популярным корпусом для многовыводных микросхем. Выглядит он вот так:
В зависимости от количества выводов микросхемы, после слова «DIP» ставится количество ее выводов. Например, микросхема, а точнее, микроконтроллер atmega8 имеет 28 выводов:
Следовательно, ее корпус будет называться DIP28.
А вот у этой микросхемы корпус будет называться DIP16.
Чтобы не считать каждый раз количество выводов, можно их сосчитать только на одной стороне микросхемы и тупо умножить на два.
В основном в корпусе DIP в Советском Союзе производили логические микросхемы, операционные усилители и тд. Сейчас же корпус DIP также не теряет своей актуальности и в нем до сих пор делают различные микросхемы, начиная от простых аналоговых и заканчивая микроконтроллерами.
Корпус DIP может быть выполнен из пластика (что в большинстве случаев) и называется он PDIP, а также из керамики — CDIP. На ощупь корпус CDIP твердый как камень, и это неудивительно, так как он сделан из керамики.
Пример CDIP корпуса.
Имеются также модификации DIP корпуса: HDIP, SDIP.
HDIP (Heat-dissipating DIP) — теплорассеивающий DIP. Такие микросхемы пропускают через себя большой ток, поэтому сильно нагреваются. Чтобы отвести излишки тепла, на такой микросхеме должен быть радиатор или его подобие, например, как здесь два крылышка-радиатора посерединке микрухи:
SDIP (Small DIP) — маленький DIP. Микросхема в корпусе DIP, но c маленьким расстоянием между ножками микросхемы:
SIP корпус
SIP корпус (Single In line Package) — плоский корпус с выводами с одной стороны. Очень удобен при монтаже и занимает мало места. Количество выводов также пишется после названия корпуса. Например, микруха снизу в корпусе SIP8.
У SIP тоже есть модификации — это HSIP (Heat-dissipating SIP). То есть тот же самый корпус, но уже с радиатором
ZIP корпус
ZIP (Zigzag In line Package) — плоский корпус с выводами, расположенными зигзагообразно. На фото ниже корпус ZIP6. Цифра — это количество выводов:
Ну и корпус с радиатором HZIP:
Только что мы с вами рассмотрели основной класс In line Package микросхем. Эти микросхемы предназначены для сквозного монтажа в отверстиях в печатной плате.
Например, микросхема DIP14, установленная на печатной плате
и ее выводы с обратной стороны платы, уже без припоя.
Кто-то все таки умудряется запаять микросхемы DIP, как микросхемы для поверхностного монтажа (о них чуть ниже), загнув выводы под углом в 90 градусов, или полностью их выпрямив. Это извращение), но работает).
Переходим к другому классу микросхем — микросхемы для поверхностного монтажа или, так называемые SMD компоненты. Еще их называют планарными радиокомпонентами.
Такие микросхемы запаиваются на поверхность печатной платы, под выделенные для них печатные проводники. Видите прямоугольные дорожки в ряд? Это печатные проводники или в народе пятачки. Вот именно на них запаиваются планарные микросхемы.
SOIC корпус
Самым большим представителем этого класса микросхем являются микросхемы в корпусе SOIC (Small-Outline Integrated Circuit) — маленькая микросхема с выводами по длинным сторонам. Она очень напоминает DIP, но обратите внимание на ее выводы. Они параллельны поверхности самого корпуса:
Вот так они запаиваются на плате:
Ну и как обычно, цифра после «SOIC» обозначает количество выводов этой микросхемы. На фото выше микросхемы в корпусе SOIC16.
SOP корпус
SOP (Small Outline Package) — то же самое, что и SOIC.
Модификации корпуса SOP:
PSOP — пластиковый корпус SOP. Чаще всего именно он и используется.
HSOP — теплорассеивающий SOP. Маленькие радиаторы посередине служат для отвода тепла.
SSOP(Shrink Small Outline Package) — » сморщенный» SOP. То есть еще меньше, чем SOP корпус
TSSOP(Thin Shrink Small Outline Package) — тонкий SSOP. Тот же самый SSOP, но «размазанный» скалкой. Его толщина меньше, чем у SSOP. В основном в корпусе TSSOP делают микросхемы, которые прилично нагреваются. Поэтому, площадь у таких микросхем больше, чем у обычных. Короче говоря, корпус-радиатор).
SOJ — тот же SOP, но ножки загнуты в форме буквы «J» под саму микросхему. В честь таких ножек и назвали корпус SOJ:
Ну и как обычно, количество выводов обозначается после типа корпуса, например SOIC16, SSOP28, TSSOP48 и тд.
QFP корпус
QFP (Quad Flat Package) — четырехугольный плоский корпус. Главное отличие от собрата SOIC в том, что выводы размещены на всех сторонах такой микросхемы
PQFP — пластиковый корпус QFP. CQFP — керамический корпус QFP. HQFP — теплорассеивающий корпус QFP.
TQFP (Thin Quad Flat Pack) — тонкий корпус QFP. Его толщина намного меньше, чем у его собрата QFP
PLCC корпус
PLCC (Plastic Leaded Chip Carrier) и СLCC (Ceramic Leaded Chip Carrier) — соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую «кроваткой». Типичным представителем является микросхема BIOS в ваших компьютерах.
Вот так примерно выглядит «кроватка» для таких микросхем
А вот так микросхема «лежит» в кроватке.
Иногда такие микросхемы называют QFJ, как вы уже догадались, из-за выводов в форме буквы «J»
Ну и количество выводов ставится после названия корпуса, например PLCC32.
PGA корпус
PGA (Pin Grid Array) — матрица из штырьковых выводов. Представляет из себя прямоугольный или квадратный корпус, в нижней части которого расположены выводы-штырьки
Такие микросхемы устанавливаются также в специальные кроватки, которые зажимают выводы микросхемы с помощью специального рычажка.
В корпусе PGA в основном делают процессоры на ваши персональные компьютеры.
Корпус LGA
LGA (Land Grid Array) — тип корпусов микросхем с матрицей контактных площадок. Чаще всего используются в компьютерной технике для процессоров.
Кроватка для LGA микросхем выглядит примерно вот так:
Если присмотреться, то можно увидеть подпружиненные контакты.
Сам микросхема, в данном случае процессор ПК, имеет просто металлизированные площадки:
Для того, чтобы все работало, должно выполняться условие: микропроцессор должен быть плотно прижат к кроватке. Для этого используются разного рода защелки.
Корпус BGA
BGA (Ball Grid Array) — матрица из шариков.
Как мы видим, здесь выводы заменены припойными шариками. На одной такой микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах. О том, как перепаивать BGA, я еще писал в статье Пайка BGA микросхем.
В красных квадратах я пометил микросхемы в корпусе BGA на плате мобильного телефона. Как вы видите, сейчас вся микроэлектроника строится именно на BGA микросхемах.
Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию корпусов microBGА, где расстояние между шариками еще меньше, и можно уместить даже тысячи(!) выводов под одной микросхемой!
Вот мы с вами и разобрали основные корпуса микросхем.
Ничего страшного нет в том, что вы назовете микросхему в корпусе SOIC SOPом или SOP назовете SSOPом. Также ничего страшного нет и в том, чтобы назвать корпус QFP TQFPом. Границы между ними размыты и это просто условности. Но вот если микросхему в корпусе BGA назовете DIP, то это уже будет полное фиаско.
Начинающим радиолюбителям стоит просто запомнить три самых важных корпуса для микросхем — это DIP, SOIС (SOP) и QFP безо всяких модификаций и стоит также знать их различия. В основном именно эти типы корпусов микросхем радиолюбители используют чаще всего в своей практике.
Корпуса микросхем
Корпус интегральной микросхемы (ИМС) — это герметичная конструкции, предназначенная для защиты кристалла интегральной схемы от внешних воздействий и для электрического соединения с внешними цепями. Длина корпуса микросхем зависит от числа выводов. Давайте рассмотрим некоторые типы корпусов, которые наиболее часто применяются радиолюбителями.
Одной из разновидностью корпуса DIP является корпус QDIP на таком корпусе 12 выводов и обычно имеются лепестки для крепления микросхемы на радиатор, вспомните микросхему К174УН7.
SIP (Single In-line Package) – плоский корпус для вертикального монтажа в отверстия печатной платы, с одним рядом выводов по длинной стороне. Обычно в обозначении также указывается число выводов. Нумерация выводов данных типов микросхем начинается слева, если смотреть на маркировку спереди.
ТО92 – распространённый тип корпуса для маломощных транзисторов и других полупроводниковых приборов с двумя или тремя выводами, в том числе и микросхем, например интегральных стабилизаторов напряжения. В СССР данный тип корпуса носил обозначение КТ-26.
TO220 — тип корпуса для транзисторов, выпрямителей, интегральных стабилизаторов напряжения и других полупроводниковых приборов малой и средней мощности. Нумерация выводов для разных элементов может отличаться, у транзисторов одно обозначение, у стабилизаторов напряжения другое…
PENTAWATT – Содержит 5 выводов, в таких корпусах выпускаются, например усилители НЧ (TDA2030, 2050…), или стабилизаторы напряжения.
SO (Small Outline) пластиковый корпус малого размера. Корпус имеет форму прямоугольника, снабжен выводами, предназначенными для монтажа на поверхность. Существуют две разновидности корпуса: узкая, с шириной корпуса 3.9 мм (0.15 дюйма) и широкая, с шириной корпуса 7.5 мм (0.3 дюйма).
Также существует версия корпуса с загнутыми под корпус (в виде буквы J) выводами. Такой тип корпуса обозначается как SOJ (Small-Outline J-leaded).
В это семейство входят корпуса TQFP (Thin QFP), QFP, LQFP (Low-profile QFP). Микросхемы в таких корпусах предназначены только для поверхностного монтажа; установка в разъём или монтаж в отверстия штатно не предусмотрена, хотя переходные коммутационные устройства существуют. Количество выводов QFP микросхем обычно не превышает 200, с шагом от 0,4 до 1,0 мм. Габаритные размеры корпусов и расстояние между выводами можно посмотреть тут.
QFN (Quad-flat no-leads) – у таких корпусов, так же как и у корпусов SOJ, вывода загнуты под корпус. Габаритные размеры и расстояние между выводами корпусов QFN можно посмотреть тут. Данный корпус схож с типом корпусов MLF, у них вывода расположены по периметрии и снизу.
TSOP (Thin Small-Outline Package) – данные корпуса очень тонкие, низкопрофильные, являются разновидностью SOP микросхем. Применяются в модулях оперативной памяти DRAM и для чипов флеш-памяти, особенно для упаковки низковольтных микросхем из-за их малого объёма и большого количества штырьков (контактов). В более современных модулях памяти такие корпуса уже не применяются, их заменили корпуса типа BGA. Обычно различают два типа корпусов, они представлены ниже на фото.
DIP-монтаж
Основные типы SMT-сборок. Технологический процесс сборки ПП на основе THT-технологии. Формовка круглых выводов элементов. Ручная и полуавтоматическая установка компонентов. Пайка волной припоя, селективная и ручная пайка. Технология монтажа в отверстия.
Федеральное агентство по образованию РФ
В электронной промышленности существует шесть общих типов SMT сборки, каждому из которых соответствует свой порядок производства. Существует специальный стандарт, в котором представлены основные виды сборок, разбитые по классам.
SMC и IPC документация по поверхностному монтажу на платы, IPC-7070, J-STD-013 и National Technology Roadmap for Electronic Interconnections включают классификацию следующих схем поверхностного монтажа:
Ниже будут рассмотрены основные варианты размещения компонентов на плате, применяемые разработчиками.
Рис. 1- Тип 1В: SMT Только верхняя сторона
Этот тип не является общим так как большинство разработок требует некоторых DIP компонентов. Его называют IPC Type 1B.
Порядок проведения процесса: нанесение припойной пасты, установка компонентов, пайка, промывка.
На нижней стороне платы размещаются чип-резисторы и другие компоненты небольших размеров. При использовании пайки волной, они будут повторно оплавляться за счет верхнего (побочного) потока волны припоя. При размещение больших компонентов с обеих сторон, типа PLCC, увеличивают издержки производства, потому что компоненты нижней стороны должны устанавливаться на специальный токопроводящий клей. Данный тип называется IPC Type 2B.
Порядок проведения процесса:
нанесение припойной пасты, установка компонентов, пайка, промывка нижней стороны;
нанесение припойной пасты на верхнюю сторону печатной платы, установка компонентов, повторная пайка, промывка верхней стороны.
Специальный тип: SMT верхняя сторона в первом случае и верхняя и нижняя во втором, но PTH только верхняя сторона.
Обязательным требованием при использовании данного метода является наличие сквозных металлизированных отверстий.
Порядок обработки односторонней печатной платы:
нанесение припойной пасты, установка SMT компонентов, установка PTH компонентов, пайка, промывка верхней стороны.
Порядок обработки двухсторонней печатной платы:
нанесение припойной пасты, установка SMT компонентов, повторное оплавление, промывка нижней стороны;
установка PTH компонентов, пайка, промывка верхней стороны.
Данный метод является смешанной технологией сборки. Все модули SMT и PTH установлены на верхней стороне платы. Допускается установка некоторых компонентов монтируемых в отверстия (PTH) на верхней стороне платы, где размещены SMT компоненты для увеличения плотности. Данный тип сборки называется IPC Type 1C.
Порядок проведения процесса:
нанесение припойной пасты, установка, оплавление, промывка верхней части SMT;
автоматическая установка DIP, затем осевых компонентов (такие как светодиоды);
ручная установка других компонентов;
пайка волной PTH компонентов, промывка.
Установка поверхностно монтируемых и монтируемых в отверстия (DIP) компонентов с обеих сторон платы не рекомендуется из-за высокой стоимости сборки. Эта разработка может требовать большого объема ручной пайки. Также не применяется автоматическая установка PTH компонентов из-за возможных конфликтов с SMT компонентами на нижней стороне платы. Данный тип сборки называется IPC Type 2C.
Порядок проведения процесса:
нанесение припойной пасты, установка, пайка, промывка верхней стороны SMT;
нанесение специального токопроводящего клея через трафарет, установка, фиксация SMT;
автоматическая установка DIP и осевых компоненты;
маскирование всей нижней стороны PTH компонентов;
ручная установка других компонентов;
пайка волной PTH и SMT компонентов, промывка;
ручная пайка нижней стороны PTH компонентов.
Данный тип предполагает размещение поверхностного крепления с нижней стороны платы и PTH на верхней стороне. Он также является одним из очень популярных видов размещения, т.к. позволяет значительно увеличить плотность размещения компонентов. Тип имеет название IPC Type 2C.
Порядок обработки (PTH конфликтов на нижней стороне нет):
нанесения клея через трафарет, установка, высыхания клея на нижней стороны SMT;
автоматическая установка DIP, затем осевых компонентов;
ручная установка других компонентов;
пайка волной PTH и SMT компонентов, промывка.
Альтернативный порядок обработки (PTH конфликтов на нижней стороне):
автоматическая установка DIP, затем осевых компонентов;
точечное нанесение клея (диспенсорный метод), установка, высыхания клея на нижней стороны SMT;
ручная установка компонентов;
пайка волной PTH и SMT компонентов, промывка.
Данный тип позволяет располагать поверхностно монтируемые компоненты с обеих сторон платы, а DIP компоненты только на верхней. Это очень популярный вид сборки у разработчиков, позволяющий разместить компоненты с высокой плотность. Нижняя сторона SMT компонентов остается свободной от осевых элементов и ножек DIP компонентов. Например, нельзя размещать микросхемы между ножками DIP компонента.
Порядок проведения процесса (без размещения поверхностно монтируемых (SMT) между ножками монтируемых в отверстия (PTH) компонентов на нижней стороне платы):
нанесение припойной пасты, установка, пайка, промывка верхней стороны части SMT;
нанесение клея через трафарет, размещение, высыхание клея SMT на нижней стороне;
автоматическая установка DIP, а затем осевых компонентов;
ручная установка других компонентов;
пайка волной PTH и SMT компонентов, промывка;
Альтернативный порядок проведения процесса (на нижней стороне платы поверхностно монтируемых (SMT) компоненты размещены между ножек монтируемых в отверстия (PTH)):
нанесение припойной пасты, размещение, пайка, промывка верхней стороны части SMT;
автоматическая установка DIP, затем осевых компонентов;
точечное нанесение клея (диспенсорным методом), установка, высыхание клея на нижней стороны платы;
ручная установка других компонентов;
пайка волной PTH и SMT компонентов, промывка.
Технология монтажа в отверстия
Фактически данная технология появилась вместе с началом использования монтажных плат, как метода выполнения электрических соединений. До этого монтаж компонентов осуществлялся пространственно путем крепления выводов компонентов к металлическим контактам на конструктивных элементах устройства, либо соединением выводов компонентов между собой. Применение монтажных плат перенесло конструирование узлов из пространства на плоскость, что значительно упростило как процесс разработки конструкций, так и изготовление устройств. Появление печатного монтажа в дальнейшем привело к революции в технологичности и автоматизации проектирования электронных устройств.
Технология монтажа в отверстия, как следует из названия, представляет собой метод монтажа компонентов на печатную плату, при котором выводы компонентов устанавливаются в сквозные отверстия платы и припаиваются к контактным площадкам и/или металлизированной внутренней поверхности отверстия.
В настоящее время технология монтажа в отверстия уступает свои позиции более прогрессивной технологии поверхностного монтажа, в особенности, в массовом и крупносерийном производстве, бытовой электронике, вычислительной технике, телекоммуникациях, портативных устройствах и других областях, где требуется высокая технологичность, миниатюризация изделий и хорошие слабосигнальные характеристики.
Тем не менее, есть области электроники, где технология монтажа в отверстия по сей день является доминирующей. Это, прежде всего, силовые устройства, блоки питания, высоковольтные схемы мониторов и других устройств, а также области, в которых из-за повышенных требований к надежности большую роль играют традиции, доверие проверенному, например, авионика, автоматика АЭС и т.п.
Также данная технология активно применяется в условиях единичного и мелкосерийного многономенклатурного производства, где из-за частой смены выпускаемых моделей автоматизация процессов неактуальна. Эта продукция, в основном, выпускается небольшими отечественными предприятиями как для бытового, так и для специального применения.
Некоторое время назад имела место ситуация, когда выбор технологии монтажа в отверстия мог быть продиктован применяемыми компонентами. Некоторые компоненты попросту не выпускались в корпусах для поверхностного монтажа. Особенно это было актуально для нашей страны, поскольку новинки доходили до нас с опозданием. Сейчас эта ситуация существенно изменилась, и большинство компонентов общего применения можно найти либо в обоих исполнениях, либо в исполнении для поверхностного монтажа, поскольку он считается более прогрессивным. Исключение составляют силовые компоненты, электромеханические реле, разъемы, большие переменные резисторы, панели ИМС и некоторые другие компоненты, однако многие из них уже имеют аналоги для монтажа на поверхность. Существует неоднозначное отношение к надежности электролитических конденсаторов для поверхностного монтажа, а их танталовые аналоги достаточно дороги, поэтому часто на платах среди поверхностного монтажа можно встретить штыревые алюминиевые электролитические конденсаторы. Все это обуславливает необходимость применения технологии смешанного монтажа (одновременного наличия на ПП SMT- и THT-компонентов).
Технология установки THT-компонентов относительно проста, хорошо отработана, допускает ручные и автоматизированные методы сборки, хорошо обеспечена сборочным оборудованием и технологическим оснащением. В данной статье кратко рассмотрены основные операции THT-технологии.
ЭК, используемые в технологии монтажа в отверстия, по типу корпуса можно разбить на следующие основные группы (примеры корпусов приведены на рис. 9):
а) ЭК с осевыми (часто встречается обозначение axial, аксиальными) выводами;
б) ЭК с радиальными выводами (radial);
е) панели для ИС, в том числе DIP; ZIF (Zero Insertion Force, панели с нулевым усилием вставки для штырьковых ИС); PGA (Pin Grid Array, панели для штырьковых ИС с матрицей выводов);
ж) различные компоненты сложной формы.
Такое разделение компонентов, прежде всего, связано с особенностями технологии их монтажа. Так, например, осевые и радиальные выводы компонентов требуют формовки и обрезки, тогда как большинство других компонентов в этом не нуждаются. При формовке выводов, и как следствие, последующей установке компонентов с осевыми выводами они имеют дополнительную степень свободы (вращение вокруг оси), поэтому их маркируют цветными кольцами (см. рис. 9а), исключающими установку «маркировкой вниз».
Также есть различия в механизмах захвата, базирования и фиксации разных групп компонентов, поэтому часто компоненты в разных корпусах устанавливаются каждый на своем оборудовании.
Типичная последовательность операций
Технологический процесс сборки ПП на основе THT-технологии состоит из следующих типовых этапов:
подготовка выводов ЭК (формовка, обрезка), часто совмещается с автоматизированным монтажом;
установка компонентов (ручная, автоматическая);
пайка (волной припоя, ручная, селективная);
отмывка (ультразвуковая, струйная).
На некоторых предприятиях сохранилась технология, при которой из-за проблем с покрытиями выводов и хранением компонентов подготовка выводов включала в себя предварительное лужение, однако современная технология этого не предусматривает благодаря качественной упаковке и покрытию выводов современных компонентов. Ниже рассмотрены данные операции в порядке выполнения.
Подготовка выводов ЭК
Выводы ЭК перед монтажом должны быть специальным образом подготовлены. Цель подготовки:
выравнивание (рихтовка) выводов (если требуется);
обеспечение необходимого монтажного расстояния между выводами;
зазора между ПП и компонентом (если требуется);
фиксации ЭК на ПП при ручном монтаже либо до поступления платы в установку пайки.
Также возможно крепление ЭК следующими методами:
обеспечением пружинения выводов;
посадкой на клей (клей полимеризуется при комнатной температуре, при этом для стеклянных корпусов может понадобиться надевание трубки на часть корпуса, контактирующую с адгезивом; также необходимо обеспечить достаточное количество клеевых точек для крепления тяжелых ЭК);
с использованием различных держателей (хомутов, металлических скоб, клипс, зажимов).
Тяжелые элементы (например, трансформаторы) или элементы, подверженные механическим воздействиям (тумблеры, потенциометры, подстроечные конденсаторы), устанавливаются с помощью особых держателей. Такие держатели обеспечивают надежное механическое крепление соответствующих элементов к ПП и предотвращают обрыв и поломку выводов под воздействием механических нагрузок.
Формовку круглых или ленточных выводов элементов производят с помощью ручного монтажного инструмента либо специальных полуавтоматических устройств таким образом, чтобы исключались механические нагрузки на места крепления выводов к корпусу. При формовке выводов не допускается их механическое повреждение, нарушение защитного покрытия, изгиб в местах соединения вывода и корпуса, скручивание относительно оси корпусов, растрескивание стеклянных изоляторов и пластмассовых корпусов.
Несоблюдение данных рекомендаций может привести к образованию избыточных напряжений в месте крепления вывода к корпусу ЭК и в области изгиба вывода и, как следствие, появлению в этих местах трещин и, возможно, обрывов, в особенности при механических воздействиях на собранный узел. Не допускается изгибать жесткие выводы (лепестки) транзисторов и диодов средней и большой мощности, так как это может привести к растрескиванию их стеклянных изоляторов и нарушению герметичности корпусов.
Расстояние от корпуса до места пайки должно быть не менее 2,5 мм, если не приняты меры к дополнительному теплоотводу в процессе пайки.
Не осуществляют формовку, подгибку и обрезку при установке многовыводных ЭК (ИС в DIP-корпусе и пр.). Для них может проводиться исключительно рихтовка (выравнивание) выводов, если в этом есть необходимость.
Существуют автоматические счетчики выводных компонентов, вклеенных в ленту (до 100 ЭК/с).
печатный плата вывод пайка
Установка ТНТ-компонентов осуществляется с применением специальных монтажных автоматов, автоматизированных рабочих мест (АРМ) либо полностью вручную.
Существует два основных вида автоматизированного оборудования по критерию выполняемых функций:
Многие монтажные автоматы одновременно обладают функцией секвенсеров, т.е. могут работать непосредственно из первичных лент без необходимости подготовки программной ленты.
Ряд автоматов обладает способностью устанавливать на ПП проволочные перемычки (jumpers), нарезая их непосредственно перед монтажом из непрерывного прутка.
Паспортная производительность современного монтажного оборудования достигает 20000-40000 ЭК/час при уровне ошибок монтажа 100-200 ppm (для простых ЭК). Производительность при монтаже ЭК сложной формы может быть меньше на порядок. Основными параметрами оборудования, помимо перечисленных выше, являются геометрические характеристики ЭК и ПП, которые подлежат установке:
диапазон либо дискретный набор расстояний между выводами (рядами выводов);
диапазон диаметров выводов;
диапазон габаритных размеров ПП.
Для оснащения автоматов монтажа THT-компонентов используются загрузочные устройства (питатели) следующих основных типов (рис. 13):
вибробункерные для подачи различных ЭК из россыпи с возможностью их одновременной ориентации перед захватом;
Ряд моделей оборудования оснащается питателями с микропроцессорным управлением, а также устройствами их автоматической смены.
Ручная и полуавтоматическая установка компонентов
Существуют следующие варианты установки ЭК:
С зазором (вариант II по ОСТ4 010.030-81). При таком способе установки легче осуществить отмывку собранных узлов от остатков флюса, меньше перегрев ИС при пайке. Печатные проводники могут располагаться в этом случае под навесным элементом. При определенных условиях (при определенных спектрах воздействия) улучшается стойкость к вибро- и ударным воздействиям, передающимся по плате, поскольку воздействие демпфируется выводами. Тем не менее, увеличивается высота узла, меньше его устойчивость к прямым механическим воздействиям. Возможен отрыв КП от односторонней ПП при приложении значительного давления к ЭК сверху.
Вертикальная установка ЭК (вариант III по ОСТ4 010.030-81) с осевыми выводами увеличивает плотность компоновки, однако снижает технологичность, повышает вероятность взаимного замыкания выводов, увеличивает высоту узла и делает внешний вид неопрятным. При этом необходимо, чтобы угол наклона ЭК относительно вертикальной оси не превышал 15°.
Типы установки компонентов регламентируется отраслевыми стандартами, например ОСТ4 010.030-81, и стандартами предприятия. Хотя требования отраслевых стандартов не являются в настоящее время обязательными, их часто применяют в качестве рекомендации и исходных документов.
Устанавливать ЭК следует таким образом, чтобы были различимы элементы их маркировки, в особенности касающиеся полярности, для обеспечения последующего контроля правильности монтажа.
Монтаж компонентов можно проводить, устанавливая по одному ЭК и далее осуществляя пайку путем поворота ПП, однако более технологичным является способ, когда ПП в процессе монтажа имеет жесткую фиксацию. Для закрепления печатных плат и их поворота в процессе монтажа применяют специальные приспособления. Существуют держатели ПП (рис. 6), снабженные подпружиненным фиксатором платы, обеспечивающие возможность ее закрепления в горизонтальной, вертикальной, а также повернутой вокруг одной или двух осей плоскости, антистатическую защиту при монтаже и пайке. Процесс ручной пайки ЭК рассмотрен ниже.
В рамках THT-технологии преимущественно применяются три метода пайки: пайка волной, селективная и ручная.
Пайка волной припоя
В процессе пайки ПП устанавливаются на конвейер и последовательно проходят несколько рабочих зон паяльной установки: зону флюсования, предварительного нагрева, пайки.
Особое влияние на процесс пайки оказывают следующие параметры:
угол наклона конвейера;
скорость движения конвейера;
тип применяемого флюса и его плотность;
толщина слоя флюса и равномерность его нанесения;
температура и скорость предварительного нагрева;
тип применяемого припоя и степень его чистоты (отсутствие примесей);
форма, высота и стабильность волны припоя;
атмосфера при пайке и степень ее чистоты.
Флюс удаляет оксидные пленки с паяемых поверхностей, улучшает смачивающую способность припоя и предотвращает окисление до начала пайки. Применяются флюсы на водной и канифольной основе, в том числе не требующие отмывки, а также водосмываемые флюсы. Флюсование осуществляется одним из двух основных способов: распылением и с помощью пенообразователя. Многие установки пайки волной имеют возможность оснащения флюсователями обоих типов.
Распыление флюса осуществляется, например, при помощи вращающегося сетчатого барабана, где поток сжатого воздуха, пропущенный через его сетку, создает мелкодисперсную струю жидкого флюса. Существуют конструкции флюсователей, где флюс предварительно переходит в мелкодисперсное состояние на рабочей поверхности ультразвуковой форсунки, а затем распыляется потоком сжатого воздуха. Слой наносимого флюса должен быть равномерным и иметь толщину 1-10 мкм в сухом состоянии. Производится подбор оптимального давления при распылении, а также контроль плотности флюса. Метод распыления обладает рядом преимуществ по сравнению с пенообразованием, в частности, он более экономичен, а также позволят точнее контролировать толщину флюса.
Зона флюсования оканчивается устройством «воздушного ножа», служащим для удаления избытка флюса с поверхности ПП.
Предварительный нагрев служит для предотвращения теплового удара ПП и ЭК в результате контакта с волной горячего припоя, сушки (удаления растворителя) и активации флюса. Нагрев осуществляется ИК-модулями с различной длиной волны, кварцевыми нагревателями и конвекционными системами (последние особенно эффективны в случае наличия на ПП ЭК, обладающих большой теплоемкостью).
Далее конвейер с ПП проходит непосредственно зону пайки, где в ванне с помощью помпы формируется волна расплавленного припоя. Платы устанавливаются либо на пальчики (лепестки) конвейера, как правило, выполненные из титана, либо крепятся в паллетах. Конвейер обладает возможностью регулировки скорости движения (0-2 м/мин) и угла наклона ПП по отношению к волне (5-9°), что важно для обеспечения стекания избыточного количества припоя. Форма волны припоя может быть различной, в зависимости от применяемой модели оборудования. Изначально использовалась симметричная волна, но впоследствии произошел переход к несимметричным (T-образная, Z-образная, W-волна и пр.), обеспечивающим лучшие результаты с точки зрения качества паяных соединений (рис. 15а). Производители ЭК в своих рекомендациях указывают параметры профиля пайки волной, которые включают в себя температуру и скорость предварительного нагрева, скорость подъема температуры при воздействии волны, максимальную температуру, которой подвергается ЭК во время пайки и время выдержки при ней, а также максимально допустимую скорость охлаждения ПП.
Подобно зоне предварительного нагрева, зона пайки также оканчивается «воздушным ножом», удаляющим излишки припоя и разрушающим перемычки.
Ручная пайка предварительно установленных THT-компонентов проводится с применением аналоговых и цифровых паяльных станций.
Подготовленные поверхности покрывают флюсом непосредственно перед пайкой. Механизм действия флюса заключается в том, что окисные пленки металла и припоя под действием флюса растворяются, разрыхляются и всплывают на его поверхности. Вокруг очищенного металла образуется защитный слой флюса, препятствующий возникновению окисных пленок. Жидкий припой замещает флюс и взаимодействует с основным металлом. Слой припоя постепенно увеличивается и при прекращении нагрева затвердевает.
При проведении процесса пайки крайне важно выдерживать необходимую температуру. Пониженная температура приводит к недостаточной жидкотекучести припоя и плохому смачиванию соединяемых поверхностей. Значительное увеличение температуры вызывает обугливание флюса до активации им поверхностей спая. Следует отметить, что температура жала паяльника, выставленная на паяльной станции, всегда выше реальной температуры пайки, что обусловлено теплоемкостью элементов, участвующих в образовании паяного соединения (сам компонент и его выводы, ПП и элементы проводящего рисунка). Подбор температуры осуществляется в зависимости от применяемого припоя, типа и размера корпуса компонента, материала и топологии ПП.
Важными характеристиками паяльной станции являются:
быстрый нагрев жала до рабочей температуры;
точный контроль температуры жала с максимальной частотой (вследствие конструктивных особенностей сочленения нагревателя и жала, расположения термопар и других причин заданная температура жала может отличаться от реальной);
автоматическая калибровка станции при смене жала либо паяльника;
Такими возможностями обладают преимущественно цифровые паяльные станции, которые обеспечивают более точное задание, поддержание и управление температурой паяльника по сравнению с аналоговыми, а также позволяют подключать к станции несколько инструментов.
Типовая последовательность пайки установленных в отверстия компонентов следующая:
очистка жала паяльника (если необходимо), его облуживание;
установка температуры жала паяльника на станции;
выдержка, в процессе которой происходит нагрев жала паяльника до требуемой температуры;
подача прутка припоя к паяному соединению с образованием связи между выводом и КП (не следует подавать припой непосредственно на жало паяльника во избежание преждевременного выгорания флюса);
охват припоем вывода по кругу на 360°;
одновременный отвод прутка припоя и жала паяльника (по направлению вверх вдоль вывода ЭК для образования галтели правильной формы).
Процесс пайки одного соединения должен быть по возможности кратковременным во избежание перегрева ЭК и отслаивания КП, его общее составляет от 0,5 до 2 секунд. При пайке необходимо следить за тем, чтобы паяльник даже на короткое время не прикасался к корпусу ЭК, и чтобы на него не попадали капли припоя и флюса. После работы жало паяльника необходимо облудить для увеличения срока его службы.
Существуют паяльники с одновременной подачей прутка припоя (пайка одной рукой, вторая может использоваться для удержания ЭК и/или ПП), а также станции автоматической непрерывной либо дискретной подачи припоя в точку пайки.
Для готового паяного соединения должны обеспечиваться требования по:
минимальному углу охвата вывода смачивающим его припоем со стороны пайки (270-330°);
минимальному проценту заполнения площади КП оплавленным припоем со стороны пайки (75%);
минимальному заполнению отверстия припоем по высоте (50-100% в зависимости от класса изделия).
Селективная пайка представляет собой процесс избирательной пайки отдельных ЭК на ПП с отсутствием воздействия на остальные установленные компоненты, и выполняется, как правило, миниволной припоя. Развиваются также системы селективной пайки лазером и горячим газом.
Процесс пайки миниволной припоя во многом схож с обычной пайкой волной, с тем существенным отличием, что происходит пайка не всей ПП, а только отдельных ЭК на ней. Конвейерная система и модуль предварительного нагрева аналогичен по конструкции применяемому в пайке волной припоя. Флюсователи применяются как распылительного, так и точечного типа с одной или несколькими форсунками. Флюс избирательно и точно наносится в точку пайки флюсующей головкой, перемещаемой сервоприводом. Применяются также модули флюсования окунанием со специальными адаптерами, когда необходимо осуществить флюсование отдельных областей ПП. Волна в ванне с припоем, которая также имеет сервопривод перемещения (в некоторых моделях оборудования перемещается ПП), создается сменными соплами-волнообразователями. Существуют также системы селективной пайки с несколькими волнообразователями, выполненными в виде сменной оснастки для конкретного изделия. Такие системы обладают большей производительностью, но значительно меньшей гибкостью. Пайка может производиться в инертной (азотной) среде, чем достигается отсутствие окисления миниволны припоя. Уровень миниволны измеряется бесконтактными способами.
Селективная пайка имеет ряд существенных достоинств по сравнению с ручной и волновой пайкой:
снижение расхода технологических материалов (флюс, припой, инертный газ) и электроэнергии;
сокращение времени производственного цикла и числа сотрудников на участке ручной пайки;
исключение необходимости отмывки;
возможность пайки разных ЭК на ПП различными припоями на одной установке за один цикл;
уход от человеческого фактора, повторяемость параметров процесса на всей партии.
Эти достоинства обуславливают все более частый отход производителей от пайки волной и ручной пайки, и применение ими пайки оплавлением для SMD-компонентов и селективной пайки для штырьковых ЭК.
Технологический процесс представляет собой сложный комплекс действий исполнителей и оборудования по преобразованию исходных материалов и комплектующих элементов в готовое изделие. Он состоит из комплекса частных технологических процессов изготовления входящих в них узлов, деталей и технологических процессов сборки, монтажа, регулировки и испытаний. Технологические процессы изготовления конкретной аппаратуры базируются на типовых технологических процессах.
К типовым технологическим процессам относятся:
1) входной контроль комплектующих;
2) технологическая тренировка комплектующих и узлов;
4) электрический монтаж;
5) технический контроль монтажа и сборки;
6) защита изделия от влияния внешней среды;
7) технологическая тренировка изделия;
8) регулировка (настройка) изделия;
9) испытания изделия;
10) выходной контроль.
Таким образом, технологический процесс изготовления блока, субблока или функционального узла представляет собой, как правило, комплексный процесс, правильное построение которого возможно лишь на основе его предварительного проектирования, часто с применением математического моделирования.
Основными документами при разработке технологических процессов являются технологические карты. В картах указываются структура технологического процесса и его содержание, последовательность выполнения операций, режимы, применяемое оборудование, технологическая оснастка, порядок монтажа, методы регулировки, контроля и т.п.
Технологические процессы состоят из отдельных операций.
Как правило, технологический процесс делят на операции, а операции на переходы.
В данной курсовой работе были рассмотрены существующие технологии поверхностного монтажа. Особое значение было уделено технологии монтажа в отверстия. Описаны различные способы установки компонентов и их пайки. Технология установки THT-компонентов относительно проста, хорошо отработана, допускает ручные и автоматизированные методы сборки, хорошо обеспечена сборочным оборудованием и технологическим оснащением.
2. Технология изготовления печатных плат / http://en.radioland.net
Подобные документы
Современное состояние техники поверхностного монтажа. Возможные варианты, технологические операции и среды сборки и монтажа ячеек ЭУ, порядок и правила их подготовки и проведения. Критерии выбора флюса, клея, припоя, очистителя, защитных покрытий.
курсовая работа [2,1 M], добавлен 26.01.2011
Разработка технологии сборки и монтажа формирователей усилителя низкой частоты. Анализ маршрутной технологии, обоснования технологического оборудования, выбора оптимального варианта технологического процесса. Проектирование участка сборки и монтажа.
курсовая работа [172,8 K], добавлен 19.06.2010
Технологический процесс (ТП) как основа производственного процесса. Разработка ТП сборки и монтажа формирователей усилителя низкой частоты. Анализ конструкции изделия. Проектирование участка сборки и монтажа, оснастка для сборочно-монтажных работ.
курсовая работа [342,8 K], добавлен 21.06.2010
Разработка комплекта технологической документации на изготовление стробоскопа: анализ технологичности конструкции изделия, составление технологической схемы сборки изделия. Проведение анализа вариантов маршрутной технологии сборки и монтажа детали.
курсовая работа [3,8 M], добавлен 14.10.2010
Описание электрических и эксплуатационных характеристик ваттметра, его устройства, назначения и принципа действия. Определение требований к типу и условиям производства прибора. Разработка конструктивной и технологической схем сборки и монтажа изделия.
курсовая работа [60,0 K], добавлен 10.01.2011
Введение эвтектического сплава в качестве припоя между соединяемыми поверхностями кристалла и корпуса. Эвтектические сплавы: золото-германий или золото-кремний. Монтаж с использованием клеев и компаундов при изготовлении полупроводниковых приборов.
реферат [1,0 M], добавлен 09.01.2009
Составление описания схемы электрической принципиальной. Характеристика требований к проектированию печатной платы, к формовке выводов, лужению и пайке. Определение электрических параметров печатных проводников, технологичности и надежности конструкции.
курсовая работа [244,3 K], добавлен 16.06.2011
Типы оборудования и компоновка аудиосистемы. Классификация оборудования и выбор схемы установки компонентов. Установка компонентов. Подключение и настройка усилителей. Установка музыкальных компонентов. Экономические затраты. Требования безопасности.
курсовая работа [164,0 K], добавлен 29.10.2008
Проведение испытания на способность к пайке. Испытание на теплостойкость при пайке. Испытание прочности выводов и их креплений. Испытание выводных концов на воздействие растягивающей силы. Испытание гибких проволочных выводов на скручивание и изгиб.
реферат [347,0 K], добавлен 25.01.2009
Разработка технологических процессов соответственно к единой системе подготовки производства измерителя p1э транзисторов. Анализ типа, условий и годовой программы выпуска. Маршрут конструкторской схемы сборки, выбор оборудования, оптимизация монтажа.
курсовая работа [135,9 K], добавлен 10.01.2011