для альфа распада несправедливым является утверждение что
Что такое альфа-распад?
Британский физик Эрнест Резерфорд впервые описал альфа-частицу в 1899 году. Он также различал и называл альфа-и бета-излучение. Однако только в 1928 году Джордж Гамов решил теорию альфа-распада с помощью квантового туннелирования.
В этой обзорной статье мы объяснили, почему происходит альфа-распад, что на самом деле происходит в этом процессе, каковы его первичные источники и имеет ли он какие-либо неблагоприятные последствия. Но давайте начнем с основ.
Что такое альфа-распад?
Поскольку альфа-частица содержит массу в четыре единицы и два положительных заряда, ее выброс из ядра приводит к образованию дочернего ядра с массой на четыре единицы меньше и атомным номером на две единицы меньше (чем у ее родительского ядра).
Уравнение
В ядерной физике формула или уравнение альфа-распада могут быть записаны как:
В ядерном уравнении альфа-частица обычно показывается без учета заряда (однако, она содержит заряд +2e).
Альфа-распад происходит только в тяжелых нуклидах. Теоретические расчеты показывают, что этот тип распада может происходить в ядрах, немного более тяжелых, чем никель (атомное число 28). В реальном мире, однако, он был обнаружен только в нуклидах, значительно более тяжелых, чем никель.
Теллур (атомное число 52) является самым легким элементом, чьи изотопы (от 104 Те до 109 Те), как известно, претерпевают альфа-распад. Однако есть некоторые исключительные случаи, такие как изотоп бериллия ( 8 Be), который распадается на две альфа-частицы.
Примеры
Наиболее популярным примером такого рода ядерной трансмутации является распад урана. Уран-238 (самый распространенный изотоп урана, встречающийся в природе) распадается с образованием тория-234.
Как видите, сумма индексов (масс и атомных номеров) остается одинаковой с каждой стороны уравнения.
Торий также становится радием
Нептуний превращается в протактиний
Платина становится Осмием
Гадолиний становится самарием
Итак, три вещи происходят в альфа-распаде:
1. Тяжелое (родительское) ядро распадается на две части.
2. Альфа-частица выбрасывается в пространство.
3. У оставшегося (дочернего) ядра его массовое число уменьшено на четыре, а его атомное число уменьшено на два.
Почему происходит альфа-распад?
Однако, когда общая разрушительная электромагнитная сила преодолевает ядерную, атомное ядро распадается на две или более частей. Исследования показывают, что ядро, содержащее более 209 нуклонов, настолько велико, что электромагнитное отталкивание между его протонами часто побеждает притягивающую ядерную силу, удерживающую его.
Это происходит потому, что сила ядерной силы быстро падает за пределы одного фемтометра, в то время как электромагнитная сила сохраняет такую же силу на больших расстояниях.
Классическая физика не позволяет альфа-частицам избегать сильных ядерных сил внутри ядра. Квантовая механика, однако, позволяет альфа-частицам убегать через квантовое туннелирование, даже если они не обладают достаточной энергией для преодоления ядерной силы.
Основной источник альфа-распада
Альфа-частицы в основном испускаются более тяжелыми атомами (атомный номер> 106), такими как торий, уран, радий и актиний. Фактически, почти 99 процентов гелия, генерируемого на Земле, происходит от альфа-распада подземных минералов, состоящих из тория или урана.
Некоторые искусственные изотопы испускают альфа-частицы: например, радиоизотопы кюрия, америция и плутония. Они создаются в ядерном реакторе путем поглощения нейтронов различными изотопами урана.
Высокоэнергетические ядра гелия также могут быть искусственно созданы ускорителями частиц, такими как синхротрон и циклотроны. Однако их обычно не называют альфа-частицами.
Это опасно?
Как правило, выброшенные альфа-частицы имеют кинетическую энергию 5 Мегаэлектронвольт, и они движутся со скоростью почти 5 процентов скорости света. Поскольку они несут + 2e электрический заряд и имеют большую массу, они могут легко взаимодействовать с другими атомами и терять свою энергию.
Хотя альфа-распад является сильно ионизирующим излучением частиц, он имеет низкую глубину проникновения. Движение вперед альфа-частиц может быть остановлено куском бумаги, толстым слоем воздуха или внешними слоями кожи человека.
Уровень проникновения альфа, бета и гамма частиц
Они не опасны для жизни, если источник не вдыхается, не проглатывается и не вводится. Если радиоактивное вещество, разлагающее альфа-частицу, попадает в организм, оно может быть в 20 раз опаснее гамма-излучения. Большие дозы могут привести к радиационному отравлению. Полоний-210, сильный альфа-излучатель, играет ключевую роль при раке мочевого пузыря и легких.
Хотя альфа-частицы не могут проникнуть сквозь кожу человека, они могут повредить роговицу. Некоторые альфа-источники также сопровождаются бета-излучающими ядрами, которые, в свою очередь, сопровождаются испусканием гамма-фотонов.
Радон является одним из крупнейших источников дозы облучения населения. При вдыхании некоторые его частицы прикрепляются к внутренней оболочке легкого и в конечном итоге повреждают клетки в ткани легкого.
Применения
Принцип работы детектора дыма
Радиоактивные источники альфа-частиц используются в детекторах дыма. Америций-241, например, выделяет альфа-частицы, которые ионизируют воздух внутри детектора. Когда дым попадает в оборудование, он поглощает излучение, вызывая тревогу.
Альфа-частицы из полония-210 используются для устранения статического электричества из оборудования. Альфа-частицы притягивают свободные электроны, уменьшая потенциал местного статического электричества. Этот метод широко применяется на бумажных фабриках.
Рентгеновская спектроскопия альфа-частиц используется для определения состава пород и грунтов. НАСА использовало этот процесс на Марсовом разведывательном ровере для сбора криволинейных данных, данных о погоде и активности воды на Марсе.
Гранула из 238 PuO 2, используемая в РТГ для космических миссий. Пеллета светится красным цветом из-за тепла, генерируемого альфа-распадом | Изображение предоставлено: Викимедиа
Космические агентства используют радиоизотопные термоэлектрические генераторы (РТГ) для питания различных космических аппаратов и спутников, включая «Вояджер 1/2» и «Пионер 10/11». Эти генераторы используют плутоний-238 для работы в качестве долговременной батареи. Плутоний-238 испускает альфа-излучение, в результате чего образуется тепло, которое преобразуется в электричество.
В настоящее время ученые работают над тем, чтобы использовать разрушительные источники альфа-излучения для лечения рака. Они пытаются направить небольшое количество альфа-частиц в опухолевые клетки. Поскольку эти частицы имеют небольшую глубину проникновения, они могут остановить рост опухоли или, возможно, уничтожить ее, не затрагивая окружающие здоровые ткани. Этот вид лечения известен как негерметичная лучевая терапия.
Альфа-распад: что это такое и что происходит в процессе альфа-распада
Содержание:
Квантовая физика – наиболее непонятный для человеческого сознания раздел науки о законах природы. Микромир абсолютно не такой, как окружающий, его элементы ведут себя иначе, процессы в них протекают на порядки быстрее. Атомные ядра одних химических элементов могут существовать сколь угодно долго, других – самопроизвольно превращаются в ядра иных элементов. Этот процесс называется радиоактивностью.
Понятие радиоактивности
В зависимости от типа излучаемых частиц различают несколько видов изменения состава ядер: альфа, бета, гамма.
Альфа-распад – это процесс самопроизвольного разложения ядра на ядро-продукт (дочернее) и альфа-частицу, представленную гелием 24He. Изначально предполагалось, что нестабильными являются только атомные ядра элементов, массовое число которых выше 140. Позже эксперименты показали, что испусканию α-частиц (нестабильны) подвержены химические элементы, порядковый номер которых не менее 83 – висмут. Это не значит, что все расположенные за свинцом (номер 82) элементы опасны для живых организмов.
В тяжёлых ядрах находятся частицы с положительным зарядом, сформированные парой протонов и нейтронов – гелий 4. Они более подвержены воздействию сил Кулона, чем единичный протон, меньше притягиваются к ядерным нуклонам. Образовавшись, альфа-частица с определённой вероятностью отталкивается от потенциального барьера, но может и преодолеть его. Со снижением потенциала пары протоны-нейтроны её проницательная способность падает по экспоненте. Отсюда следует, что нестабильные ядра с малой энергией α-частиц обладают большим временем жизни. Она вычисляется по формуле:
где e – число Эйлера или основание натурального логарифма.
Формула альфа-распада
Скорость, с которой пара протоны-нейтроны преодолевает потенциальный барьер, у неодима достигает 9 400 км/с, для полония – 23 700 км/с. Формула альфа-распада следующая:
ZAX > Z-2A-4Y+24He, где:
При α-распаде массовое число ядра снижается на четыре, а заряд – на два – радиоактивный элемент понижается в периодической системе на два номера. Например, борий (107) распадается на гелий и дубиний (107). Изначально испускаемые изотопами ядра альфа-частицы имеют одинаковую кинетическую энергию или два-три её значения.
Для альфа распада несправедливым является утверждение что
Известно свыше 300 альфа-активных ядер, большинство из которых получено искусственно. Подавляющее большинство последних сосредоточено в области транссвинцовых ядер с Z>82. Имеется группа альфа-активных ядер в области редкоземельных элементов (А=140-160), а также небольшая группа в промежутке между редкоземельными и тяжелыми ядрами (рис. 1). В ядерных реакциях с тяжелыми ионами синтезированы несколько альфа-излучающих нейтронно-дефицитных ядер с А
110. Наблюдаемые времена жизни альфа-активных ядер лежат в пределах от 10 17 лет ( 204 Pb ) до с( 212 Po ). Кинетические энергии альфа-частиц изменяются от 1,83 МэВ ( 144 Nd ) до 11,65 МэВ (изомер 212m Po). Пробег альфа-частицы с типичной энергией
=6 МэВ составляет
5 см в воздухе при нормальных условиях и
0,1%. В табл. 1 приведены энергии альфа-частиц некоторых альфа-излучателей, используемых в качестве стандартов.
Табл. 1. | |
Источник | Энергия, кэВ |
226 Ra | 4781,8 |
210 Po | 5304,5 |
212 Bi | 6049,6 |
214 Po | 7688,4 |
212 Po | 8785,0 |
Соотношение (5) лучше всего описывает переходы между основными состояниями четно-четных ядер (рис. 3). Для нечетных ядер и переходов в возбужденные состояния периоды полураспада оказываются во многих случаях в 100-1000 раз большими при одинаковой энергии альфа-распада. Отношение истинного периода полураспада к вычисленному по формуле (5) для четно-четного ядра называется фактором замедления.
Табл. 2. | ||
Z+2 (атомный номер излучателя) | AZ | BZ |
84 | 129,35 | -49,9229 |
86 | 137,46 | -52,4597 |
88 | 139,17 | -52,1476 |
90 | 144,19 | -53,2644 |
92 | 147,49 | -53,65 |
94 | 146,23 | -52,0899 |
96 | 152,44 | -53,6825 |
98 | 152,86 | -52,9506 |
Классификация альфа-переходов основывается на структурных факторах, связанных с вероятностью образования альфа-частицы. Альфа-распад идет на 2-4 порядка быстрее, когда альфа-частица образуется из нейтронных и протонных пар, по сравнению с распадом, когда альфа-частица образуется из неспаренных нуклонов. В первом случае альфа-распад называется благоприятным, и такими оказываются все альфа-переходы между основными состояниями четно-четных ядер. Во втором случае альфа-распад называется неблагоприятным.
Для альфа распада несправедливым является утверждение что
В результате нескольких α— и β-распадов ядро урана U превращается в ядро свинца
Pb. Определите количество α-распадов и количество β-распадов в этой реакции.
Количество α-распадов | Количество β-распадов |
Каждый -распад приводит к уменьшению массового числа ядра на 4. Каждый
-распад не изменяет массовое. Следовательно, для того, чтобы определить число
-распадов достаточно проследить изменение массового числа. При превращении ядра
в ядро
массовое число уменьшается на 32. Таким образом, число
-распадов равно
Определим количество -распадов. После восьми
-распадов заряд ядра станет равен
Следовательно, чтобы в результате получилось ядро
необходимо, чтобы произошло еще
-распадов, которые и «подправят» зарядовое число.
альфа частица это гелий(4.2).при 8 альфа распадах заряд ядра уменьшится на 8*2=16,а в задании 92-82=10.объясните.
Вы забываете, что по условию были еще и -распады, они и подправляют значение зарядового числа.
Мне кажется в данном задании правильного ответа нет.
Потому что при восьми альфа распадах остаётся элемент X c массовым числом ядра 206. С этим всё нормально. А вот с зарядом что-то не то. Из 92-16=76. А по условию должно получится 82. При этом получается что распадаться ему до свинца уже не куда. Тогда выходит «бетта припад» что ли? Откуда елемент после 8 альфа распадов возьмёт ещё заряд+6.
Все правильно, заряд подправится за счет бета-распадов. Смотрите комментарий выше.
В результате серии радиоактивных распадов ядро урана превращается в ядро свинца
Какое количество α— и β-распадов оно испытывает при этом?
Количество α-распадов | Количество β-распадов |
---|
При альфа-распаде из ядра вылетает ядро гелия с массой 4 и зарядом 2, в результате чего заряд ядра уменьшается на два, а массовое число на четыре единицы. При бета-распаде из нейтрон в ядре распадается на электрон и протон, в результате чего заряд ядра атома увеличивается на единицу, при этом масса ядра не изменяется.
При превращении ядра урана в ядро свинца масса уменьшается на 238 − 206 = 32 а.е.м. Значит, происходит 32 : 4 = 8 альфа-распадов.
За эти 8 альфа-распадов заряд ядра уменьшается на 2 · 8 = 16, а поскольку при превращении ядра урана в ядро свинца масса заряд уменьшается только на 92 − 82 = 10 зарядов электрона, значит, происходит 16 − 10 = 6 бета-распадов.
Установите соответствие между видами радиоактивного распада и уравнениями, описывающими этот процесс. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
ВИДЫ РАСПАДА | УРАВНЕНИЯ | ||||
ОПИСАНИЕ ЯДЕРНОЙ РЕАКЦИИ | ВИД РАДИОАКТИВНОГО РАСПАДА | ||
ВИДЫ РАСПАДА | УРАВНЕНИЯ |
ВИД РАДИОАКТИВНОГО РАСПАДА | ИЗМЕНЕНИЕ ЗАРЯДОВОГО И МАССОВОГО ЧИСЛА РАСПАДАЮЩЕГОСЯ АТОМНОГО ЯДРА |