для чего используется чип

Современные технологии полупроводникового производства

В последние годы к стадии возможности использования в коммерческом производстве подошел целый ряд технологий, позволяющих заметно увеличить скорость работы транзисторов, либо столько же заметно уменьшить размер чипа без перехода на более тонкий технологический процесс. Некоторые из этих технологий уже начали применяться в течение последних месяцев, их названия упоминаются в новостях, относящихся к компьютерам, все чаще. Эта статья – попытка сделать краткий обзор подобных технологий, попытавшись заглянуть в самое ближайшее возможное будущее чипов, находящихся в наших компьютерах.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чипдля чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чипПервая интегральная схема, где соединения между транзисторами сделаны прямо на подложке, была сделана более 40 лет назад. За это время технология их производства претерпела ряд больших и малых улучшений, пройдя от первой схемы Джека Килби до сегодняшних центральных процессоров, состоящих из десятков миллионов транзисторов, хотя для серверных процессоров впору уже говорить о сотнях миллионов.

Здесь пойдет речь о некоторых последних технологиях в этой области, таких, как медные проводники в чипах, SiGe, SOI, перовскиты. Но сначала необходимо в общих чертах затронуть традиционный процесс производства чипов из кремниевых пластин. Нет необходимости описывать процесс превращения песка в пластины, поскольку все эти технологии не имеют к столь базовым шагам никакого отношения, поэтому начнем с того, что мы уже имеем кремниевую пластину, диаметр которой на большинстве сегодняшних фабрик, использующих современные технологии, составляет 20 см. Ближайшим шагом на ее превращении в чипы становится процесс окисления ее поверхности, покрытия ее пленкой окислов — SiO2, являющейся прекрасным изолятором и защитой поверхности пластины при литографии.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Дальше на пластину наносится еще один защитный слой, на этот раз — светочувствительный, и происходит одна из ключевых операций — удаление в определенных местах ненужных участков его и пленки окислов с поверхности пластины, до обнажения чистого кремния, с помощью фотолитографии.

На первом этапе пластину с нанесённой на её поверхность плёнкой светочувствительного слоя помещают в установку экспонирования, которая по сути работает как фотоувеличитель. В качестве негатива здесь используется прецизионная маска — квадратная пластина кварцевого стекла покрытая плёнкой хрома там, где требуется. Хромированные и открытые участки образуют изображение одного слоя одного чипа в масштабе 1:5. По специальным знакам, заранее сформированным на поверхности пластины, установка автоматически выравнивает пластину, настраивает фокус и засвечивает светочувствительный слой через маску и систему линз с уменьшением так, что на пластине получается изображение кристалла в масштабе 1:1. Затем пластина сдвигается, экспонируется следующий кристалл и так далее, пока не обработаются все чипы на пластине. Сама маска тоже формируется фотохимическим способом, только засвечивание светочувствительного слоя при формировании маски происходит по программе электронным лучом примерно также, как в телевизионном кинескопе.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

В результате засвечивания химический состав тех участков светочувствительного слоя, которые попали под прозрачные области фотомаски, меняется. Что дает возможность удалить их с помощью соответствующих химикатов или других методов, вроде плазмы или рентгеновских лучей.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

После чего аналогичной процедуре (уже с использованием других веществ, разумеется) подвергается и слой окислов на поверхности пластины. И снова, опять же, уже новыми химикатами, снимается светочувствительный слой:

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Потом накладывается следующая маска, уже с другим шаблоном, потом еще одна, еще, и еще… Именно этот этап производства чипа является критическим в плане ошибок: любая пылинка или микроскопический сдвиг в сторону при наложении очередной маски, и чип уже может отправиться на свалку. После того, как сформирована структура чипа, пришло время для изменения атомной структуры кремния в необходимых участках путем добавления различных примесей. Это требуется для того, чтобы получить области кремния с различными электрическими свойствами — p-типа и n-типа, то есть, как раз то, что требуется для создания транзистора. Для формирования p-областей используются бор, галлий, алюминий, для создания n-областей — сурьма, мышьяк, фосфор.

Поверхность пластины тщательно очищается, чтобы вместе с примесями в кремний не попали лишние вещества, после чего она попадает в камеру для высокотемпературной обработки и на нее, в том или ином агрегатном состоянии, с использованием ионизации или без, наносится небольшое количество требуемых примесей. После чего, при температуре порядка от 700 до 1400 градусов, происходит процесс диффузии, проникновения требуемых элементов в кремний на его открытых в процессе литографии участках. В результате на поверхности пластины получаются участки с нужными свойствами. И в конце этого этапа на их поверхность наносится все та же защитная пленка из окисла кремния, толщиной порядка одного микрона.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Все. Осталось только проложить по поверхности чипа металлические соединения (сегодня для этой роли обычно используется алюминий, а соединения сегодня обычно расположены в 6 слоев), и дело сделано. В общих чертах, так в результате и получается, к примеру, классический МОП транзистор: при наличии напряжения на затворе начинается перемещение электронов между измененными областями кремния.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Теперь, слегка пробежавшись по классическому процессу создания сегодняшних чипов, можно более уверенно перейти к обзору технологий, которые предполагают внести определенные коррективы в эту картину.

Медные соединения

Первая из них, уже начавшая широко внедряться в коммерческое производство — это замена на последнем этапе алюминия на медь. Медь является лучшим проводником, чем алюминий (удельное сопротивление 0,0175 против 0,028 ом*мм2/м), что, в полном соответствии с законами физики, позволяет уменьшить сечение межкомпонентных соединений. Вполне своевременно, учитывая постоянное движение индустрии в сторону уменьшения размеров транзисторов и увеличения плотности их размещения на чипе, когда использование алюминия начинает становиться невозможным. Индустрия начала сталкиваться с этой проблемой уже в первой половине 90-х. Вдобавок, что толку в ускорении самих транзисторов, если соединения между ними будут съедать весь прирост скорости?

Проблемой при переходе на медь являлось то, что алюминий куда лучше образует контакт с кремнием. Однако после не одного десятка лет исследований, ученым удалось найти принцип создания сверхтонкой разделительной области между кремниевой подложкой и медными проводниками, предотвращающей диффузию этих двух материалов.

По данным IBM, применение в технологическом процессе меди вместо алюминия, позволяет добиться снижения себестоимости примерно на 20-30 процентов за счет снижения площади чипа. Их технология CMOS 7S, использующая медные соединения, позволяет создавать чипы, содержащие до 150-200 миллионов транзисторов. И, наконец, просто увеличение производительности чипа (до 40 процентов) за счет меньшего сопротивления проводников.

IBM начала предлагать клиентам эту технологию в начале 98 года, в конце этого года своим заказчикам предложили использовать медь при производстве их чипов TSMC и UMC, AMD начинает выпуск медных Athlon в начале 2000 года, Intel переходит на медь в 2002 году, одновременно с переходом на 0.13 мкм техпроцесс.

Соединения — соединениями, но уже на скорости чипа в несколько ГГц перестает справляться с нагрузкой сама кремниевая подложка. И если для традиционных областей применения чипов кремния пока достаточно, в области беспроводной связи уже давно дефицит на дешевые скоростные чипы. Кремний — дешево, но медленно, арсенид галлия — быстро, но дорого. Решением здесь стало использование в качестве материала для подложек соединения двух основ полупроводниковой индустрии — кремния с германием, SiGe. Практические результаты по этой технологии стали появляться с конца 80-х годов. Первый биполярный транзистор, созданный с использованием SiGe (когда германий используется как материал для базы), был продемонстрирован в 1987 году. В 1992 году уже появилась возможность применения при производстве чипов с SiGe транзисторами стандартной технологии КМОП с разрешением 0.25 мкм.

Результатом применения становится увеличение скорости чипов в 2-4 раза по сравнению с той, что может быть достигнута путем использования кремния, во столько же снижается и их энергопотребление. При этом, в ход вступает все тот же решающий фактор — стоимость: SiGe чипы можно производить на тех же линиях, которые используются при производстве чипов на базе обычных кремниевых пластин, таким образом отпадает необходимость в дорогом переоснащении производственного оборудования. По информации IBM, потенциальная скорость транзистора (не чипа!) с их технологией составляет сегодня 45-50 ГГц (что далеко не рекорд), ведутся работы над увеличением этой цифры до 120 ГГц. Впрочем, в ближайшие годы прихода SiGe в компьютер ждать не стоит — при тех скоростях, что потребуется PC чипам в ближайшем будущем вполне хватает кремния, легированного такими технологиями, как медные соединения или SOI.

Кремний на изоляторе (silicon-on-insulator, SOI)

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Вот и получается — кремний на изоляторе. Зачем это понадобилось? Чтобы уменьшить емкость. В идеале МОП транзистор должен выключаться, как только будет исчезнет питание с затвора (или наоборот, появится, в случае с КМОП). Но наш мир далеко не идеален, это справедливо и в данном конкретном случае. На время срабатывания транзистора напрямую влияет емкость области между между измененными участками кремния, через которую и идет ток при включении транзистора. Он начинает и заканчивает идти не мгновенно, а только после, соответственно, зарядки и разрядки этой промежуточной зоны. Понятно, что чем меньше это время, тем быстрее работает транзистор, можно сказать, что тем меньше его инерция. Для того и придумана SOI — при наличии между измененными участками и основной массой кремния тонкой пластинки изолирующего вещества (окисел кремния, стекло, и т.д.), этот вопрос снимается и транзистор начинает работать заметно быстрее.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Основная сложность в данном случае, как и в случае с медными соединениями, заключается в разных физических свойствах вещества. Кремний, используемый в подложке — кристалл, пленка окислов — нет, и закрепить на ее поверхности, или же не поверхности другого изолятора еще один слой кристаллического кремния весьма трудно. Вот как раз проблема создания идеального слоя и заняла весьма много времени. Не так давно IBM уже продемонстрировала процессоры PowerPC и чипы SRAM, созданные с использованием этой технологии, просигнализировав этим о том, что SOI подошла к стадии возможности коммерческого применения. Совсем недавно, IBM объявила о том, что она достигла возможности сочетать SOI и медные соединения на одном чипе, пользуясь плюсами обеих технологий. Тем не менее, пока что никто кроме нее не заявил публично о намерении использовать эту технологию при производстве чипов, хотя о чем-то подобном речь идет.

Перовскиты

Поиски замены на роль изолирующей пленки на поверхности подложки идут давно, учитывая, что как и алюминий, диоксид кремния начинает сдавать в последнее время — при постоянном увеличении плотности транзисторов на чипе необходимо уменьшать толщину его изолирующего слоя, а этому есть предел, поставленный его электрическими свойствами, который уже довольно близок. Однако пока, несмотря на все попытки, SiO2 по прежнему находится на своем месте. В свое время IBM, предполагала использовать в этой роли полиамид, теперь пришла очередь Motorola выступить со своим вариантом — перовскиты.

Этот класс минералов в природе встречается довольно редко — Танзания, Бразилия и Канада, но может выращиваться искусственно. Кристаллы перовскитов отличаются очень высокими диэлектрическими свойствами: использованный Motorola титанат стронция превосходит по этому параметру диоксид кремния более чем на порядок. А это позволяет в три-четыре раза снизить толщину транзисторов по сравнению с использованием традиционного подхода. Что, в свою очередь, позволяет значительно снизить ток утечки, давая возможность заметно увеличить плотность транзисторов на чипе, одновременно сильно уменьшая его энергопотребление.

Пока что эта технология находится в достаточно ранней стадии разработки, однако Motorola уже продемонстрировала возможность нанесения пленки перовскитов на поверхность стандартной 20 см кремниевой пластины, а также рабочий КМОП транзистор, созданный на базе этой технологии.

Источник

Все данные в цилиндрике под кожей: как люди вживляют себе чипы и для чего они нужны

Люди вживляют себе чипы для разных целей: управление электронными устройствами, доступ к секретным хранилищам или оплата товаров. Разбираемся, как работают разные чипы и зачем люди их используют.

Читайте «Хайтек» в

Что такое микрочип-имплант

Под этим термином понимают любое электронное устройство, которое имплантируют под кожу как человеку, так и животному. Как правило, это идентифицирующее RFID-устройство. Этот тип подкожного имплантата обычно содержит идентификационные данные.

Внешний вид чипов-имплантов напоминает цилиндрик из несодержащего свинца боросиликатного стекла либо биологически нейтрального стекла Schott 8625 на основе натриевой извести. Типичное место для чипа — между указательным и большим пальцем.

Микрочипы, имплантируемые и животным, и людям, не имеют встроенного источника энергии и питаются от внешнего электромагнитного поля. То есть они инертны до тех пор, пока не поднести к ним считывающее устройство — источник ЭМ-поля.

Эти имплантаты часто относят к RFID, но под этим термином есть очень широкий спектр частот, устройств, протоколов и интерфейсов. RFID-устройства делятся на три частотных группы: низкочастотную (125 и 134 кГц), высокочастотную (13,56 МГц), сверхвысокочастотную (UHF) (800–915 МГц).

Чипы для имплантации обычно относятся к первой или второй группе.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Зачем люди вживляют чипы

В июне 2007 года Американская медицинская ассоциация заявила, что «имплантируемые устройства с RFID-метками могут помочь идентифицировать пациентов, это повысит безопасность и эффективность ухода за ними».

Чипы можно использовать для обеспечения безопасного доступа к клинической информации пациента.

В 2016 году JAMM Technologies приобрела чиповые активы у VeriTeQ. Бизнес-план JAMM заключался в партнерстве с компаниями, продающими имплантированные медицинские устройства, и использовании меток RfID для мониторинга и идентификации устройств.

В 2018 году датская фирма BiChip выпустила микрочип-имплант нового поколения, который предназначен для считывания с расстояния и подключения к интернету.

Компания выпустила обновление для своего имплантата, чтобы связать его с криптовалютой Ripple, что позволит совершать платежные операции с помощью микрочипа.

В 2017 году Майк Миллер, исполнительный директор Всемирной ассоциации олимпийцев, обсуждал возможность использования таких имплантатов у спортсменов. Целью была борьба с проблемами, связанными с употреблением допинга.

Теоретически чип с поддержкой GPS может позволить отслеживать людей в режиме реального времени. Такие имплантируемые устройства GPS в настоящее время технически неосуществимы.

Однако если они будут широко использоваться в будущем, имплантируемые GPS-устройства могут позволить властям обнаруживать пропавших людей или скрывающихся от правосудия.

Критики утверждают, что технология может привести к политическим репрессиям, поскольку правительства могут использовать имплантаты для отслеживания и преследования правозащитников, активистов, диссидентов и политических противников.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип

Современное применение чипов для людей

В Швеции с 2018 года проводится чипирование населения. Микрочипы RFID-чипа могут заменить все бесконтактные карты, ключи и пропуска, нужные человеку в повседневной жизни. Их имплантируют добровольцам, как правило, между указательным и большим пальцами.

Основные свойства встроенного RFID-чипа:

Опасность для здоровья

Associated Press узнало, что имплантированные чипы вызывают рак у сотен лабораторных животных. Онкологи изучили исследования агентства и предупредили, что результаты испытаний на животных необязательно соотносятся с людьми. Однако результаты все равно их обеспокоили.

Сегодня микрочипы настолько безопасны, что могут использоваться для маркировки собак и кошек. Риск заражения ниже, если чип устанавливает опытный специалист по пирсингу с необходимыми инструментами и процедурой обеззараживания.

После установки вокруг чипа может появиться припухлость и даже синяк, которые проходят через несколько дней. Инкапсуляция соединительной коллагеновой тканью занимает 2–4 недели, и в течение двух лет еще может возникать временный зуд или ощущение сдавливания, пока тело заживает вокруг чипа.

Также, как заявляют представители Dangerous Things, чип не чувствуется под кожей, увидеть его можно, только если вы обхватите рукой что-то большое.

При желании, чип легко вытащить: делать это нужно строго в медицинской клинике.

Сохранность личных данных

В 2007 году совет по этическим и судебным вопросам Американской медицинской ассоциации опубликовал отчет, в котором говорится, что микрочипы могут нарушить конфиденциальность пользователей. Информация, содержащаяся в чипе, может быть быть не защищена надлежащим образом.

Опасения вызывает конфиденциальность данных. Однако сторонники технологии утверждают, что гораздо больше данных о повседневной жизни передают мобильные телефоны, Google, Apple и Facebook, чем RFID-имплант.

Теория о том, что кого-то можно отследить с помощью чипа, также нежизнеспособна, ведь в чипах нет GPS. Имплантируемому устройству, имеющему функцию отслеживания, нужен источник питания, который необходимо регулярно менять и перезаряжать.

У современных чипов батарейки нет, так что для считывания данных придется прижать ладонь к считывающему устройству. К тому же сам имплантат должен быть довольно большим, чтобы получать сигнал GPS-спутников и передавать данные позиционирования по сотовой сети, Wi-Fi или еще как-то.

Источник

Интегральные микросхемы — это

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

В 1958 году двое учёных, живущих в совершенно разных местах, изобрели практически идентичную модель интегральной схемы. Один из них, Джек Килби, работал на Texas Instruments, другой, Роберт Нойс, был одним из основателей небольшой компании по производству полупроводников Fairchild Semiconductor. Обоих объединил вопрос: «Как в минимум места вместить максимум компонентов?». Транзисторы, резисторы, конденсаторы и другие детали в то время размещались на платах отдельно, и учёные решили попробовать их объединить на одном монолитном кристалле из полупроводникового материала. Только Килби воспользовался германием, а Нойс предпочёл кремний. В 1959 году они отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов. После того как в 1961 году Fairchild Semiconductor Corporation пустила интегральные схемы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность.

Первая советская полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.

Первая в СССР полупроводниковая интегральная микросхема была разработана (создана) на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ (Микрон). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились НИИ-35 (директор Трутко) и Фрязинским заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год).

Идея устройства интегральной схемы

Идея устройства микросхемы состояла в том, чтобы взять полную схему со всеми многочисленными электронными компонентами и связями, с последующим воссозданием в микроскопической форме на поверхности куска кремния. Благодаря этой идее появились всевозможные виды «микроэлектронных» гаджетов, которые сейчас воспринимаются как должное:

Интегральные схемы произвели настоящую революцию в электронике и вычислительной технике в период 1960 — 1970-х годов. Постепенно интегральные схемы модернизировались, что сопровождалось увеличением масштабов интеграции электронных компонентов при сохранении (и даже уменьшении) малых габаритных размеров:

Чем являются логические интегральные схемы (ИС)

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип
По сути, это микроэлектронное устройство, которое базируется на кристалле произвольной сложности, что изготовлено на полупроводниковой плёнке или пластине. Оно помещается в неразборный корпус (хотя может обойтись и без него, но только когда он является частью микросборки). Первая интегральная схема была запатентована в 1968 году. Это стало своеобразным прорывом в промышленности, хотя предоставленное устройство и не очень сильно соответствовало современным представлениям по своим параметрам. Интегральные схемы в массе своей изготавливаются для поверхностного монтажа. Часто под ИС понимают один только кристалл или плёнку. Наибольшее распространение получила интегральная схема на пластине кремния. Так вышло, что его применение в промышленности имеет ряд преимуществ, например, эффективность передачи сигналов.

Что такое интегральная микросхема

Интегральная микросхема — это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.

Одна микросхема может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.

По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.

Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.

Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.

Уровни проектирования

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР, которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Как создаются интегральные схемы?

Как изготовить чип памяти или процессор компьютера? Процесс производства начинается с химического элемента — кремния, который химически обрабатывается (легируется) для придания различных электрических свойств.

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип
Современное исполнение интегральной схемы (одна из многочисленных форм), установленной на электронной плате устройства. Это далеко не самый продвинутый вариант, а лишь один из многих

Традиционно для нужд электроники используются материалы двух категорий:

Но технически всё сложнее, особенно когда дело касается определенных элементов середины таблицы Менделеева (группы 14 и 15), в частности, кремния и германия. Что примечательно — материалы изоляторы способны переходить в разряд проводников, если к этим материалам добавить некоторое количество примесей. Процесс, известный как легирование.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему.

Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Основные виды современных микросхем

Важно понимать, что прогресс не стоит на месте: с каждым годом список основных видов микросхем терпит значительные изменения, кроме того, расширяется их ассортимент.

Типы микросхем различны, в зависимости от основных критериев оценки.

По назначению:

1. Цифровые. Необходимы для обработки специального сигнала, выраженного в цифровом коде. Имеют значительное количество преимуществ перед другими видами: меньшие затраты на употребление электроэнергии, кроме того, имеют большую устойчивость к возникновениям помех.

Цифровые микросхемы нередко используются в различных вычислительных машинах, таких как: система автоматики, электронно-вычислительная техника и многих других.

2. Аналоговые. Предназначены для обработки и преобразования сигнала, поступающего непрерывно. Аналоговые микросхемы имеют высокие показатели производительности. Часто используются в таких популярных устройствах как:

 Преобразователи звуковых частот.

 В различных стабилизаторах напряжения.

3. Аналого-цифровые. Являются настоящим гибридом двух, представленных выше, микросхем. Они пользуются большой популярностью из-за повышенных показателей производительности, кроме того, они совмещают положительные характеристики сразу двух видов микросхем. Именно они используются при создании большинства современной техники, такой как:

 Модуляторы и демодуляторы.

 Генераторы и восстановители частот.

По типу конструкции:

1. Пленочные. Это микросхемы, для изготовления которых используют специальную методику. Кроме того, все соединительные элементы представляют собой специальный пленочный слой. Существуют определенные подразделения на два вида: тонкопленочные и толстопленочные, отличающиеся по толщине пленочного слоя.

2. Полупроводниковые микросхемы используются не так часто, для их изготовления используют пластмассу (чаще всего эпоксидной смолой) со специальными проволочными или ленточными выводами, обеспечивающими производительность устройства.

3. Гибридные. Более сложные по исполнению устройства, для изготовления которых используются не только популярные пленки и подложки, но и менее распространенные навесные материалы (например, различные кристаллы).

По типу корпуса:

1. Корпусные. При таком типе исполнения микросхема помещается в специальный корпус (материал, из которого он изготовлен, может быть выбран производителем). Такой вид не пользуется особой популярностью в повседневной жизни. Чаще всего микросхему помещают в корпус для того, чтобы избежать поломки или деформации отдельных частей при транспортировке.

Корпусные микросхемы используются для транспортировки больших партий товара. В любом другом случае изготовителю дешевле изготовить бескорпусные микросхемы.

2. Бескорпусные микросхемы. Чаще всего используются именно бескорпусные модели. Микросхема не помещается в корпус, в таком случае для защиты все части заливают специальной краской или компаундом. Именно это позволяет защитить кристалл от повреждений или любых других негативных влияний окружающей среды.

Такие конструкции выпускаются специально для установки в гибридную схему или предварительную микросборку.

При выборе микросхемы, следует учитывать все преимущества и недостатки основных видов. Отельные технические приспособления нуждаются в определенных микросхемах, для того, чтобы подобрать необходимую модель, необходимо получить профессиональную консультацию специалистов данной сферы. В таком случае, выбираемое вами устройство прослужит долгое время.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Цифровые схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

Аналогово-цифровые схемы

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип
Корпуса интегральных микросхем, предназначенные для поверхностного монтажа

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип
Микросборка с бескорпусной микросхемой, разваренной на печатной плате

Корпус микросхемы — это конструкция, предназначенная для защиты кристалла микросхемы от внешних воздействий, а также для удобства монтажа микросхемы в электронную схему. Содержит собственно корпус из диэлектрического материала (пластмасса, реже керамика), набор проводников для электрического соединения кристалла с внешними цепями посредством выводов, маркировку.

Существует множество вариантов корпусов микросхем, различающихся по количеству выводов микросхемы, методу монтажа, условиям эксплуатации. Для упрощения технологии монтажа производители микросхем стараются унифицировать корпуса, разрабатывая международные стандарты.

Иногда микросхемы выпускают в бескорпусном исполнении — то есть кристалл без защиты. Бескорпусные микросхемы обычно предназначены для монтажа в гибридную микросборку. Для массовых дешевых изделий возможен непосредственный монтаж на печатную плату.

Мировой рынок

В 2017 году мировой рынок интегральных схем оценивался в 700 млрд долл.

Основные производители и экспортёры находятся в Азии: Сингапур (115 млрд долл.), Южная Корея (104 млрд долл.), Китай (80,1 млрд долл.) и Малайзия (55,7 млрд долл.). Крупнейший европейский экспортер — Германия (1,4 млрд долл.), американский — США (28,9 млрд долл.). Крупнейшие импортёры: Китай (207 млрд долл.), Гонконг (168 млрд долл.), Сингапур (57,8 млрд долл.), Южная Корея (38,6 млрд долл.) и Малайзия (37,3 млрд долл.).

Правовые особенности

Что говорится про интегральные схемы в законодательстве? У нас в стране предоставлена правовая охрана топологий интегральных микросхем. Под ней подразумевают зафиксированное на определённом материальном носителе геометрически-пространственного расположения определённой совокупности конкретных элементов и связей меж ними (согласно статье 1448 Гражданского кодекса Российской Федерации). Автор топологии имеет такие интеллектуальные права на своё изобретение:

Кроме этого автору топологии могут принадлежать и другие преференции, в том числе – возможность получения вознаграждения за её использование. Исключительное право действует на протяжении десяти лет. За это время изобретатель, или человек, которому этот статус был уступлен, может зарегистрировать топологию в соответствующей службе интеллектуальной собственности и патентов.

Заключение

для чего используется чип. Смотреть фото для чего используется чип. Смотреть картинку для чего используется чип. Картинка про для чего используется чип. Фото для чего используется чип
Вот и всё! Если у вас возникло желание собрать свою схему – можно только пожелать успеха. Но одновременно хочется обратить ваше внимание на одну особенность. Если есть желание собрать микросхему, то необходимо основательно подготовиться к этому процессу. Дело в том, что для её создания требуется исключительная чистота на уровне хирургической операционной, к тому же, из-за мелкости деталей поработать паяльником в обычном режиме не получится – все действия осуществляются машинами. Поэтому в домашних условиях можно создавать только схемы. При желании можно приобрести промышленные разработки, которые будут предлагаться на рынке, но идею с их изготовлением дома без значительных финансов лучше оставить.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *