для чего используется технический кислород
Чем отличается медицинский кислород от технического
Медицинский и технический газообразный кислород выпускается согласно одному стандарту — ГОСТ 5583-78 «Кислород газообразный технический и медицинский. Технические условия». Однако уже самим этим документом установлены различия между этими модификациями одного и того же газа. В стандарте указано, что технический кислород предназначен для газопламенной обработки металлов и другого технического применения, а медицинский — для дыхания и в лечебных целях. Он используется в различных медицинских процедурах, при создании дыхательных смесей для аквалангов и изолирующих противогазов.
Кроме того, предусмотрено и различие в технологии получения:
Технический кислород выпускается 1-го и 2-го сорта, для медицинского — такое деление не предусмотрено. В медицинские учреждения поставляется кислород с меньшим количеством примесей, чем технический.
В таблице приведены физико-химические характеристики газообразного кислорода (ГОСТ 5583-78), иллюстрирующие различия этих газов.
Объемная доля водяных паров,%
Согласно этому же стандарту газы проходят испытание и на другие показатели, на которые установлены нормы и требования: содержание окиси углерода, газообразных кислот и оснований, газов-окислителей, щелочей.
ГОСТ допускает по согласованию с потребителем поставлять медицинский кислород, объемная доля O2 которого составляет 99,2%. А к медицинскому кислороду для авиации предъявляется требование по содержанию водяных паров не более 0,0007%.
Производство медицинского кислорода более затратное, поэтому и стоимость его выше.
Различие существует и в баллонах. Баллоны для медицинского кислорода, так же как и для технического, изготавливаются согласно требованиям ГОСТ 949-73. Однако перед заполнением их обрабатывают окисью азота под давление 5 атм., а затем под давлением 150 атмосфер закачивается кислород. Такая технология позволяет исключить попадание нежелательных примесей.
Цвет баллонов одинаков и для технического, и для медицинского кислорода. Но на баллонах с техническим газом написано «Кислород», а емкости с газом медицинским должны иметь надпись «Медицинский кислород».
Поставляемый в баллонах газообразный медицинский кислород относится к лечебным средствам. Для его производства требуется особая лицензия, каждый баллон с таким кислородом вносится в Госреестр лекарственных средств и снабжается документами, подтверждающими его безопасность для людей.
Кислород – рождающий кислоты
Содержание
Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.
По химической активности среди неметаллов он занимает второе место после фтора.
Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и инертных газов (гелий, аргон, ксенон, криптон и неон), вступают в реакцию окисления и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер. Также необходимо учитывать тот факт, что при повышении температуры, давления или использовании катализаторов – скорость реакции окисления резко возрастает.
История открытия кислорода
Открытие кислорода приписывают Джозефу Пристли (Joseph Priestley). У него была лаборатория, оборудованная приборами для собирания газов. Он испытывал его физиологическое действие на себе и на мышах. Пристли установил, что после вдыхания газа некоторое время ощущается приятная легкость. Мыши в герметически закрытой банке с воздухом задыхаются быстрей, чем в банке с O2. Поскольку Пристли был приверженцем флогистонной теории он так и не узнал, что оказалось у него в руках. Он только описал этот газ, даже не догадываясь, что он описал. А вот лавры открытия кислорода принадлежат Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier), который и дал ему имя.
Лавуазье, поставил свой знаменитый опыт, продолжавшийся 12 дней. Он нагревал ртуть в реторте. При кипении образовывалась ее красная окись. Когда реторту охладили, оказалось, что воздуха в ней убыло почти на 1/6 его объема, а остаток ртути весил меньше, чем перед нагревом. Но когда разложили окись ртути сильным прокаливанием, все вернулось: и недостача ртути, и «исчезнувший» кислород.
Впоследствии Лавуазье установил, что этот газ входит в состав азотной, серной, фосфорной кислот. Он ошибочно полагал, что O2 обязательно входит в состав кислот, и поэтому назвал его «оксигениум», что значит «рождающий кислоты». Теперь хорошо известны кислоты, лишенные «оксигениума» (например: соляная, сероводородная, синильная и др.).
Способы получения кислорода
В основном кислород получают тремя способами:
Из атмосферного воздуха его получают методом глубокого охлаждения, как побочный продукт при получении азота.
Также O2 добывают путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода.
Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.
Наверно многие помнят химический опыт, когда в колбе нагревают марганцовку (перманганат калия KMnO4), а потом выделяющийся в процессе нагрева газ собирают в другую колбу?
Применение кислорода
Помимо того, что все живые существам в природе, за исключением немногих микроорганизмов, при дыхании потребляют кислород, он широко применяется во многих отраслях промышленности: металлургической, химической, машиностроении, авиации, ракетостроении и даже в медицине.
В химической промышленности его применяет:
В металлургии его используют:
В медицинских целях больным, у которых нарушена нормальная деятельность органов дыхания или кровообращения, искусственно увеличивают содержание O2 в воздухе или дают дышать непродолжительное время чистым O2. Медицинский кислород, выпускаемый ГОСТ 5583, особенно тщательно очищают от всех примесей.
Применение кислорода в сварке
Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки. В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.
При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).
Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.
При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.
Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.
Вредность и опасность кислорода
За внешней безобидностью скрывается очень опасный газ, но об этом на нашем сайте опубликована статья про маслоопасность и взрывоопасность кислорода и мы не будем здесь дублировать информацию.
Хранение и транспортировка кислорода
Кислород газообразный технический и медицинский выпускают по ГОСТ 5583.
Хранят и транспортируют его в стальных баллонах ГОСТ 949 под давлением 15 МПа. Кислородные баллоны окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».
Жидкий кислород выпускается по ГОСТ 6331. O2 находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой сварки или газовой резки его необходимо снова превратить в газообразное состояние.
Характеристики кислорода
Характеристики O2 представлены в таблицах ниже:
Коэффициент перевода объема и массы O2 при Т=15°С и Р=0,1 МПа
Масса, кг | Объем | |
---|---|---|
Газ, м 3 | Жидкость, л | |
1,337 | 1 | 1,172 |
1,141 | 0,853 | 1 |
1 | 0,748 | 0,876 |
Коэффициенты перевода объема и массы O2 при Т=0°С и Р=0,1 МПа
Масса, кг | Объем | |
---|---|---|
Газ, м 3 | Жидкость, л | |
1,429 | 1 | 1,252 |
1,141 | 0,799 | 1 |
1 | 0,700 | 0,876 |
Кислород в баллоне
Наименование | Объем баллона, л | Масса газа в баллоне, кг | Объем газа (м 3 ) при Т=15°С, Р=0,1 МПа |
---|---|---|---|
O2 | 40 | 8,42 | 6,3 |
Благодаря этой таблице теперь можно легко дать ответы на вопросы, которые очень часто задают сварщики:
Применение и получение кислорода в промышленности
Кислород требуется во многих сферах жизнедеятельности человека, в том числе востребован в разных отраслях промышленности. Использование кислорода в промышленности обусловлено уникальными свойствами газа. Основным потребителем является энергетика, машиностроение, металлургия, химическая и другие отрасли экономики.
Применение на производстве
Все тепловые электростанции, сжигающие твердое, газообразное и сжиженное топливо, для обеспечения работоспособности требуют кислород. В результате процесс горения проходит интенсивнее с высокой температурой горения, так как выделяющееся тепло не тратится для нагревания азота.
Чистый газ с высокой температурой горения востребован в большом количестве в машиностроении для обеспечения работы технологичного оборудования, выполняющего резку и сварку (плавку) металлических деталей. Для сварки в горелку через отдельные трубки подается кислород и ацетилен, образуя смесь газов, которая поджигается и расплавляет металл. С целью резки поверхность разогревается ацетиленовой горелкой, а затем горячая струя кислорода прожигает металл.
Использование кислорода в промышленности на химических предприятиях востребовано для интенсификации реакций при производстве кислот и реализации прочих производственных процессов. С его помощью окисляются реагенты для получения разных соединений. В металлургической промышленности:
Используется на производстве взрывчатых веществ. В нефтедобывающей отрасли позволяет повысить производительность по переработке нефти, а также увеличить вязкость нефтяного потока из скважины. Газ востребован на предприятиях для придания бумаге белизны, применяется в технологии очистки канализационных стоков. В пищевой отрасли с его помощью проводится обеззараживание складских помещений.
Производственный процесс
Более эффективным и производительным способом получения кислорода в промышленности является адсорбционная технология. Установки, работающие по этому принципу, позволяют получить газ очищенный на 95%. Атмосферный воздух освобождается от пыли, механических компонентов и фильтруется от паров воды. Под давлением подается в адсорбционный блок. На этапе поглощения адсорберов газ закачивается в ресивер, а на стадии генерации азот испаряется в атмосферу. Из ресивера кислород подается потребителям. Генераторы отличаются надежностью и возможностью полной автоматизации процесса./p>
Для получения кислорода, очищенного на 99,9% применяются криогенные системы. Такие установки отличаются ресурсом и высокой производительность, но имеют большие габариты и сложные в установке.
ГОСТ 5583-78 Кислород газообразный технический и медицинский. Технические условия
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
КИСЛОРОД ГАЗООБРАЗНЫЙ
ТЕХНИЧЕСКИЙ И МЕДИЦИНСКИЙ
ГОСТ 5583-78
(ИСО 2046-73)
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
КИСЛОРОД ГАЗООБРАЗНЫЙ ТЕХНИЧЕСКИЙ
И МЕДИЦИНСКИЙ
Technical and medical oxygen gas.
Specifications
Настоящий стандарт распространяется на технический и медицинский газообразный кислород, получаемый из атмосферного воздуха способом низкотемпературной ректификации, а также на технический газообразный кислород, получаемый электролизом воды.
Технический газообразный кислород применяют для газопламенной обработки металлов и других технических целей. Медицинский газообразный кислород применяют для дыхания и лечебных целей.
Обязательные требования к медицинскому газообразному кислороду, направленные на обеспечение его безопасности для жизни и здоровья населения, изложены в табл. 1, пп. 1, 2, 4-7, 9 для медицинского кислорода и в примечании 2.
(Измененная редакция, Изм. № 3, 4).
1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
1.1. Газообразный технический и медицинский кислород должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическим регламентам, утвержденным в установленном порядке.
1.2. Запрещается применять для дыхания и лечебных целей кислород, получаемый электролизом воды, а также кислород, получаемый способом низкотемпературной ректификации с последующим сжатием в компрессорах с поршневым уплотнением, изготовленным из фторопласта или других материалов, не проверенных медицинским надзором.
1.3. По физико-химическим показателям газообразный технический и медицинский кислород должен соответствовать нормам, указанным в табл. 1.
1. Объемная доля кислорода, %, не менее
2. Объемная доля водяных паров, %, не более
3. Объемная доля водорода, %, не более
4. Объемная доля двуокиси углерода, %, не более
5. Содержание окиси углерода
Должен выдерживать испытание по п. 3.6
6. Содержание газообразных кислот и оснований
Должен выдерживать испытание по п. 3.7
7. Содержание озона и других газов-окислителей
Должен выдерживать испытание по п. 3.8
8. Содержание щелочи
Должен выдерживать испытание по п. 3.9
1. По согласованию с потребителем допускается в медицинском кислороде объемная доля кислорода не менее 99,2 %.
2. Медицинский кислород, предназначенный для авиации, должен выпускаться с объемной долей водяных паров не более 0,0007 %.
3. Показатели, указанные в подпунктах 3 и 8, нормируются только для кислорода, получаемого электролизом воды.
4. В техническом кислороде 2-го сорта, вырабатываемом на установках высокого, среднего и двух давлений, оснащенных щелочными декарбонизаторами для очистки воздуха от двуокиси углерода, а также на установках типа СКДС-70М допускается объемная доля кислорода не менее 99,2 %.
(Измененная редакция, Изм. № 1, 3, 4).
1.4. Коды ОКП газообразного технического и медицинского кислорода приведены в табл. 1а.
Кислород газообразный технический компримированный
Кислород газообразный технический компримированный с объемной долей кислорода не менее 99,2 %
Кислород газообразный технический несжатый
Кислород газообразный технический, получаемый из привозного жидкого кислорода
Кислород газообразный медицинский
с объемной долей кислорода не менее 99,5 %
с объемной долей кислорода не менее 99,2 %
Кислород газообразный медицинский, предназначенный для авиации
* Табл. 2, 3. (Исключены, Изм, № 4).
(Измененная редакция, Изм. № 3, 4).
2. ПРАВИЛА ПРИЕМКИ
Каждая партия газообразного технического и медицинского кислорода, а также каждый баллон или моноблок-контейнер медицинского кислорода должны сопровождаться документом о качестве, содержащим следующие данные:
— наименование предприятия и его товарный знак;
— наименование и сорт продукта;
— номер партии технического или медицинского кислорода и номер баллона медицинского кислорода;
— объем газообразного кислорода, м 3 (вычисленный в соответствии с приложением 2);
— результаты проведенных анализов или подтверждение о соответствии продукта требованиям настоящего стандарта;
— обозначение настоящего стандарта.
Для медицинского кислорода указывается номер регистрационного удостоверения (Р.70/626/43) согласно Государственному реестру лекарственных средств.
(Измененная редакция, Изм. № 1, 3, 4).
Пробу газообразного кислорода, получаемого газификацией у потребителя жидкого кислорода, отбирают из вентиля для отбора пробы газификационной автомобильной установки.
(Измененная редакция, Изм. № 2).
2.3. Для проверки потребителем качества газообразного кислорода отбирают 2 % баллонов от партии, но не менее двух баллонов при партии менее 100 баллонов.
2.4. Для проверки качества газообразного кислорода, транспортируемого в автореципиентах, пробу отбирают от каждого автореципиента.
2.5. Для проверки качества газообразного кислорода, транспортируемого по трубопроводу, пробу отбирают не менее одного раза за 24 ч.
2.6. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей проводят по нему повторный анализ на удвоенной выборке; при транспортировании по трубопроводу количество проб для анализа увеличивается в 2 раза. Результаты повторного анализа распространяются на всю партию.
(Измененная редакция, Изм. № 4).
3. МЕТОДЫ АНАЛИЗА
3.1.1. Пробу кислорода из баллона или автореципиента отбирают при давлении (14,7 ± 0,5) или (19,6 ± 1,0) МПа [(150 ± 5) или (200 ± 10) кгс/см 2 ] в прибор для анализа с помощью редуктора или вентиля тонкой регулировки и соединительной трубки от точки отбора пробы до прибора. Соединительную трубку продувают не менее чем десятикратным объемом анализируемого газа.
(Измененная редакция, Изм. № 3).
3.1.2. Пробу кислорода из трубопровода отбирают с помощью газоотборной трубки из коррозионно-стойкой стали в аппаратуру для анализа или в прибор для отбора и хранения проб газа по ГОСТ 18954, либо в стеклянные пипетки. При определении примесей щелочи и водяных паров пробы отбирают только в аппаратуру для анализа. При этом трубка для подачи газа к месту анализа должна быть возможно более короткой во избежание потери определяемых примесей.
3.1.3. При определении концентрации водяных паров должна использоваться соединительная трубка из коррозионно-стойкой стали внутренним диаметром не более 4 мм, предварительно высушенная или отожженная.
3.2. Определение объемной доли кислорода
3.2.1. Аппаратура, реактивы и материалы
Измерительный аппарат для анализа кислорода АК-М1 ( черт. 1) или газоанализатор типов ПАК и А.
Весы лабораторные общего назначения 4-го класса точности с наибольшим пределом взвешивания 2 кг.
Аммоний хлористый по ГОСТ 3773.
Аммиак водный по ГОСТ 3760, раствор с массовой долей 18 %.
Аммиачный раствор хлористого аммония; готовят следующим образом: 750 г хлористого аммония растворяют в 1 дм 3 воды и добавляют 1 дм 3 раствора аммиака.
Вода дистиллированная по ГОСТ 6709.
Проволока медная круглая электротехническая диаметром 0,8-1,0 мм в виде спиралей длиной около 10 мм, диаметром витка около 5 мм.
(Измененная редакция, Изм. № 1, 3).
3.2.2. Подготовка к анализу
Для подготовки прибора (см. черт. 1) к проведению анализа необходимо цилиндрическую часть пипетки заполнить медными спиралями и закрыть пробкой. После этого заливают в пипетку и уравнительную склянку аммиачный раствор хлористого аммония.
Кран бюретки смазывают и соединяют отдельные части прибора резиновыми трубками. Затем проверяют прибор на герметичность по постоянству уровня жидкости в бюретке при закрытом кране и нижнем положении уравнительной склянки.
Перед проведением анализа заполняют аммиачным раствором цилиндрическую часть пипетки с капиллярной трубкой, капиллярную трубку 5, бюретку, проходы и капиллярные отростки крана.
Жидкость в пипетке и бюретке прибора перемещается подъемом или опусканием уравнительной склянки с аммиачным раствором. При этом поворотом крана соединяют внутренний объем бюретки с поглотительной пипеткой или атмосферой.
(Измененная редакция, Изм. № 1).
3.2.3. Проведение анализа
Для приведения объема газа в бюретке к атмосферному давлению устанавливают уровень аммиачного раствора хлористого аммония в уравнительной склянке против нулевого деления бюретки. Пережимают резиновую трубку 10 и быстрым поворотом крана выпускают из бюретки избыток газа в атмосферу. Затем поворотом крана соединяют бюретку с пипеткой и, поднимая уравнительную склянку, вытесняют весь кислород из бюретки в цилиндрическую часть пипетки. После заполнения раствором капиллярной трубки пипетки кран закрывают.
Для лучшего поглощения кислорода прибор осторожно встряхивают. Через 2-3 мин поглощение кислорода обычно заканчивается. Поворотом крана соединяют бюретку с пипеткой и, медленно опуская уравнительную склянку, переводят в бюретку непоглощенный остаток пробы. Как только аммиачный раствор начинает поступать в бюретку, кран закрывают. Газ в бюретке приводят к атмосферному давлению, устанавливая на одной высоте уровни жидкости в бюретке и уравнительной склянке. Объем остаточных газов в бюретке измеряют через 1-2 мин, выжидая, пока жидкость стечет со стенок бюретки.
Деление, соответствующее уровню жидкости в бюретке, показывает объемную долю кислорода (X) в процентах в анализируемом кислороде.
Аммиачный раствор в пипетке прибора заменяют после проведения 20-30 анализов.
За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,05 %.
Измерительный аппарат для анализа кислорода АК-М1
Допускаемая абсолютная суммарная погрешность результата анализа ± 0,05 % при доверительной вероятности Р = 0,95.
При наполнении баллонов или автореципиентов, а также при поставке кислорода по трубопроводу объемную долю кислорода допускается определять промышленными автоматическими газоанализаторами непрерывного действия по ГОСТ 13320 с погрешностью не более 0,1 %, например типа МН 5130М со шкалой 98-100 %, установленными на трубопроводе подачи кислорода к наполнительному коллектору.
При разногласиях в оценке объемной доли кислорода анализ проводят измерительным аппаратом типа АК-М1.
(Измененная редакция, Изм. № 1, 3, 4).
3.3. Определение объемной доли водяных паров
3.3.2 Проведение анализа
Кулонометрический метод основан на непрерывном количественном извлечении водяных паров из испытуемого газа гигроскопичным веществом и одновременном электростатическом разложении извлекаемой воды на водород и кислород, при этом ток электролиза является мерой концентрации водяных паров.
Прибор соединяют с местом отбора пробы трубкой из нержавеющей стали. Расход газа устанавливают (50 ± 1) см 3 /мин. Переключатель диапазонов измерения устанавливают так, чтобы показания прибора были в пределах второй трети измерительной шкалы, градуированной в миллионных долях (ррт). Ток электролиза измеряют микроамперметром.
Температура баллона с анализируемым газом должна быть не ниже 15 °С. Анализ проводят по инструкции, прилагаемой к прибору.
3.3.3. Обработка результатов
Допускается определять объемную долю водяных паров конденсационным методом, приведенным в приложении 3.
При разногласиях в оценке объемной доли водяных паров анализ проводят кулонометрическим методом.
(Измененная редакция, Изм. № 4).
3.4. Определение объемной доли водорода в кислороде, получаемом электролизом воды
3.4.1. Аппаратура, реактивы и материалы
Газоанализатор лабораторный со сжигательной пипеткой ( черт. 2).
Лабораторный газоанализатор со сжигательной пипеткой для определения объемной доли водорода
Весы лабораторные общего назначения 4-го класса точности с наибольшим пределом взвешивания 2 кг.
Аммоний хлористый по ГОСТ 3773.
Аммиак водный по ГОСТ 3760, раствор с массовой долей 18 %.
Вода дистиллированная по ГОСТ 6709.
Метиловый оранжевый (пара-диметиламиноазобензолсульфокислый натрий), индикатор, раствор с массовой долей 0,1 %.
Кислота соляная по ГОСТ 3118, раствор с массовой долей 10 %.
Аммиачный раствор хлористого аммония; готовят следующим образом: 750 г хлористого аммония растворяют в 1 дм 3 воды и добавляют 1 дм 3 раствора аммиака.
Проволока медная круглая электротехническая диаметром 0,8-1,0 мм в виде спиралей длиной около 10 мм, диаметром витка около 5 мм.
(Измененная редакция, Изм. № 1, 3, 4).
3.4.2. Подготовка к анализу
Для подготовки прибора заполняют спиралями из медной проволоки верхнюю часть поглотительного сосуда и вставляют ее через пробку в нижнюю склянку сосуда, заполненную аммиачным раствором хлористого аммония. В уравнительную склянку и в нижний сосуд сжигательной пипетки заливают раствор соляной кислоты, подкрашенный несколькими каплями раствора метилового оранжевого.
Перед проведением анализа необходимо с помощью уравнительной склянки поднять уровни растворов в измерительной бюретке, поглотительном сосуде и сжигательной пипетке до кранов. После этого краны устанавливают так, чтобы образовался сквозной проход для газа. Затем присоединяют трубку 7 к точке отбора пробы и продувают им распределительную гребенку и краны. Закончив продувку, поворачивают кран 10 в такое положение, чтобы гребенка прибора не была соединена с атмосферой.
3.4.3. Проведение анализа
Поглощают около половины объема кислорода; остаток газа возвращают в бюретку и измеряют его объем. Затем, повернув краны 8 и 9, вводят газ из бюретки в сжигательную пипетку так, чтобы уровень запорной жидкости опустился на 10-12 мм ниже платиновой спирали. Включают трансформатор и регулируют реостатом ток накала платиновой спирали, доводя накал нити до слабого красного каления. По мере сжигания водорода анализируемый кислород по частям переводят из бюретки в сжигательную пипетку. По окончании сжигания водорода весь оставшийся кислород возвращают из пипетки в бюретку и измеряют его объем. Повторяют сжигание до постоянного остаточного объема.
3.4.4. Обработка результатов
Объемную долю водорода (Х2) в процентах вычисляют по формуле
За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 10 %.
Допускаемая относительная суммарная погрешность результата анализа ± 25 % при доверительной вероятности Р = 0,95.
Объемную долю водорода допускается определять газоадсорбционным хроматографическим методом, приведенным в приложении 1, а также при наполнении баллонов или автореципиентов и при поставке по трубопроводу автоматическими газоанализаторами непрерывного действия по ГОСТ 13320 с погрешностью измерения не более 0,1 %.
При разногласиях в оценке объемной доли водорода анализ проводят лабораторным газоанализатором со сжигательной пипеткой.
(Измененная редакция, Изм. № 1, 3, 4).
3.5. Определение объемной доли двуокиси углерода
3.5.1. Аппаратура и реактивы
Пипетка 4-1(2)-1 или 5-1(2)-1 по ГОСТ 29227.
Прибор для отбора и хранения проб газа по ГОСТ 18954 вместимостью 3,0 дм 3 или склянка с тубусом 4-10 по ГОСТ 25336.
Цилиндр 1-100 по ГОСТ 1770.
Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания 200 г.
Бария гидрат окиси по ГОСТ 4107, раствор с массовой долей 5 % (поглотительный); готовят растворением 5 г гидрата окиси бария в 100 см 3 воды. Раствор быстро фильтруют через плотный бумажный фильтр и хранят в колбе, закрытой пробкой. В пробку вставлена стеклянная трубка, соединенная с промывной склянкой с раствором гидроокиси натрия или гидроокиси калия.
Вода дистиллированная по ГОСТ 6709, дополнительно очищенная от углекислоты по ГОСТ 4517 следующим образом: воду нагревают и кипятят в течение 30 мин до выделения крупных пузырей. При охлаждении и хранении воду предохраняют от двуокиси углерода, присутствующей в атмосферном воздухе.
Натрия гидроокись по ГОСТ 4328 или калия гидроокись, раствор с массовой долей 20 %.
Натрий двууглекислый по ГОСТ 4201, раствор с массовой долей 0,04 %; готовят растворением 0,04 г двууглекислого натрия в 100 см 3 воды.
(Измененная редакция, Изм. № 1, 3, 4).
3.5.2. Подготовка к анализу
Анализ проводят в склянке для промывания газов. В склянку вливают поглотительный раствор. Объем кислорода, пропущенный через поглотительный раствор, измеряют с помощью склянки с тубусом или прибора для отбора проб газа, присоединенного к короткой трубке склянки на выходе газа. Перед вливанием поглотительного раствора склянку продувают 1-2 мин анализируемым кислородом, который отбирают из баллона с помощью редуктора через резиновую трубку.
3.5.3. Проведение анализа
В склянку для промывания газов вливают 100 см 3 прозрачного раствора гидрата окиси бария. Через раствор пропускают 1000 см 3 кислорода в течение 15-20 мин.
Сравнивают в проходящем свете испытуемый и контрольный раствор, приготовленный в отдельной склянке одновременно с проведением анализа и содержащий в 100 см 3 раствора гидрата окиси бария 1 см 3 раствора двууглекислого натрия, что соответствует объемной доле двуокиси углерода 0,01 %.
Кислород считают соответствующим требованиям настоящего стандарта, если опалесценция поглотительного раствора, образующаяся при пропускании кислорода, не будет интенсивнее опаленсценции контрольного раствора.
3.5.2; 3.5.3. (Измененная редакция, Изм. № 3).
3.6. Определение содержания окиси углерода
3.6.1. Аппаратура и реактивы
Аммиак водный по ГОСТ 3760, раствор с массовой долей 10 %.
Вода дистиллированная по ГОСТ 6709.
Серебро азотнокислое по ГОСТ 1277, аммиачный раствор с массовой долей 5 %; готовят следующим образом: 5 г азотнокислого серебра растворяют в 100 см 3 воды. К раствору добавляют по каплям при постоянном помешивании раствор аммиака, пока осадок не будет почти (но не полностью) растворен. Раствор фильтруют и хранят в плотно закрытой склянке из темного стекла в защищенном от света месте.
(Измененная редакция, Изм. № 3).
3.6.3. Проведение анализа
2000 см 3 кислорода пропускают в течение 30-35 мин через склянку со 100 см 3 слабо нагретого аммиачного раствора азотнокислого серебра.
Кислород считают соответствующим требованиям настоящего стандарта, если раствор остается бесцветным и прозрачным, что свидетельствует об отсутствии окиси углерода в анализируемой пробе.
(Измененная редакция, Изм. № 3).
3.6.4. Содержание окиси углерода допускается определять линейно-колористическим методом.
Анализ проводят с помощью химического газоопределителя типа ГХ-4 (ГХ-4АМ-3) или универсального переносного газоанализатора типа УГ-2 и индикаторной трубки на окись углерода.
Просасывают через индикаторную трубку с помощью газоанализатора ГХ-4 1000 см 3 кислорода, с помощью газоанализатора УГ-2-220 см 3 кислорода.
Кислород считают соответствующим требованиям настоящего стандарта, если индикаторный порошок не окрашивается. Пороговая чувствительность метода 0,0005 %.
При разногласиях в оценке содержания окиси углерода анализ проводят с применением аммиачного раствора азотнокислого серебра.
(Измененная редакция, Изм. № 1, 3).
3.7. Определение содержания газообразных кислот и оснований
3.7.1. Аппаратура и реактивы
Вода дистиллированная, дополнительно очищенная от углекислоты по п. 3.5.1.
Кислота соляная по ГОСТ 3118, раствор концентрации с (НС l ) = 0,01 моль/дм 3 (0,01 н.).
Метиловый красный (индикатор), спиртовой раствор с массовой долей 0,2 %; готовят растворением 0,2 г метилового красного в 100 см 3 раствора этилового спирта с массовой долей 60 %.
Натрий хлористый по ГОСТ 4233, насыщенный раствор.
Спирт этиловый ректификованный технический по ГОСТ 18300, раствор с массовой долей 60 %.
(Измененная редакция, Изм. № 3).
3.7.3. Проведение анализа
Через раствор в склянке № 2 пропускают 2000 см 3 кислорода в течение 30-35 мин. Сравнивают окраску раствора в склянке № 2 с окраской растворов в склянках № 1 и 3.
Кислород считают соответствующим требованиям настоящего стандарта по содержанию газообразных оснований, если окраска раствора в склянке № 2 сохраняет розовый цвет в отличие от раствора в склянке № 1, окрашенного в желтый цвет; и соответствующим по содержанию газообразных кислот, если розовая окраска раствора в склянке № 2 будет слабее, чем в склянке № 3.
Пороговая чувствительность метода 0,001 г/моль газообразных кислоты или основания в 1 м 3 кислорода.
(Измененная редакция, Изм. № 1, 3).
3.8. Определение содержания озона и других газов-окислителей
3.8.1. Аппаратура и реактивы
Вода дистиллированная по ГОСТ 6709.
Калий йодистый по ГОСТ 4232.
Крахмал растворимый по ГОСТ 10163.
Смешанный раствор крахмала и йодистого калия; готовят следующим образом: 0,5 г йодистого калия растворяют при нагревании в 95 см 3 воды; 0,5 г крахмала размешивают в 5 см 3 холодной воды. Смесь медленно вливают при помешивании в кипящий раствор йодистого калия и кипятят 2-3 мин.
Кислота уксусная по ГОСТ 61.
3.8.3. Проведение анализа
2000 см 3 кислорода пропускают в течение 30-35 мин через склянку для промывания газов, в которую налито 100 см 3 свежеприготовленного смешанного раствора крахмала и йодистого калия и прибавлена одна капля уксусной кислоты.
Кислород считают соответствующим требованиям настоящего стандарта, если раствор остается бесцветным, что свидетельствует об отсутствии озона и других газов-окислителей в анализируемой пробе.
3.9. Определение содержания щелочи в кислороде, получаемом электролизом воды
3.9.1. Аппаратура и реактивы
Бумага фильтровальная лабораторная по ГОСТ 12026.
Фенолфталеин (индикатор), спиртовой раствор с массовой долей 1 %.
Вода дистиллированная по ГОСТ 6709.
(Измененная редакция, Изм. № 3).
3.9.2. Проведение анализа
Кислород пропускают со скоростью 100-200 см 3 /мин в течение 8-10 мин через стеклянную трубку длиной 10-11 см, диаметром 1,6 см. Узкий конец трубки длиной 2-3 см, диаметром 0,5-0,6 см соединяют с реометром резиновой трубкой. Другой конец трубки закрывают резиновой пробкой, в которую вставлена стеклянная трубочка (вход газа). В трубку помещают кусок фильтровальной бумаги размером 6 ´ 7 см с продольными складками шириной примерно 0,5 см, предварительно смоченный раствором фенолфталеина, разбавленного водой 1 : 10.
Кислород считают соответствующим требованиям настоящего стандарта, если не произойдет окрашивания фильтровальной бумаги в розовый или красный цвет.
3.10. Определение запаха
3.10.1. Запах определяют органолептически. Продукт считают соответствующим требованиям настоящего стандарта, если выпускаемый через слегка открытый вентиль кислород не обладает запахом.
4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
Номинальное давление кислорода при 20 °С при наполнении, хранении и транспортировании баллонов и автореципиентов должно составлять (14,7 ± 0,5) МПа [(150 ± 5) кгс/см 2 ] или (19,6 ± 1,0) МПа [(200 ± 10) кгс/см 2 ].
Технический и медицинский кислород транспортируют также автомобильными газификационными установками, осуществляющими газификацию жидкого кислорода непосредственно у потребителя.
Технический кислород транспортируют и по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем.
(Измененная редакция, Изм. № 3, 4).
4.2. Перед наполнением баллонов или автореципиентов медицинским кислородом необходимо сбросить в атмосферу остаточное давление газа и промыть баллоны однократным наполнением медицинским кислородом до давления не ниже 0,98 МПа (10 кгс/см 2 ) с последующим сбросом газа в атмосферу.
4.3. Возвратные баллоны и автореципиенты должны иметь остаточное давление кислорода не ниже 0,05 МПа (0,5 кгс/см 2 ).
4.2, 4.3. (Измененная редакция, Изм. № 3).
5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ
5.1. Изготовитель гарантирует соответствие качества газообразного кислорода требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
(Измененная редакция, Изм. № 3).
(Измененная редакция, Изм. № 1).
6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
6.1. Кислород не токсичен, не горюч и не взрывоопасен, однако, являясь сильным окислителем, резко увеличивает способность других материалов к горению. Поэтому для работы в контакте с кислородом могут использоваться только разрешенные для этого материалы.
6.2. Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В помещениях, где возможно увеличение объемной доли кислорода, должно быть ограничено пребывание людей и не должны находиться легковоспламеняющиеся материалы. Эти помещения должны быть оборудованы средствами контроля воздушной среды и вытяжной вентиляцией для проветривания.
6.3. Перед проведением ремонтных работ или освидетельствованием трубопроводов, баллонов, стационарных и передвижных реципиентов или другого оборудования, используемого для хранения и транспортирования газообразного кислорода, необходимо продуть все внутренние объемы воздухом. Разрешается начинать работы только после снижения объемной доли кислорода во внутренних объемах оборудования до 23 %.
6.4. После пребывания в среде, обогащенной кислородом, не разрешается курить, использовать открытый огонь и приближаться к огню. Одежда должна быть проветрена в течение 30 мин.
6.5. Баллоны, автореципиенты и трубопроводы, предназначенные для транспортирования технического и медицинского кислорода, запрещается использовать для хранения и транспортирования других газов, а также запрещается производить какие-либо операции, которые могут загрязнить их внутреннюю поверхность и ухудшить физико-химические показатели продукции.
6.6. При погрузке, разгрузке, транспортировании и хранении баллонов должны применяться меры, предотвращающие падение, удары друг о друга, повреждение и загрязнение баллонов маслом. Баллоны должны быть предохранены от атмосферных осадков и нагревания солнечными лучами и другими источниками тепла.
6.7. При загорании железнодорожного вагона с баллонами кислорода необходимо отцепить вагон и откатить его в безопасное место. Одновременно следует применять меры к предупреждению нагревания баллонов путем их усиленного охлаждения водой и к тушению пожара.
ПРИЛОЖЕНИЕ 1
ОПРЕДЕЛЕНИЕ ОБЪЕМНОЙ ДОЛИ ВОДОРОДА В КИСЛОРОДЕ, ПОЛУЧАЕМОМ ЭЛЕКТРОЛИЗОМ ВОДЫ, ХРОМАТОГРАФИЧЕСКИМ МЕТОДОМ
1. Аппаратура, материалы и реактивы
Азот газообразный технический по ГОСТ 9293, первого сорта или аргон газообразный по ГОСТ 10157, высшего сорта.
(Измененная редакция, Изм. № 1, 3).
2. Подготовка к анализу
2.1. Подготовка газохроматографической колонки.
Цеолит синтетический измельчают, отсеивают фракцию с размером частиц 0,25-0,50 мм, прокаливают ее в муфельной печи при 280 °С в течение 6 ч в токе сухого инертного газа и быстро загружают в колонку.
2.2. Объемную долю водорода определяют методом абсолютной градуировки, используя для этого градуировочную смесь, которую вводят в хроматограф с помощью дозатора. Градуировочный коэффициент (К) в см 3 /мм вычисляют по формуле
Ток питания детектора и чувствительность регистратора устанавливают опытным путем в зависимости от состава градуировочной смеси и типа хроматографа.
Градуировочный коэффициент вычисляют по среднему значению высоты пика, рассчитанному не менее чем из трех параллельных определений. Градуировочную характеристику хроматографа проверяют один раз в месяц, используя газовую смесь с установленной объемной долей водорода в азоте 0,5-0,7 %.
(Измененная редакция, Изм. № 1, 3).
3. Проведение анализа
4. Обработка результатов
Объемную долю водорода (X) в процентах вычисляют по формуле
За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 15 %.
Допускаемая относительная суммарная погрешность результата анализа ± 25 % при доверительной вероятности Р = 0,95.
(Измененная редакция, Изм. № 1, 4).
ПРИЛОЖЕНИЕ 2
РАСЧЕТ ОБЪЕМА ГАЗООБРАЗНОГО КИСЛОРОДА В БАЛЛОНЕ
1. Объем газообразного кислорода в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле
Значения коэффициента К1 приведены в таблице 4.
Температура газа в баллоне, °С
Значение коэффициента Ki при избыточном давлении, МПа (кгс/см 2 )