для чего барометр на корабле
Раздел 1 Вопрос 4. Использование судовых метеорологических приборов
Для измерения атмосферного давления в открытом море служит барометр, который должен быть на каждом корабле, так как по показаниям барометра можно предвидеть усиление или ослабление ветра, появление или исчезновение облачности, выпадение и прекращение осадков и другие изменения погоды в районе нахождения судна.
Кроме того, наблюдения судов над атмосферным давлением сообщаются в центры сбора гидрометеорологическом информации, где они используются для построения карт распределения атмосферного давления, по которым синоптики составляют прогнозы погоды.
На судах употребляются преимущественно барометры-анероиды и почти не употребляются ртутные барометры.
Для того чтобы устранить погрешности анероида, в его показания каждый раз вводятся три поправки:
1. температурная поправка;
2. добавочная поправка анероида;
Для производства наблюдений по анероиду необходимо:
1) отсчитать и записать температуру по термометру при анероиде, округленную до целых градусов;
2) постучать слегка пальцем по стеклу, чтобы небольшим сотрясением снять трение в передаточном механизме и убедиться, что стрелка свободно двигается;
3) отсчитать показания стрелки с точностью до 0,1 мм (или мб), определяя десятые доли деления на глаз, и записать полученный отсчет анероида. Во избежание ошибок при отсчете надо держать глаз в плоскости, перпендикулярной циферблату и проходящей через ось стрелки;
4) выбрать из аттестата анероида три поправки и записать их с их знаками.
Приведения давления к уровню моря простым прибавлением к исправленному отсчету 0,1 мм на каждый метр возвышения анероида над ватерлинией во время наблюдений.
Барограф служит для непрерывного наблюдения за всеми изменениями атмосферного давления. Барограф дает непрерывную запись изменений давления. Воспринимающей частью прибора служит система из нескольких навинченных последовательно друг на друга небольших круглых коробок, подобных металлической коробке анероида, из которых выкачан воздух.
Барографы бывают недельные и суточные. Ленты для них различные. Часовой механизм барографов нужно заводить всегда два раза в неделю – в среду и субботу.
Температура и влажность воздуха на судне измеряются аспирационным психрометром большой модели.
Прибор хранится в своем футляре. Для предохранения механизма вентилятора от пыли и влаги заводной ключ должен оставаться вставленным в отверстие на колпаке аспиратора в течение всего времени эксплуатации прибора.
Для наблюдений прибор выносится из рубки на мостик за 10 – 15 минут до срока наблюдений. За 4 минуты до срока в психрометре смачивается батист и заводится аспиратор. Для смачивания, ослабив зажим на резиновой груше, сдавливают грушу, пока вода не поднимется в пипетке до имеющейся на ней черты (но не более); затем закрепляют зажим, закрепляя тем самым и уровень воды в пипетке, и осторожно снизу вводят пипетку до отказа во внутреннюю трубку, в которой помещен обтянутый батистом резервуар правого термометра. Продержав пипетку 5 – 10 секунд, ослабляют зажим, вследствие чего вода выходит из пипетки обратно в грушу; вместе с тем с поверхности батиста удаляется излишек воды; после этого пипетку вынимают из защитной трубки.
Не следует поднимать воду в пипетке выше черты на пипетке. Смочив батист, осторожно заводят вентилятор, не доводя завод до отказа на один оборот ключа, чтобы не оборвать пружину.
Наблюдения производят на крыле мостика, обязательно с наветренной стороны. Сразу же после смачивания батиста и завода вентилятора психрометр подвешивают к откидному кронштейну или штанге и выводят за борт.
Отсчеты обоих термометров, исправленные их поправками, записывают в книжку наблюдений.
Из наблюдений с психрометром определяют не только температуру воздуха, но также его абсолютную и относительную влажность. По Психрометрическим таблицам определяется точка росы.
Для измерения скорости ветра на судах применяется ручной анемометр.
Измерения производятся следующим образом.
1. Не вынимая анемометр из футляра, надо записать отсчет, показываемый стрелками на циферблате перед началом наблюдений (начальный отсчет) в виде четырехзначного числа.
2. Записав начальный отсчет, вынимают анемометр из футляра и становятся с наветренной стороны верхнего мостика так, чтобы надстройки на судне как можно меньше искажали ветер. Поднимают анемометр, держа его над головой в вытянутой правой руке за коробку счетчика осью вертикально. В другой руке держат часы с секундной стрелкой или секундомер. В таком положении держат прибор 100 секунд, после чего прибор сразу же укладывается в футляр. Время выдержки прибора записывается.
3. Уложив прибор в футляр, не закрывая крышки футляра записывают новое показание стрелок на счетчике анемометра. Затем вычитают из второго отсчета первоначальный и результат делят на число секунд; получают число делений в секунду.
4. В свидетельстве прибора в графе «Число делений в одну секунду» находят то число, которое ближе всего подходит к частному, полученному после деления разности отсчетов на время. Сравнивая его со стоящим рядом числом в графе «Скорость», можно видеть, какую поправку следуют прибавить (или вычесть) к полученному числу делений в секундах, чтобы получить скорость ветра в метрах в секунду.
Круг СМО (практически не используется на судах торгового флота)
· Для расчета истинного направления и скорости ветра необходимо знать направление и скорость кажущегося ветра, а так же наличия круга СМО.
поворачивают верхний прозрачный круг так, чтобы румб или градусное деление, соответствующее наблюдаемому на судне направлению ветра, пришлось у стрелки-указателя.
· от центра круга откладывают по направлению к стрелке-указателю в произвольном масштабе расстояние, соответствующее измеренной скорости ветра и на конце этого вектора ставят точку В
· поворачивают верхний прозрачный круг так, чтобы у стрелки-указателя находилось деление, отвечающее истинному курсу судна во время наблюдение за ветром
· аналогично пункту 2, в конце вектора ставят точку К (узлы необходимо перевести в м/с умножив на 0,51)
· поворачивают прозрачный круг так, чтобы точки К и В оказались на одной линии, параллельной вертикальному диаметру нижнего круга (точка В ниже точки К)
· отсчитывают градусное деление у стрелки, и измеряют расстояние между точками К и В. Отсчитанное градусное деление даёт направление истинного ветра, а расстояние ВК – скорость ветра (в м/с).
Графический способ
На бумаге проводят окружность радиусом 10-20 см.; по окружности круга с помощью транспортира проводят деления через каждые 10 град.
По радиусу, имеющему направление истинного курса, от центра О откладывают в выбранном масштабе отрезок равный скорости хода судна, и на конце ставят точку К.
Затем от точки О по радиусу, имеющему направление наблюдавшегося ветра, откладывают в том же масштабе измеренную скорость ветра и на конце ставят точку В.
Точку К и В соединяют, а из точки О проводят прямую ОД, равную и параллельную КВ, так чтобы по точкам ОКД и В можно было построить параллелограмм, для которого ОВ было бы диагональю.
Отрезок ОД, будучи продолженным до окружности с делениями, укажет направление истинного ветра в градусах, а длина этого отрезка укажет в принятом масштабе скорость истинного ветра (в м/с).
На судне, где я проходила практику была установлена метеорологическая станция.
Дата добавления: 2019-03-09 ; просмотров: 779 ; Мы поможем в написании вашей работы!
Судовые гидрометеорологические приборы и инструменты
Погодой называется физическое состояние атмосферы в данном месте, в данное время в ограниченном промежутке времени (сутки, месяц, год).
Метеорологическая информация, представляющая фактическое состояние погоды и прогнозы, в том числе и о циклонах имеет решающее значение для обеспечения безопасности мореплавания.
Прогноз погоды делается как на основании показаний судовых приборов, так и информации, передаваемой береговыми метеорологическими службами.
Барограф – прибор, ведущий непрерывную запись атмосферного давления на специальной бумажной ленте-барограмме. Это позволяет судить об изменении атмосферного давления во времени и делать соответствующие прогнозы.
Рис. 18.9. Приборы для измерения атмосферного давления:барометр-анероид и барограф
Для измерения скорости и направления истинного ветра служат анемометр, секундомер и круг СМО (рис. 18.10).
Рис. 18.10. Приборы для определения скорости и направления ветра: 1 – круг СМО, секундомер и анемометр 2 – автоматическая метеостанция
Анемометр служит для измерения средней скорости ветра за определенный промежуток времени. Счетчик анемометра имеет три циферблата: большой, разделенный на сто частей, дающий единицы и десятки делений, и два малых – для счета сотен и тысяч делений.
Перед определением скорости ветра необходимо записать отсчет шкал. Затем встать на верхнем мостике с наветренного борта в таком месте, где ветровой поток не искажается судовыми конструкциями. Держа анемометр в вытянутой руке, одновременно включить его с секундомером.
По истечении 100 секунд анемометр выключить и записать новый отсчет. Найти разность отсчетов и разделить на 100. Полученный результат – скорость ветра, измеренная в метрах в секунду (м/с).
Если судно на ходу, то измеряется кажущее (наблюдаемое) направление и скорость ветра, т. е. результирующая скоростей истинного ветра и судна.
При определении кажущегося направления ветра следует помнить, что ветер всегда «дует в компас».
Для определения истинного направления и скорости ветра на движущемся судне применяется круг СМО (Севастопольская морская обсерватория). Порядок расчета приведен на обратной стороне круга.
На современных судах устанавливаются автоматические метеостанции. На верхнем мостике крепится измерительная аппаратура, на мостик выведены индикаторы, показывающие направление и скорость истинного ветра в данный момент.
Для измерения влажности на судах применяют аспирационный психрометр (рис. 18.11), состоящий из двух термометров, вставленных в металлическую никелированную оправу, сверху которой навинчен аспиратор (вентилятор).
При заведенном аспираторе воздух всасывается снизу через двойные трубки, которыми защищены резервуары термометров. Обтекая резервуары термометров, воздух сообщает им свою температуру.
Правый резервуар обертывают батистом, который при помощи пипетки смачивают за 4 минуты до пуска вентилятора. Измерения производят на крыле мостика с наветренной стороны. Отсчеты снимают сначала с сухого термометра, потом с мокрого.
Влажность воздуха характеризуется содержанием водяного пара в воздухе. Количество водяного пара в граммах, приходящееся на один кубический метр влажного воздуха, называется абсолютной влажностью.
Относительная влажность – отношение количества водяного пара, содержащегося в воздухе, к количеству пара, необходимого для насыщения воздуха при данной температуре, выражается в процентах. При понижении температуры относительная влажность увеличивается, при повышении – уменьшается.
При охлаждении воздуха содержащего водяной пар, до некоторой температуры он окажется настолько насыщенным водяным паром, что дальнейшее охлаждение вызовет конденсацию, т. е. образование влаги, или сублимацию – непосредственное образование кристаллов льда из водяного пара. Температура, при которой содержащийся в воздухе водяной пар достигает насыщения, называется точкой росы.
Для измерения температуры атмосферного воздуха применяется термометр (рис. 18.12).
Рис. 18.11. Аспирационный психрометр
Рис. 18.12. Термометр
Для приема навигационной и метеорологической информации с целью обеспечения безопасности мореплавания разработана мировая служба предупреждений,обеспечивающая передачу навигационных и метеорологических предупреждений по радио всеми морскими странами. Для приема информации на судне используются следующие системы:
NAVTEX − система для приема прибрежных предупреждений;
спутниковая система INMARSAT-С.
Приемники NAVTEX и Инмарсат-С осуществляют круглосуточный автоматический прием сообщений. Кроме этого, на судне принимаются факсимильные карты погоды.
Судовые гидро метеорологические приборы
Прогноз погоды делается как на основании показаний судовых приборов, так и информации, передаваемой береговыми метеорологическими службами.
Барограф – прибор, ведущий непрерывную запись атмосферного давления на специальной бумажной ленте-барограмме. Это позволяет судить об изменении атмосферного давления во времени и делать соответствующие прогнозы.
Рис. 1 Приборы для измерения атмосферного давления: барометр-анероид и барограф
Для измерения скорости и направления истинного ветра служат анемометр, секундомер и круг СМО (рис. 2).
Рис. 2 Приборы для определения скорости и направления ветра: 1 – круг СМО, анемометр и секундомер 2 – автоматическая метеостанция
Анемометр служит для измерения средней скорости ветра за определенный промежуток времени. Счетчик анемометра имеет три циферблата: большой, разделенный на сто частей, дающий единицы и десятки делений, и два малых – для счета сотен и тысяч делений. Перед определением скорости ветра необходимо записать отсчет шкал. Затем встать на верхнем мостике с наветренного борта в таком месте, где ветровой поток не искажается судовыми конструкциями. Держа анемометр в вытянутой руке, одновременно включить его с секундомером. По истечении 100 секунд анемометр выключить и записать новый отсчет. Найти разность отсчетов и разделить на 100. Полученный результат – скорость ветра, измеренная в метрах в секунду (м/с).
Если судно на ходу, то измеряется кажущее (наблюдаемое) направление и скорость ветра, т. е. результирующая скоростей истинного ветра и судна. При определении кажущегося направления ветра следует помнить, что ветер всегда «дует в компас».
Для определения истинного направления и скорости ветра на движущемся судне применяется круг СМО (Севастопольская морская обсерватория). Порядок расчета приведен на обратной стороне круга.
На современных судах устанавливаются автоматические метеостанции. На верхнем мостике крепится измерительная аппаратура, на мостик выведены индикаторы, показывающие направление и скорость истинного ветра в данный момент.
Для измерения влажности на судах применяют аспирационный психрометр (рис. 3), состоящий из двух термометров, вставленных в металлическую никелированную оправу, сверху которой навинчен аспиратор (вентилятор). При заведенном аспираторе воздух всасывается снизу через двойные трубки, которыми защищены резервуары термометров. Обтекая резервуары термометров, воздух сообщает им свою температуру. Правый резервуар обертывают батистом, который при помощи пипетки смачивают за 4 минуты до пуска вентилятора. Измерения производят на крыле мостика с наветренной стороны. Отсчеты снимают сначала с сухого термометра, потом с мокрого.
Влажность воздуха характеризуется содержанием водяного пара в воздухе. Количество водяного пара в граммах, приходящееся на один кубический метр влажного воздуха, называется абсолютной влажностью.
Относительная влажность – отношение количества водяного пара, содержащегося в воздухе, к количеству пара, необходимого для насыщения воздуха при данной температуре, выражается в процентах. При понижении температуры относительная влажность увеличивается, при повышении – уменьшается.
При охлаждении воздуха содержащего водяной пар, до некоторой температуры он окажется настолько насыщенным водяным паром, что дальнейшее охлаждение вызовет конденсацию, т. е. образование влаги, или сублимацию – непосредственное образование кристаллов льда из водяного пара. Температура, при которой содержащийся в воздухе водяной пар достигает насыщения, называется точкой росы.
Для измерения температуры атмосферного воздуха применяется термометр (рис. 4).
Рис. 3 Аспирационный психрометр
Рис. 4 Прибор для измерения температуры воздуха
Чтение факсимильных карт
Сведения о погоде и состоянии моря, необходимые для решения вопроса о выборе курса следования или производстве работ в море, могут быть получены в виде факсимильных передач различных карт. Этот вид гидрометеорологической информации является наиболее информативным. Он характеризуется большим разнообразием, оперативность и наглядностью.
В настоящее время региональные гидрометеорологические центры составляют и передают в эфир большое количество самых разнообразных карт. Ниже приводится список карт, наиболее используемых для нужд мореплавания:
Карты приземного анализа содержат данные о фактической погоде в нижних слоях атмосферы. Барическое поле на этих картах представлено изобарами на уровне моря. Основные приземные карты составляют на 00:00, 06:00, 12:00 и 5:00 часов среднего гринвического времени.
Прогностические карты – это карты ожидающейся синоптической обстановки (12, 24, 36, 48, 72 часов). На приземных прогностических картах, указываются предполагаемые положения центров циклонов и антициклонов, фронтальных разделов, барических полей.
При чтении факсимильных гидрометеорологических карт первоначальную информацию штурман получает из заголовка карты. Заголовок карты содержит следующую информацию:
Тип и район карты характеризуется первыми четырьмя символами, причем первые два характеризуют тип, а последующие два – район карты. Например:
Часто встречаемые сокращения приведены ниже:
Четыре буквенных символа могут сопровождаться 1-2 цифровыми символами, уточняющими тип карты, например FSAS24 – приземный анализ на 24 часа или AUAS70 – надземный анализ для давления 700 гПа.
За типом и районом карты следуют позывные радиостанции, передающей карту (например, JMH – Japan Meteorological and Hydrographic Agency). Во второй строке заголовка указывается дата и время составления карты. Дата и время приведены к Гринвичскому или Всемирному координированному времени. Для обозначения приведенного времени используются сокращения Z (ZULU) и UTC (Universal Coordinated Time) соответственно, например, 240600Z JUN 2007 – 24.06.07 г., 06.00 по Гринвичу.
В третьей и четвертой строках заголовка расшифровывается тип карты и дается дополнительная информация (рис. 5).
Барический рельеф на факсимильных картах представлен изобарами – линиями постоянного давления. На японских картах погоды изобары проведены через 4 гектопаскаля для давлений, кратных 4 (например, 988, 992, 996 гПа). Каждая пятая изобара, т. е. кратная 20 гПа, проведена жирной линией (980, 1000, 1020 гПа). На таких изобарах обычно (но не всегда) подписано давление. В случае необходимости, проводятся также промежуточные изобары через 2 гектопаскаля. Такие изобары проводятся пунктирной линией.
Барические образования на картах погоды Японии представлены циклонами и антициклонами. Циклоны обозначаются буквой L (Low), антициклоны – буквой H (High). Центр барического образования обозначен знаком «х». Рядом указано давление в центре. Стрелка возле барического образования указывает направление и скорость его перемещения.
Рис. 5 Карта приземного анализа погоды для азиатского района
Существуют следующие способы обозначения скорости передвижения барических образований:
Пример комментария к циклону:
В развитии тропический циклон проходит 4 основные стадии:
Направление и скорость перемещения тропического циклона указывается в виде вероятного сектора движения и кругов вероятного положения через 12 и 24 часа. Начиная со стадии TS (тропический шторм), на картах погоды дается текстовый комментарий к тропическому циклону, а, начиная со стадии STS (сильный тропический шторм), тропическому циклону присваивается номер и имя.
Пример комментария к тропическому циклону:
T (тайфун) – стадия развития тропического циклона;
Для указания точности определении координат центра циклона используются следующие обозначения:
На картах погоды также указываются опасные для навигации явления в виде гидрометеорологических предупреждений. Виды гидрометеорологических предупреждений:
Нанесение гидрометеорологических данных на карты погоды производится по определенной схеме, условными знаками и цифрами, вокруг кружка, обозначающего местоположение гидрометеостанции или судна.
Пример информации от гидрометеостанции на карте погоды:
Информация от гидрометеостанции
В центре находится круг, изображающий гидрометеостанцию. Штриховка круга показывает общее количество облаков (N):
ff – скорость ветра, изображается в виде оперения стрелки следующими символами:
При отсутствии ветра (штиль) символ станции изображается двойным кружком.
VV- горизонтальная видимость, показываемая цифрой кода по следующей таблице:
Горизонтальная видимость | |||||||||
---|---|---|---|---|---|---|---|---|---|
Код | VV, км | Код | VV, км | Код | VV, км | Код | VV, км | Код | VV, км |
90 | 50 |
Нашли опечатку? Выделите и нажмите CTRL+Enter
Что такое барометр, как им пользоваться и кто его изобрел?
Какие бывают виды барометров
Барометр изобретен в 1641 году итальянским математиком и физиком Джованни Баттиста Балиани (это была водяная конструкция). Несколько лет спустя, в 1644 году, Эванджелиста Торричелли изобрел первый ртутный барометр.
Основная функция барометра – показывать состояние атмосферного давления. Как происходит этот процесс? Устройство оснащено колонкой, внутри которой находится ртуть. При контакте с силой, действующей со стороны воздуха, ртуть перемещается по градуированной шкале и останавливается на относительном значении, соответствующем давлению.
Технологическая эволюция повлияла на сектор барометров, и теперь лучшие производители предлагают приборы всех типов и размеров, работающие без ртути, которая признана токсичным загрязняющим металлом. Таким образом, ртутные модели стали частью истории, их легче найти в музее, а на рынке зарекомендовали себя аналоговые и цифровые устройства.
Аналоговые или механические безжидкостные конструкции (обычно называемые анероиды) в основе сделаны из металла, используют давление воздуха на пружину, которая, сжимаясь, перемещает ручку-стрелку, указывающую на погодные условия. Им не нужны электронные схемы или батареи для получения результатов. Именно на них сфокусирован настоящий рейтинг.
Но есть новинки, цифровые экземпляры, которые являются самой современной версией этих измерительных устройств. Их особенности: используют встроенные электронные датчики, а показания отображаются на дисплеях. Популярность этих моделей объясняется наличием множества полезных для пользователя опций: часы, будильник, термометр, календарь фаз луны, гигрометр, барометр и т.п. Пара моделей для ознакомления вошла в наш ТОП, хотя эти приборы относятся к категории метеостанций.
Что такое барометр?
Барометром называют прибор, измеряющий атмосферное давление. Над поверхностью Земли расположен слой атмосферы толщиной в несколько десятков километров. Смесь газов, составляющая атмосферу, хотя и отличается небольшим весом, но в таких огромных количествах все же оказывает на земную поверхность определенное давление. Мы не замечаем его, так как наши организмы к нему хорошо приспособлены, однако величину атмосферного давления можно измерить.
Первые измерения давления атмосферы выполнялись с помощью очень простого измерительного прибора – тонкой стеклянной трубки, в которую была залита ртуть. Допустим, толщина трубки – 1 миллиметр, а длина – ровно 1000 миллиметров, или 1 метр.
Если опрокинуть трубку запаянным концом вертикально вверх, а открытым книзу, то часть ртути вытечет, а некоторое количество останется внутри. Ртуть будет вытекать, пока давление внутри трубки и снаружи не уравновесится.
Если измерить высоту столбика ртути в трубке, эту величину можно условно считать величиной давления атмосферы. Для нормальных погодных условий она составляет 760 миллиметров ртутного столба – это и есть показания ртутного барометра. В качестве жидкости, заполняющей трубку, можно использовать воду, спирт и т.д., но общепринятым является использование ртути.
Более удобным и точным в показаниях является так называемый барометр-анероид, или безводный барометр. Измерение давления в нем происходит с помощью запаянной коробки из тонкой жести, из которой откачана часть воздуха.
Под действием атмосферного давления стенки коробки прогибаются и растягивают или сжимают пружину, к другому краю которой прикреплена стрелка. Циферблат показывает, на какую величину изменилось давление атмосферы по сравнению с базовыми показателями.
Особенности барометра, как читать показатели
За точку отсчета на шкале барометра обычно принимают усредненный показатель нормального атм. давл. для ясной обычной погоды — 750 мм. рт. ст., то есть от этой отметки отсчитывают движение вниз или вверх. Отметка может быть другой, она зависит от условий местности, от среднестатистического показателя для конкретной территории, например, такая линия будет иной в горных районах.
Недостаток барометра — невозможно на 100% предвидеть осадки, погоду, время появления, продолжительность. Слишком много факторов влияет на точность, например, температура, влажность, высота местности, рельеф, ветреность. Чем резче и сильнее выше/ниже движется стрелка, тем большая вероятность прогноза и скорость наступления явлений.
На метеостанциях показания барометров уточняются данными со спутников, статистикой, измерителями перечисленных факторов. Другой относительный недостаток: радиус действия барометра ограниченный (приблизительно до 30 км, при циклонах, ураганах может быть больше).
Итак, чем выше подвинется столбик жидкости или стрелка заползет на отметки в сторону увеличения, тем значительные осадки ожидаются: от пасмурной погоды до дождя, шторма, бури. Чем интенсивнее движение, тем быстрее погодные явления. Но это общее правило, ниже мы уточним нюансы.
На шкале заводских изделий есть не только цифры, но и соответствующие надписи (солнечно, туман, дождь, гроза и так далее), их можно скопировать (фото есть в интернете) для самоделок.
Для рыбаков обычно трактовка такая:
Классификация и виды
Практически используются три типа барометров, принцип действия которых по определению атмосферного давления различен:
Кроме того, существуют и самодельные барометры, которые показывают результат, достаточный для практических наблюдений за погодой.
Назначение
Приборы измерения атмосферного давления используются повсеместно в быту, на кораблях, при астрономических наблюдениях, на метеостанциях, в общем, везде, где потребуется ради интереса или в связи с рабочей или иной необходимостью предвидеть погоду, но только на ближайший период (8–12 ч., или на следующий день).
Барометром можно определить высоту возвышенностей (поэтому заводские изделия часто совмещают высотомер), так как давление меняется с высотой. Часто прибор измеряет и относительную влажность (гигрометр).
Принцип действия механизма прибора измерения давления
Анероидный барометр чувствителен к изменениям температуры, поскольку капсула прибора и существующие соединения обладают свойствами расширяться или сжиматься при температурных колебаниях. Кроме того, упругие свойства материала капсулы также изменяются под влиянием температуры.
Существует несколько способов компенсации температурных перемещений компонентов анероидного барометра. Одним из наиболее элегантных решений является использование биметаллической полосы. Биметаллическая полоса состоит из двух плоских кусков металла, изготовленных из различных типов элементов или сплавов, сваренных один с другим.
Упрощённая схема механизма, указывающая на исполнение компенсационную деталь – биметаллическую полосу, в конструкции прибора: 1 – капсула под вакуумом; 2 – биметаллическая полоса; 3 – опорные подшипники; 4 – стрелка указатель
Учитывая предсказуемость изменения температуры биметаллической полосы и капсулы, биметаллическую полосу допустимо использовать для компенсации движений капсулы. По мере изменения температуры, два компонента биметаллической полосы расширяются в разной степени.
Этот фактор заставляет биметаллическую полосу изгибаться относительно компонента с меньшим коэффициентом расширения. Движение изгиба можно использовать для перемещения стрелки индикатора или сжатия вакуумной капсулы барометра для компенсации изменения температуры.
Связь между анероидной капсулой (сильфоном) и разверткой индикатора, по сложности механизма аналогична швейцарским часам. Фактически, качественная барометрическая связь включает массу одинаковых компонентов. Цель этой рычажной связи состоит в том, чтобы передать малое горизонтальное движение расширяющегося сильфона в движение стрелки циферблата. Используется форма рычага в виде качели.
Непосредственно конец качели движется по увеличенной дуге, относительно осевой точки. Благодаря тяге вакуумной капсулы, расположенной рядом с шарниром рычага, похожего на качели, перемещение значительно увеличивается на дальнем конце рычажной системы.
Любая нелинейность движения вакуумной капсулы компенсируется барабаном (улиткой). Барабан (изобретение Леонардо да Винчи) представляет собой шкив, наделённый спиральными зубьями, имеющий форму конуса.
В нулевой точке анероидного барометра конец рычага соединен цепью с серединой барабана. Когда сжимается рабочая капсула, барабан вращается, сдвигая цепь до меньшей длины. Любое незначительное движение цепи вызывает такое же движение стрелки индикатора барометра.
Механический барометр
Такие устройства являются ртутными. Использование механических барометров в быту считается опасным: ртуть является токсичным веществом. В бытовых условиях используют только безжидкостные механические барометры (анероиды), но они отличаются меньшей точностью.
На задней стенке любого механического барометра установлен регулировочный винт. Рекомендуется регулярно настраивать устройство, чтобы оно было более точным.
Спереди находится еще одна стрелка, но она не связана с механизмом. Ее возможно поворачивать только вручную.
Передняя стрелка позволяет следить за колебаниями атмосферного давления в течение нескольких дней
Для фиксирования текущих показаний следует выставлять стрелку на отметку с учетом актуальных данных (их определяет задняя стрелка). Регулярный контроль положения двух стрелок позволяет определять погодные изменения.
Механические барометры бывают настольными и настенными. Обычно их используют в учебных заведениях, офисах.
Ртутный барометр
Ртутный барометр — пара сообщающихся сосудов, внутри — ртуть, верх одной стеклянной трубки, длиной примерно в 90 см, закрыт, там нет воздуха. В зависимости от изменений в давлении ртуть под воздействием воздуха поднимается либо опускается в стеклянной трубке, а небольшой поплавок показывает движение ртутной массы и останавливается на отметке, показывающей её уровень в миллиметрах. Норма – ртуть на отметке 760 мм рт. ст., показания выше этого значения – идет процесс повышения давления, ниже – понижения. Барометры такого типа практически не используются в обычном обиходе, ведь ртуть является опасным ядовитым веществом, конструкция барометра довольно громоздка и требует острожного отношения. Поэтому они широко применяются только в лабораторных условиях, на различных научных метеорологических станциях и в промышленности, там, где важная абсолютная точность передачи данных.
Классический барометр-анероид
Система работы механического барометр-анероида, в котором отсутствует какая-либо жидкость, основан на принципе воздействия давления воздуха на металл. В середине прибора располагается коробка с тонкими гофрированными стенками из металла, под силой действия воздуха стенки сжимаются или разжимаются, рычажок поворачивает стрелку в ту или иную строну. Бывают настенного и настольного типа, очень удобны и практичны в использовании, поэтому их очень часто используют в домашних условия, в офисах и различных учреждениях.
Электронный барометр
Электронный (или цифровой) барометр — современная разновидность данного прибора, линейные показатели обычного барометра-анероида преобразовываются в электронный сигнал, который обрабатывается микропроцессором и выводится на жидкокристаллический экран. Имеет компактные размеры, прост и удобен в использовании, например, для рыбалки, туризма или как дачный вариант.
На данный момент уже существует цифровой вариант барометров, которые встроены как дополнительная функция в мобильное устройство или в часы-барометры.
Атмосферное давление
Атмосферное давление, как правило, изменяется в зависимости от изменений погодных условий. Зачастую давление падает перед ненастной погодой, повышается – перед хорошей. Ведение учета изменения давления позволяет определить перемещение циклонов и направление ветров.
На самочувствие человека, проживающего долгое время в определенной местности, изменение характерного давления зачастую не влияет. В случаях, когда происходят непериодические колебания атмосферного давления, даже у здоровых людей появляется головная боль, падает работоспособность и ощущается тяжесть тела.
Изменение атмосферного давления также влияет на многие технологические процессы. Например, при переработке нефтепродуктов, где давление является одним из основных контролируемых технических параметров; хлебо-булочное производство, где показания давления сильно влияют на влажность полуфабрикатов из теста; в авиационной промышленности это очень важный параметр, оказывающий влияние на сроки и условия эксплуатации.
Давление и погода
Люди и животные не ощущают тяжести атмосферного давления, потому что его уравновешивает давление нашей крови. Но при повышении или понижении кровяного давления люди чувствуют себя плохо — они начинают испытывать либо силу давления собственной крови, либо силу давления атмосферы.
Атмосферное давление тоже не постоянно. В атмосфере образуются циклоны — атмосферные вихри, где давление понижено (до 560 мм рт. ст.), и области повышенного давления (до 816 мм рт. ст.) — антициклоны. Циклоны и антициклоны медленно перемещаются над поверхностью Земли, влияя на самочувствие людей и определяя смену погоды. Циклон низким давлением «притягивает» влагу и вызывает пасмурную погоду, дожди, снегопады. Высокое давление антициклона, напротив, вытесняет из зоны своего воздействия скопление водяных паров и устанавливает ясную сухую погоду. Измерив давление, можно предсказать погоду. Давление измеряют барометром.
Как выбрать
При выборе барометра точность предоставляемой информации имеет решающее значение.
Точность данных тесно связана с качеством и ценой устройства. Это не означает, что бюджетные модели всегда ошибаются, а свидетельствует о том, что самые точные и дорогие устройства предназначены для профессионалов. В течение дня происходит множество мелких колебаний атмосферного давления, отслеживание всех изменений в домашних условиях не требуется каждому пользователю.
Атмосферное давление измеряется в миллиметрах ртутного столба или в гектопаскалях. Необходимо определить, какая система подходит. У гипертоника или рыбака, предпочтения могут различаться.
На что обратить внимание. Цифровые модели отражают множество показаний, в нескольких форматах, могут подключаться к смартфонам. Аналоговые барометры также могут предлагать расширенные возможности. Многие из них, помимо барометра, включают такие инструменты, как термометр и гигрометр, с помощью которых можно сделать точный прогноз общих погодных условий. Перечень функций ограничен, однако некоторым потребителям этого вполне достаточно. Какой лучше купить? Зависит от индивидуальных потребностей. Универсальные рекомендации здесь неуместны. Единственный совет: для первого использования можно купить простой бытовой барометр, а в будущем выбрать полноценную метеостанцию, предоставляющую самую разную информацию.
- Барометр это известный интерьерный аксессуар, поэтому его внешний вид важен. Самые популярные модели – настенные. Они не мешают, украшают любую часть помещения, часто имеют оригинальную форму. Совмещение с часами позволяет сэкономить пространство. Материал корпуса чаще всего из дерева, в том числе элитных сортов, а также может быть из металла или пластика. Предлагаемое разнообразие позволяет подобрать модель под любой домашний стиль. Куда вешать, желательно решить еще до покупки.
Советы по настройке барометра
Барометр обязательно настраивают. Вот наши советы:
Такая настройка обязательна перед началом использования устройства. Затем показания снимают дважды в день в одинаковое время. Если отмечаются нестабильные погодные условия, показатели снимают чаще (примерно раз в 2 часа). Перед тем как узнать показания, желательно постучать пальцем по стеклу и снизить трение в системе привода стрелки для правильной фиксации.
Способы изготовления своими руками барометров
Жидкостный барометр в домашних условиях своими руками собрать можно чрезвычайно простыми методами, большинство из них сводятся к такой общей конструкции: запаянная сверху трубочка, открытым концом вставленная в емкость с жидкостью. Соломинка тоже наполняется некоторым количеством воды. Есть более элементарные способы, например, из лампочки, где прогноз показывает конденсат на стенках.
Совсем простой метод для создания подобия анероида: пустая банка с крышкой из резиновой мембраны от обычного шарика. Для экстремальных условий применяют ветки хвойного дерева, они имеют свойства подниматься/опускаться при разном атм. давл.
Для более сложных вариантов — электронных — потребуются навыки пайки, работы с радиодеталями, опыт создания печатных плат и запчасти в виде тензодатчиков, диодов, микроконтроллеров (Arduino, LM 3914), других радиодеталей.