для чего датчик импульсов
Что из себя представляет импульсный датчик положения распредвала (ДПРВ)
Доброго времени суток Уважаемые читатели.
Сегодня решил я написать про импульсный датчик положения распредвала, что он из себя представляет и как понять рабочий ли он…
И так:
Датчик положения распредвала является интегральным датчиком, включающим чувствительный элемент и вторичный преобразователь сигнала.
Чувствительный элемент выполнен на основе магниторезистивного эффекта, который заключается в изменении электрического сопротивления при воздействии (изменении) слабого магнитного поля.
Вторичный элемент содержит мостовую схему, операционный усилитель и выходной каскад, выполненный в виде открытого коллектора.
При появлении штифта-отметчика датчик формирует сигнал низкого уровня, близкий к массе.
Гибель» датчика положения распредвала неопытному ремонтнику без диагностического оборудования обнаружить весьма сложно. Хотя двигатель и работает в нештатном режиме попарно-параллельной подачи топлива, когда каждая форсунка срабатывает в два раза чаще (один раз за каждый оборот коленвала) — определить это на слух пытаться не стоит. Выхлоп теряет былую чистоту, но поймать увеличение токсичности удается только замерами по ездовому циклу. Понять, что мотор нездоров, можно по возросшему расходу топлива. Еще один признак неисправности — сбои в работе системы самодиагностики. К другим неприятным для двигателя последствиям отказ датчика распредвала привести не должен…
НАИБОЛЕЕ ЧАСТЫМИ НЕИСПРАВНОСТЯМИ ДАТЧИКА ПОЛОЖЕНИЯ РАСПРЕДЕЛИТЕЛЬНОГО ВАЛА (ДПРВ) ОТНОСЯТСЯ:
Способы проверки исправности цепи датчика.
1. Проверьте подключение датчика к жгуту проводов.
2. Если подключение датчика к розетке жгута проводов нормальное, то отсоедините от датчика розетку жгута проводов и проверьте наличие воды в его соединителе. При необходимости вытряхните воду из вилки и розетки соединителя датчика, очистите контакты от грязи.
3. Внимательно осмотрите целостность кабеля датчика и его оболочки. Возможно повреждение кабеля. (кстати наиболее распространенная причина неисправности ДПРВ, т.к. он расположен в непосредственной близи с двигателем, от его температуры изоляция проводов пересыхает и рассыпается, и как следствие происходит замыкание).
4. Проверьте сопротивление вторичных обмоток катушек зажигания—оно должно быть в пределах 13 кОм.
По большому счету по аналогичному принципу работает и датчик положения коленвала ДПКВ.
Надеюсь кому-нибудь данная статья окажется полезной.
Всем спасибо за внимание, буду рад Вашим отзывам и критике.
Импульсный датчик в системе зажигания
Основная задача импульсных датчиков системы зажигания — обеспечить синхронизацию воспламенения топливо-воздушной смеси с движением поршней в цилиндрах.
История использования импульсного датчика
Бесконтактные системы зажигания, составной частью которых являются импульсные датчики, нашли широкое применение в автомобилях в начале восьмидесятых годов прошлого века. До этого они активно использовались в системах зажигания мотоциклетных и лодочных моторах. В автомобили зарубежного производства системы бесконтактного зажигания с датчиком-распределителем устанавливали относительно недолго, приблизительно с начала и до конца 80-х годов. С началом эпохи инжекторных двигателей их сменили микропроцессорные системы управления зажиганием.
Роль импульсного датчика в системе зажигания
Импульсный датчик – один из ключевых компонентов бесконтактной системы зажигания. Устанавливается датчик в непосредственной близости от приводного вала распределителя системы зажигания и отслеживает скорость его вращения. Чем быстрее вращается вал, тем чаще датчик передает электрические импульсы низкого напряжения на коммутатор, который генерирует сигналы возбуждения для первичной обмотки катушки зажигания.
В современной системе контроля за работой двигателя применяется несколько импульсных датчиков. Они отличаются внешним видом, но не конструкцией.
Вне зависимости от частоты вращения вала, смесь в цилиндрах должна воспламеняться именно в тот момент, когда это нужно, то есть когда поршень приближается к верхней мертвой точке.
Устройство и принцип работы импульсного датчика
Абсолютное большинство импульсных датчиков, применяющихся в системах зажигания, относятся к трем типам – индукционные, оптические и магнитоэлектрические (на основе эффекта Холла). Последние настолько распространены, что термин «датчик Холла» нередко применяется как общее определение генераторов импульсов, что не совсем правильно.
Российские автолюбители впервые столкнулись с датчиком Холла в системе контроля за работой зажигания ВАЗ 2105
Принцип работы датчика Холла основан на изменении проводимости специального полупроводникового материала под влиянием постоянного магнитного поля. Как правило, источник поля (постоянный магнит) и полупроводниковый элемент зафиксированы неподвижно и разделены шторкой с проемами – обтюратором. Обтюратор закреплен на валу распределителя и вращается вместе с ним. В моменты, когда шторка обтюратора оказывается напротив полупроводникового элемента, магнитное поле прерывается. Электрические импульсы формируются за счет чередования периодов наличия и отсутствия поля.
Работа индукционного генератора импульсов, как понятно из названия, основана на явлении электромагнитной индукции. Датчик состоит из постоянного электромагнита с обмоткой и зубчатого диска. При вращении диска магнитное поле замыкается либо через зуб, либо через впадину. Таким образом, магнитный поток, проходящий через обмотку, то возрастает, то снижается.
Эффект Холла использован в принципе действия ракетных двигателей летательных аппаратов, предназначенных для исследования дальнего космоса
Оптические датчики импульсов работают за счет прерывания шторками обтюратора инфракрасного луча, направленного на фототранзистор.
Вопросы эксплуатации импульсных датчиков
Как любой электронный компонент, не имеющий движущихся частей, сам по себе импульсный датчик практически вечен. При возникновении проблем в работе системы зажигания его диагностикой стоит заняться в последнюю очередь. Для обеспечения надежной работы генератора импульсов достаточно следить за чистотой и целостностью приходящего на него разъема. Если же подозрения по поводу исправности импульсного датчика все-таки возникают – достаточно присоединить к нему вольтметр и провернуть коленвал. Отсутствие перепадов напряжения на выходе будет однозначно свидетельствовать о выходе детали из строя.
Бесконтактное зажигание и датчик импульсов
Бесконтактное зажигание
Система зажигания, у которой отсутствуют контакты стала продолжательницей рода транзисторно-контактной системы, предназначенной для зажигания топливной системы. Отличия от предшественника заключаются в том, что такое зажигание имеет специализированный бесконтактный датчик. При этом, контактное и бесконтактное зажигание могут быть взаимозаменяемы. И если, например, у Вас установлено обычное зажигание, то Вы смело можете использовать бесконтактную систему зажигания.
Не так давно контактная система зажигания являлась своего рода стандартом для отечественных автомобилей. Поэтому, если Вы решили, что Вам нужна бесконтактная система зажигания, то ее следует приобрести и установить на Ваш автомобиль. Тем не менее на многих отечественных автомобилях с передним приводом устанавливают бесконтактную систему зажигания.
Преимущества бесконтактной системы зажигания
Одним из наиболее важных преимуществ, которой обладает бесконтактная система зажигания является подача куда большей энергии на свечу зажигания, благодаря чему существенно увеличивается искра, столь необходимая для сгорания топлива. Таким образом улучшается сгорание топливовоздушной смеси, что сказывается на маневренности автомобиля.
Не менее важным является и то, что форма и стабильность импульсов, на всех диапазонах работы двигателя, существенно улучшается. Это достигается тем, что используют датчик Холла, который используются для электромагнитного формирователя импульсов. Данный датчик собственно и заменяет контактную систему зажигания. Таким образом достигается не только улучшенная мощность и приемистость двигателя, но также снижается расход топлива. Экономичность в этом случае может достигать 1 л на 100 километров.
Схема бесконтактного зажигания не так сильно отличается от контактного. В частности, как мы уже говорили, отличия составляет датчик импульсов, а также транзисторный коммутатор.
Одним из преимуществ, доказывающих что бесконтактная система зажигания лучше, является существенное снижение потребности в обслуживании такой системы. В этом случае, как правило, для обслуживания используют смазку вала трамблера. Такое обслуживание выполняют каждые 10000 км пройденного пути.
Датчик импульсов
Датчик импульсов выполняет роль создания специализированных электрических импульсов, которые имеют низкое напряжение.
Датчики импульсов бывают различных типов:
Все датчики импульсов конструктивно объединены с блоком распределителя, составляя единое цельное устройство, которое так и называется – датчик-распределитель. Внешне, данный датчик похож на прерыватель, он также имеет схожий привод. При этом, привод соединяется с коленчатым валом двигателя.
В большинстве случаев бесконтактная система зажигания использует датчик Холла. При этом на прорези стального экрана проходит магнитное поле, благодаря чему возникает напряжение в полупроводниковой пластине. Поскольку прорези чередуются, на стальном экране создаются импульсы, состоящие из низкого напряжения.
Принцип работы БСЗ
Итак, мы получили представление о том, как выглядит, и для чего предназначена бесконтактная система зажигания.
Давайте же теперь разберемся с вопросом – как работает бесконтактная система зажигания?
Однако возможны и такие конструкции, в которых вал распределителя приводится в движение от шестерни масляного насоса. Распределение искры по свечам как раз и выполняет распределитель.
Схема бесконтактной системы зажигания практически не имеет недостатков. Она гораздо лучше справляется с поставленной целью. И позволит Вам выиграть в мощности и экономичности двигателя, а также снизить вредные выбросы отработанных газов.
Датчики и их разновидности
Датчики — устройства, содержащие чувствительные части, реагирующие на определенные факторы с целью управления, контроля, мониторинга работы электроустановок, электроники, силовых систем, двигателей, бытовых и иных приборов. Изделия регистрируют изменения среды и, посылая команду исполнительным частям, обеспечивают автоматизацию, автономность оснащения или передают данные на устройства слежения. С помощью датчиков обеспечивается также и безопасность, оборудования или окружающей среды (например, пожарные сенсоры). Для каждого типа оборудования характерный определенный вид детекторов с нужными функциями, стойкостью, сенситивностью — рассмотрим их. А также опишем устройство, принцип работы, внешний вид сенсоров. Таким образом, читатель сможет сориентироваться, где какое устройство применяется, что надо ремонтировать или покупать для замены.
Что такое датчик
Под датчиком, сенсором, детектором подразумевают прибор, узел обособленного типа (интегрированный или в большей мере отдельный, но различимый), имеющий в своем составе один или больше первичных преобразователей измерительных типов. Назначение — выработка данных замеров в виде, подходящем для передачи, исследования, оценки, обработки, дальнейшей трансформации, хранения. Такая пересылка не поддается непосредственному восприятию наблюдателями. Пример простейшего устройства – микрофон, это звуковой детектор (громкость воспринимается, но ее силу в дБ человеку сложно оценить)
Детекторы могу иметь промежуточные узлы — вспомогательные или прямо необходимые для работы измерительные преобразователи, а также меру.
Устройство может быть вынесено на любые расстояния от обслуживающей системы, объекта, приемника. Длина определяется возможностью инструментов и методов связи (кабели, радиосигнал).
Задачи и роль датчиков
Задача сенсоров — передать параметры исследуемых факторов на приемник для последующей обработки им. А также, как уже мы отметили выше, детекторы могут делать своими дополнительными преобразователями некоторую подготовительную обработку импульсов, приводя их в удобную для передачи форму.
Но может быть еще важная задача. Если соотношение показателя величины сенсора на выходе с соответствующим значением таковой входной нормированное, то такие изделия являются измерительными средствами. То есть выполняют не только пассивную роль мониторинга, но и замеряют характеристики исследуемых факторов в диапазонах, допускающихся их техническими возможностями.
Есть многофункциональные модификации датчиков, воспринимающие и преобразовывающие, работающие с несколькими входными величинами. Помимо главной опции — восприятия значений, создание измерительного импульса — выполняют дополнительные опции, такие как фильтрация, предварительная обработка и так далее.
Датчик (сенсор, детектор) — это составляющие технических систем, их опции такие для обслуживаемых приложений:
Изделия преобразуют данные о контролируемой среде — давлении, t°, расходе, концентрации, частоте, скорости, перемещении, электропараметрах — в сигналы (электро, пневмо, оптические). Создается наиболее подходящая для передачи и восприятия приемником форма для дальнейших измерений, обработки, подачи, трансформации, хранения, регистрации данных.
Сфера применения
Датчики используются везде там, где для работы прибора, техники, конструкций, систем, узлов требуется мониторинг определенных факторов (мы их перечислили выше). Ярким примером является температура: пожарный сенсор фиксирует превышение порогового значения и подает на узлы сигнализации данные об этом, а тот включает звуковую, световую индикацию, автоматическое пожаротушение.
Термодатчик в бойлере фиксирует достижение водой определенного уровня нагрева, дает импульс на реле термостата и тот отключает прибор. Множество датчиков есть в автомобилях, например, один из них — детектор вращения коленвала — подает информацию на ЭБУ, а тот регулирует работу системы впрыска топлива.
Вот лишь небольшая часть оборудования, где используются датчики:
Сложно назвать такую область, в которой бы отсутствовали датчики. Часто сенсоры связаны с чисто измерительными приборами — барометрами, термометрами, высотомерами. Последние делают замеры, датчик улавливает эти значения и передает на оборудование, автоматику.
Если обобщить, то термин «датчик» появился с развитием автоматизации управления, контроля, работы. Традиционной является следующая цепочка:
Датчик (улавливает и передает данные об исследуемых факторах, состоянии) — узел (прибор, система) управления (дает команду) — исполнительное устройство (принимает указания и настраивает обслуживаемый объект).
Датчик отличается от измерителя тем, что он в охватывающем им диапазоне только фиксирует выход сигнала исследуемого фактора. Поэтому часто для полноценной работы оснащения есть еще и узел, осуществляющий замеры, и они тесно связанные, могут быть интегрированными друг с другом, настолько, что отдельная работа их была бы невозможной.
Названия
Применяемые нами синонимы для описываемых устройств будем понимать как равнозначные — они обозначают измерительный преобразователь с функциями восприятия входных величин и формирования измерительных сигналов. Если говорить строго, то слово «сенсор» имеет акцент на восприятии, «датчик», — на создание и выдачу измерительных импульсов, «детектор» — на обнаружение определенных факторов. Но все эти свойства будем считать присущими каждому используемому нами синониму.
Все чаще используются модели изделий со сложной обработкой сигналов, с опциями регулировки, настройки параметров, интерфейсом управляющей системы. Надо сказать, что датчиками можно назвать и биологические маркеры. То есть термин допустимо трактовать расширенно.
При использовании измерителей, показания оборудования воспринимаются, обычно, напрямую — на дисплеях, табло, панелях, посредством световых, звуковых сигналов и проч. Показания же датчиков требуют трансформации в форму, которая может быть воспринята приемником и/или человеком.
Автоматизированное оснащение управления может иметь детекторы в роли инициаторов для сработки оборудования, арматуры, программ. Показания при этом, как правило, поступают на запоминающие элементы для контрольно-аналитических процессов, вывода на табло, на печать.
Устройство датчиков, принцип работы
Итак, датчик он же sensor является элементом узлов измерительных, сигнальных, регулирующих, управляющих частей оснащения. Деталь преобразует контролируемую, регулируемую величину (t°, давление, частоту, интенсивность света, электропараметров) в импульс, удобный для измерения, подачи, хранения, обработки, фиксации, а иногда он влияет на управляемые процессы.
Если упростить, то детектор является устройством, трансформирующим входное воздействие любых физических величин в сигнал, подготовленный для дальнейшей работы с ним.
Составные части
Есть чрезвычайно много конструкций сенсоров, чувствительных их частей, а также принципы сработки, взаимодействия, но все они обычно сводятся к такой структуре:
Общую схему датчика (Д) можно отобразить как совокупность чувствительного элемента (ЧЭ) и преобразующей части (Пр.) Первый в системах автоматики, телемеханики — это орган чувств. Предназначенный, чтобы преобразовывать, подготавливать контролируемую величину (х) придавая ей форму сигнала х1, удобную для восприятия, измерения. Например, в преобразователе часто осуществляется трансформация импульса (х1) в электрический сигнал (у).
На вход детектора могут поступать как электроимпульсы, так и любые другие, иного характера (пневмо, давление, световые, звуковые и прочие), но с выхода наиболее удобно снимать электросигнал — его просто и легко усиливать, оценивать, передавать можно почти на неограниченные расстояния.
Подбор датчиков, какие параметры учитывают
Сенсор, например, на замену сломанного, подбирают под параметры:
Остальные важные параметры:
При подборе надо проверять допуски — совокупность характеристик, допустимых для конкретного оборудования. Например, диапазон погрешностей, отклонений (±).
Статические качества. Выражают, насколько корректен выход датчика, насколько правильно отражает замеряемые величины спустя определенное время после их изменения, когда вых. импульс установился с новым значением. К таковым относятся:
Динамические характеристики. Редко приводятся в техописаниях. Для бытовых приборов, обычных целей их можно не учитывать.
Их берут во внимание, если требуется детектор для особо чувствительного оборудования (лабораторного, научного, для экспериментов), для предельно возможной точности, исключающей любые сбои, погрешности (сфера энергетики, космическая отрасль). К таковым относятся:
Требования для датчиков
Можно подобрать сенсор с большой погрешностью, если это допускается производителем, затребовано именно под особенности приложения или особо не влияет на качество работы.
Но в общем лучшими изделиями будут таковые со следующими качествами:
Разновидности датчиков
Классификация сенсоров чрезвычайно обширная. Опишем наиболее характерные виды применяемых повсеместно датчиков.
В своей основе почти все детекторы базируются на чувствительной части, реагирующей на определенные параметры обслуживаемой среды, а также на сопровождающие ее процессы.
Например, сенситивным элементом может быть следующее:
В зависимости от исследуемой величины, от характера входных значений датчик бывает:
Классификация по выходной величине, то есть по созданию удобного для восприятия сигнала, в который преобразуется входной импульс исследуемой среды:
Подавляющее большинство сенсоров электрические, поскольку именно при этом наблюдается наибольшая совокупность достоинств:
Классы
Датчики имеют виды, которые группируют по трем классам:
По принципу действия
Виды по методам работы:
У активных детекторов используется зависимость значения активного сопротивления от давления с контактным характером, от температуры, освещенности фотоэлементов.
Контактные
На контактных детекторах остановимся подробнее, так как они ярко отображают принцип работы. Это одни из самых простых разновидностей, элементарные по своей конструкции и методу. Преобразовывают движение первичного элемента в изменение сопротивления электроцепи скачкообразного характера. Это сенсор, где линейное или угловое перемещение трансформируется в замкнутое/разомкнутое состояние контактов, производящих управление электроцепями.
Подвиды: с механическим (ручным) и магнитным управлением. Например, герконы, у которых контакты намагничиваются и смыкаются, если в их колбе создается определенное магнитное поле исследуемым фактором, обычно, связанным с электрическими явлениями.
Контактными детекторами делают замеры и контроль усилий, перемещений, температур, размеров, форм. Такие устройства работают на постоянном и переменном токе. Подвиды: одно- и многопредельные. Последние применяются для величин, изменяющихся в широких рамках, при этом части резистора цепи закорачиваются.
Контактные детекторы широко применяются в автомобилях. Опишем некоторые.
Датчики аварийных состояний. Пример: сенсоры перегрева охлаждающего вещества, включения вентилятора. Используется способность биметаллической пластины изгибаться при воздействии на нее тепла, тем самым замыкаются/размыкаются контакты, подается питание на крыльчатку и пр. элементы системы.
Детектор аварийного давления масла. Используется свойство упругих частей деформироваться под давлением среды.
Датчик уровня жидкости, основывающийся на контакте воды, емкости и исполнительных элементов (указатели, смыкатели и прочее) с поплавком.
Схема действия геркона для контроля исправности лампочек в автомобиле.
Контроль износа тормозных колодок:
Расширенная классификация датчиков
Мы рассмотрели самые популярные варианты сенсоров. Есть также не особо распространенные детекторы. Типы датчиков достаточно полно отображены во многих источниках. Для целостности картины приведем список с уже описанными нами типами:
Наиболее многочисленные разновидности по виду измеряемого параметра: