для чего нужен азот в организме человека
Для чего нужен азот в организме человека
Азот – один из элементов-органогенов (т.е. из которых в основном состоят все органы и ткани), массовая доля которого в организме человека составляет до 2,5%. Азот является составной частью таких веществ, как аминокислоты (а, следовательно, пептидов и белков), нуклеотиды, гемоглобин, некоторых гормонов и медиаторов.
Биологическая роль азота
Чистый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.
Некоторые гормоны также представляют собой производные аминокислот, а, следовательно, также содержат азот (инсулин, глюкагон, тироксин, адреналин и пр.). Некоторые медиаторы, при помощи которых «общаются» нервные клетки также имеют в своем составе атом азота (ацетилхолин).
Такое соединения как оксид азота (II) и его источники (например, нитроглицерин – лекарственное средство для снижения давления) воздействуют на гладкую мускулатуру кровеносных сосудов, обеспечивая ее расслабление и расширение сосудов в целом (приводит к снижению давления).
Пищевые источники азота
Не смотря на доступность азота для живых организмов (составляет почти 80% атмосферы нашей планеты), человеческий организм не способен усваивать азот в такой (элементарной) форме. В организм человека азот в основном поступает в составе белков, пептидов и аминокислот (растительных и животных), а также в составе таких азотсодержащих соединений, как: нуклеотиды, пурины, и др.
Дефицит азота
Как явление никогда не наблюдают дефицит азота. Поскольку организму в элементарной форме он не нужен, дефицита, соответственно, никогда и не возникает. В отличие от самого азота, дефицит веществ его содержащих (прежде всего белков) явление достаточно частое.
Причины дефицита азота
Последствия дефицита азота
Избыток азота
Как и дефицит, избыток азота как явление не наблюдается никогда – можно говорить только об избытке веществ, его содержащих. Наиболее опасно, когда азот поступает в значительных количествах в организм человека в составе токсичных веществ, например, нитратов и нитритов.
Причины избытка азота
Последствия избытка азота
Суточная потребность в азоте:
10-20 г (соответствует 60-100 г белка в сутки)
Для чего нужен азот в организме человека
Факторы, определяющие выживаемость у пациентов с протоковой аденокарциномой поджелудочной железы
Как повысить частоту обнаружения аденом правых отделов толстой кишки?
Сравнение различных методов дренирования желчного пузыря при остром холецистите
Частота неполной резекции колоректальных полипов. Результаты систематического обзора и мета-анализа
Плюсы и минусы экстренного эндоскопического исследования у пациентов с острым кровотечением из верхних отделов ЖКТ
Феномен Рейно
Феномен Рейно — это эпизодические, самопроизвольно купирующиеся и обратимые вазомоторные расстройства, проявляющиеся симметричным изменением цвета пальцев кистей и стоп, иногда ушей, носа и губ. Порядок изменения цвета таков: побледнение, цианоз и эритема, которые возникают при охлаждении и/или стрессовой ситуации.
Для установления диагноза феномена Рейно не обязательно наблюдать все три цвета: достаточно эпизодического появления побледнения или цианоза, после которых возникает эритема или кожа приобретает обычный цвет. При этом пациенты могут жаловаться на онемение, покалывание или боль в пораженных участках.
Необходимо уметь дифференцировать первичный феномен Рейно от вторичного. Первичный феномен Рейно (болезнь Рейно) развивается на фоне отсутствия органического поражения сосудов. Вторичный феномен Рейно проявляется как симптом какого-либо заболевания — системной склеродермии, смешанного заболевания соединительной ткани, системной красной волчанки или некоторых злокачественных опухолей.
Распространенность болезни Рейно в общей популяции составляет примерно 10%, а среди женщин молодого возраста — 20-30%. Феномен Рейно выявляется почти у всех пациентов с системной склеродермией, причем у 70% из них он служит ранним проявлением заболевания.
В терапии применяются различные вазодилататоры (антагонисты кальция). На пораженные участки кожи 3 раза в день на 20 мин наносят небольшое количество мази с нитроглицерином; данный метод достаточно эффективен, но часто вызывает у пациента головную боль. При тяжелых проявлениях синдрома Рейно внутривенно вводят простациклин или его аналог.
Всероссийская Образовательная Интернет-Сессия
Информация и материалы, представленные на настоящем сайте, носят научный, справочно-информационный и аналитический характер, предназначены исключительно для специалистов здравоохранения, не направлены на продвижение товаров на рынке и не могут быть использованы в качестве советов или рекомендаций пациенту к применению лекарственных средств и методов лечения без консультации с лечащим врачом.
Лекарственные препараты, информация о которых содержится на настоящем сайте, имеют противопоказания, перед их применением необходимо ознакомиться с инструкцией и проконсультироваться со специалистом.
Мнение Администрации может не совпадать с мнением авторов и лекторов. Администрация не дает каких-либо гарантий в отношении cайта и его cодержимого, в том числе, без ограничения, в отношении научной ценности, актуальности, точности, полноты, достоверности научных данных представляемых лекторами или соответствия содержимого международным стандартам надлежащей клинической практики и/или медицины основанной на доказательствах. Сайт не несет никакой ответственности за любые рекомендации или мнения, которые могут содержаться, ни за применимость материалов сайта к конкретным клиническим ситуациям. Вся научная информация предоставляется в исходном виде, без гарантий полноты или своевременности. Администрация прикладывает все усилия, чтобы обеспечить пользователей точной и достоверной информацией, но в то же время не исключает возможности возникновения ошибок.
Научная электронная библиотека
Колосов А. Е., Жданова О. Б., Мартусевич А. К., Ашихмин С. П.,
1.3. Краткая характеристика азотистого обмена в организме человека и млекопитающих
Азотистый обмен (АО) – совокупность химических превращений, реакций синтеза и распада азотистых соединений в организме; составная часть обмена веществ и энергии. Понятие «азотистый обмен» включает в себя белковый обмен (совокупность химических превращений в организме белков и продуктов их метаболизма), а также обмен пептидов, аминокислот, нуклеиновых кислот, нуклеотидов, азотистых оснований, азотсодержащих липидов, витаминов, гормонов и других соединений, содержащих азот.
Организм животных и человека усвояемый азот получает с пищей, в которой основным источником азотистых соединений являются белки животного и растительного происхождения. Главным фактором поддержания азотистого равновесия – состояния АО, при котором количество вводимого и выводимого азота одинаково, – служит адекватное поступление белка с пищей. Еще в СССР суточная норма белка в питании взрослого человека принята равной 100 г (или 16 г азота белка) при расходе энергии 2500 ккал.
Азотистый баланс (разность между количеством азота, который попадает в организм с пищей, и количеством азота, выводимого из организма с мочой, калом, потом) является показателем интенсивности АО в организме. Голодание или недостаточное по азоту питание приводят к отрицательному азотистому балансу, или азотистому дефициту, при котором количество азота, выводимого из организма, превышает количество азота, поступающего в организм с пищей. Положительный азотистый баланс, при котором вводимое с пищей количество азота превышает количество азота, выводимое из организма, наблюдается в период роста организма, при процессах регенерации тканей и т.д. Состояние АО в значительной степени зависит от качества пищевого белка, которое, в свою очередь, определяется его аминокислотным составом и прежде всего наличием незаменимых аминокислот.
Принято считать, что у человека и позвоночных животных АО начинается с переваривания азотистых соединений пищи в желудочно-кишечном тракте. В желудке происходит расщепление белков при участии пищеварительных протеолитических ферментов Трипсина и гастриксина с образованием полипептидов, олигопептидов и отдельных аминокислот. Из желудка пищевая масса поступает в двенадцатиперстную кишку и нижележащие отделы тонкой кишки, где пептиды подвергаются дальнейшему расщеплению, катализируемому ферментами сока поджелудочной железы трипсином, химотрипсином и карбоксипептидазой и ферментами кишечного сока аминопептидазами и дипептидазами. Наряду с пептидами, в тонкой кишке расщепляются сложные белки (например, нуклеопротеины) и нуклеиновые кислоты. Существенный вклад в расщепление азотсодержащих биополимеров вносит и микрофлора кишечника. Олигопептиды, аминокислоты, нуклеотиды, нуклеозиды и др. всасываются в тонкой кишке, поступают в кровь и с ней разносятся по всему организму. Белки тканей организма в процессе постоянного обновления также подвергаются протеолизу под действием тканевых протеаз (пептидаз и катепсинов), а продукты распада тканевых белков попадают в кровь. Аминокислоты могут быть использованы для нового синтеза белков и других соединений (пуриновых и пиримидиновых оснований, нуклеотидов, порфиринов и т.д.), для получения энергии (например, посредством включения в цикл трикарбоновых кислот) или могут быть подвергнуты дальнейшей деградации с образованием конечных продуктов АО, подлежащих выведению из организма.
Продуктом разных путей деградации аминокислот является аммиак, который может образовываться и в результате метаболизма других азотсодержащих соединений (например, при дезаминировании аденина, входящего в состав никотинамидадениндинуклеотида – НАД). Основным путем связывания и нейтрализации токсичного аммиака у уреотелических животных (животные, у которых конечным продуктом АО, является мочевина) служит так называемый цикл мочевины (синоним: орнитиновый цикл, цикл Кребса-Гензелейта), протекающий в печени. Он представляет собой циклическую последовательность ферментативных реакций, в результате которой из молекулы аммиака или амидного азота глутамина, аминогруппы аспарагановой кислоты и диоксида углерода осуществляется синтез мочевины. При ежедневном потреблении 100 г белка суточное выведение мочевины из организма составляет около 30 г. У человека и высших животных существует еще один путь нейтрализации аммиака – синтез амидов дикарбоновых кислот аспарагана и глутамина из соответствующих аминокислот. У урикотелических животных (рептилии, птицы) конечным продуктом АО является мочевая кислота.
В результате расщепления нуклеиновых кислот и нуклеопротеинов в желудочно-кишечном тракте образуются нуклеотиды и нуклеозиды. Олиго- и моно-нуклеотиды при участии различных ферментов (эстераз, нуклеотидаз, нуклеозидаз, фосфорилаз) превращаются затем в свободные пуриновые и пиримидиновые основания.
Дальнейший путь деградации пуриновых оснований аденина и гуанина состоит в их гидролитическом дезаминировании под влиянием ферментов аденазы и гуаназы с образованием соответственно гипоксантина (6-оксипурина) и ксантина (2,6-диоксипурина), которые затем превращаются в мочевую кислоту в реакциях, катализируемых ксантиноксидазой. Мочевая кислота – один из конечных продуктов АО и конечный продукт обмена пуринов у человека – выводится из организма с мочой. У большинства млекопитающих имеется фермент уриказа, который катализирует превращение мочевой кислоты в экскретируемый аллантоин.
Таким образом, разнообразные превращения важнейших азотистых соединений организма связаны между собой в единый обмен. Сложный процесс АО регулируется на молекулярном, клеточном и тканевом уровнях. Регуляция АО в целом организме направлена на приспособление интенсивности АО к изменяющимся условиям окружающей и внутренней среды и осуществляется нервной системой как непосредственно, так и путем воздействия на железы внутренней секреции.
У здоровых взрослых людей содержание азотистых соединений в органах, тканях, биологических жидкостях находится на относительно постоянном уровне. Избыток азота, поступившего с пищей, выводится с мочой и калом, а при недостатке азота в пище нужды организма в нем могут покрываться за счет использования азотистых соединений тканей тела. При этом состав мочи изменяется в зависимости от особенностей АО и состояния азотистого баланса. В норме при неизменном режиме питания и относительно стабильных условиях окружающей среды из организма выделяется постоянное количество конечных продуктов АО, а развитие патологических состояний приводит к его резкому изменению. Значительные изменения экскреции азотистых соединений с мочой, в первую очередь экскреции мочевины, могут наблюдаться и при отсутствии патологии в случае существенного изменения режима питания (например, при изменении количества потребляемого белка), причем концентрация остаточного азота в крови меняется незначительно.
При исследовании АО необходимо учитывать количественный и качественный состав принимаемой пищи, количественный и качественный состав азотистых соединений, выделяемых с мочой и калом и содержащихся в крови. Для исследования АО применяют азотистые вещества, меченные радионуклидами азота, фосфора, углерода, серы, водорода, кислорода, и наблюдают за миграцией метки и включением ее в состав конечных продуктов АО Широко используют меченые аминокислоты, например 15N-глицин, которые вводят в организм с пищей или непосредственно в кровь. Значительная часть меченого азота глицина пищи выводится в составе мочевины с мочой, а другая часть метки попадает в тканевые белки и выводится из организма крайне медленно. Проведение исследования АО необходимо для диагностики многих патологических состояний и контроля эффективности лечения, а также при разработке рациональных схем питания, в т.ч. лечебного.
Патологию АО (вплоть до клинически значимой) вызывает белковая недостаточность. Ее причиной может стать общее недоедание, продолжительный дефицит белка или незаменимых аминокислот в рационе, недостаток углеводов и жиров, обеспечивающих энергией процессы биосинтеза белка в организме. Белковая недостаточность может быть обусловлена преобладанием процессов распада белков над их синтезом не только в результате алиментарного дефицита белка и других важнейших пищевых веществ, но и при тяжелой мышечной работе, травмах, воспалительных и дистрофических процессах, ишемии, инфекции, обширных ожогах, дефекте трофической функции нервной системы, недостаточности гормонов анаболического действия (гормона роста, половых гормонов, инсулина), избыточном синтезе или избыточном поступлении извне стероидных гормонов и т.п. Нарушение усвоения белка при патологии желудочно-кишечного тракта (ускоренная эвакуация пищи из желудка, гипо- и анацидные состояния, закупорка выводного протока поджелудочной железы, ослабление секреторной функции и усиление моторики тонкой кишки при энтеритах и энтероколитах, нарушение процесса всасывания в тонкой кишке и др.) также может приводить к белковой недостаточности. Белковая недостаточность ведет к дискоординации АО и характеризуется резко выраженным отрицательным азотистым балансом.
Известны случаи нарушения синтеза определенных белков, а также генетически обусловленного синтеза аномальных белков, например при гемоглобинопатиях, миеломной болезни и др.
Патология АО, заключающаяся в нарушении обмена аминокислот, часто связана с аномалиями процесса трансаминирования: уменьшением активности аминотрансфераз при гипо- или авитаминозах В6, нарушением синтеза этих ферментов, недостатком кетокислот для трансаминирования в связи с угнетением цикла трикарбоновых кислот при гипоксии и сахарном диабете и т.д. Снижение интенсивности трансаминирования приводит к угнетению дезаминирования глутаминовой кислоты, а оно, в свою очередь, – к повышению доли азота аминокислот в составе остаточного азота крови (гипераминоацидемии), общей гиперазотемии и аминоацидурии. Гипераминоацидемия, аминоацидурия и общая азотемия характерны для многих видов патологии АО. При обширных поражениях печени и других состояниях, связанных с массивным распадом белка в организме, нарушаются процессы дезаминирования аминокислот и образования мочевины таким образом, что возрастают концентрация остаточного азота и содержание в нем азота аминокислот на фоне снижения относительного содержания в остаточном азоте азота мочевины (так называемая продукционная азотемия). Продукционная азотемия, как правило, сопровождается выведением избытка аминокислот с мочой, поскольку даже в случае нормального функционирования почек фильтрация аминокислот в почечных клубочках происходит интенсивнее, чем их реабсорбция в канальцах. Заболевания почек, обтурация мочевых путей, нарушение почечного кровообращения приводят к развитию ретенционной азотемии, сопровождающейся нарастанием концентрации остаточного азота в крови за счет повышения содержания в крови мочевины. Обширные раны, тяжелые ожоги, инфекции, повреждения трубчатых костей, спинного и головного мозга, гипотиреоз, болезнь Иценко–Кушинга и многие другие тяжелые заболевания сопровождаются аминоацидурией. Она характерна и для патологических состояний, протекающих с нарушением процессов реабсорбции в почечных канальцах: болезни Вильсона–Коновалова (гепатоцеребральная дистрофия), нефронофтизе Фанкони и др. Эти болезни относятся к многочисленным генетически обусловленным нарушениям АО. Избирательное нарушение реабсорбции цистина и цистинурия с генерализованным нарушением обмена цистина на фоне общей аминоацидурии сопровождает так называемый цистиноз. При этом заболевании кристаллы цистина откладываются в клетках ретикулоэндотелиальной системы. Наследственное заболевание фенилкетонурия характеризуется нарушением превращения фенилаланина в тирозин в результате генетически обусловленной недостаточности фермента фенилала-
нин – 4-гидроксилазы, что вызывает накопление в крови и моче непревращенного фенилаланина и продуктов его обмена – фенилпировиноградной и фенилуксусной кислот. Нарушение превращений этих соединений характерно и для вирусного гепатита.
Тирозинемию, тирозинурию и тирозиноз отмечают при лейкозах, диффузных заболеваниях соединительной ткани (коллагенозах) и других патологических состояниях. Они развиваются вследствие нарушения трансаминирования тирозина. Врожденная аномалия окислительных превращений тирозина лежит в основе алкаптонурии, при которой в моче накапливается непревращенный метаболит этой аминокислоты – гомогентизиновая кислота. Нарушения пигментного обмена при гипокортицизме связаны с угнетением превращения тирозина в меланин вследствие ингибирования фермента тирозиназы (полное выпадение синтеза этого пигмента характерно для врожденной аномалии пигментации – альбинизма).
При хроническом гепатите, сахарном диабете, остром лейкозе, хроническом миело- и лимфолейкозе, лимфогранулематозе, ревматизме и склеродермии нарушается обмен триптофана и его метаболиты 3-оксикинуренин, ксантуреновая и 3-оксиантраниловая кислоты, обладающие токсическими свойствами, накапливаются в крови. К патологии АО относятся и состояния, связанные с нарушением выделения почками креатинина и накоплением его в крови. Усиление экскреции креатинина сопровождает гиперфункцию щитовидной железы, а снижение экскреции креатинина при повышенном выведении креатина – гипотиреоз.
При массивном распаде клеточных структур (голодание, тяжелая мышечная работа, инфекции и др.) отмечают патологическое нарастание концентрации остаточного азота за счет увеличения относительного содержания в ней азота мочевой кислоты (в норме концентрация мочевой кислоты в крови не превышает 0,4 ммоль/л).
В пожилом возрасте снижаются интенсивность и объем синтеза белка за счет непосредственного угнетения биосинтетической функции организма и ослабления его способности усваивать аминокислоты пищи; развивается отрицательный азотистый баланс. Нарушения обмена пуринов у людей пожилого возраста приводят к накоплению и отложению в мышцах, суставах и хрящах солей мочевой кислоты – уратов. Коррекция нарушений АО в пожилом возрасте может быть осуществлена за счет специальных диет, содержащих полноценные животные белки, витамины и микроэлементы, с ограниченным содержанием пуринов.
Азотистый обмен у детей отличается рядом особенностей, в частности положительным азотистым балансом как необходимым условием роста. Интенсивность процессов АО на протяжении роста ребенка подвергается изменениям, особенно ярко выраженным у новорожденных и детей раннего возраста. В течение первых 3-х дней жизни азотистый баланс отрицателен, что объясняется недостаточным поступлением белка с пищей. В этот период обнаруживается транзиторное повышение концентрации остаточного азота в крови (так называемая физиологическая азотемия), иногда достигающее 70 ммоль/л; к концу 2-й нед. жизни концентрация остаточного азота снижается до уровня, отмечаемого у взрослых. Количество выделяемого почками азота нарастает в течение первых 3-х дней жизни, после чего снижается и вновь начинает увеличиваться со 2-й недели жизни параллельно возрастающему количеству пищи.
Наиболее высокая усвояемость азота в организме ребенка наблюдается у детей первых месяцев жизни. Азотистый баланс заметно приближается к равновесию в первые 3-6 мес. жизни, хотя и остается положительным. Интенсивность белкового обмена у детей достаточно высока у детей 1-го года жизни обновляется около 0,9 г белка на 1 кг массы тела в сутки, в 1-3 года –
0,8 г/кг/сут, у детей дошкольного и школьного возраста – 0,7 г/кг/сут.
Средние величины потребности в незаменимых аминокислотах, по данным ФАО ВОЗ (1985), у детей в 6 раз больше, чем у взрослых (незаменимой аминокислотой для детей в возрасте до 3 месяцев является цистин, а до 5 лет – и гистидин). Более активно, чем у взрослых, у детей протекают процессы трансаминирования аминокислот. Однако в первые дни жизни у новорожденных из-за относительно низкой активности некоторых ферментов отмечаются гипераминоацидемия и физиологическая аминоацидурия в результате функциональной незрелости почек. У недоношенных, кроме того, имеет место аминоацидурия перегрузочного типа, т.к. содержание свободных аминокислот в плазме их крови выше, чем у доношенных детей. На первой неделе жизни азот аминокислот составляет 3-4 % общего азота мочи (по некоторым данным – до 10 %), и лишь к концу 1-го года жизни его относительное содержание снижается до 1 %. У детей 1-го года жизни выведение аминокислот в расчете на 1 кг массы тела достигает величин выведения их у взрослого человека, экскреция азота аминокислот, достигающая у новорожденных 10 мг/кг массы тела, на 2-м году жизни редко превышает 2 мг/кг массы тела. В моче новорожденных повышено (по сравнению с мочой взрослого человека) содержание таурина, треонина, серина, глицина, аланина, цистина, лейцина, тирозина, фенилаланина и лизина. В первые месяцы жизни в моче ребенка обнаруживаются также этаноламин и гомоцитруллин. В моче детей 1-го года жизни преобладают аминокислоты пролин и [гидр]оксипролин.
Исследования важнейших азотистых компонентов мочи у детей показали, что соотношение мочевой кислоты, мочевины и аммиака в процессе роста существенно изменяется. Так, первые 3 мес. жизни характеризуются наименьшим содержанием в моче мочевины (в 2–3 раза меньше, чем у взрослых) и наибольшей экскрецией мочевой кислоты. Дети в первые три месяца жизни выделяют 28,3 мг/кг массы тела мочевой кислоты, а взрослые – 8,7 мг/кг. Относительно высокая экскреция у детей первых месяцев жизни мочевой кислоты способствует иногда развитию мочекислого инфаркта почек. Количество мочевины в моче нарастает у детей в возрасте от 3 до 6 месяцев, а содержание мочевой кислоты в это время снижается. Содержание аммиака в моче детей в первые дни жизни невелико, но затем резко возрастает и держится на высоком уровне на протяжении всего 1-го года жизни.
Характерной особенностью АО у детей является физиологическая креатинурия. Креатин обнаруживается еще в амниотической жидкости; в моче он определяется в количествах, превышающих содержание креатина в моче взрослых, начиная с периода новорожденности и до периода полового созревания. Суточная экскреция креатинина (дегидроксилированного креатина) с возрастом увеличивается, в то же время по мере нарастания массы тела ребенка относительное содержание азота креатинина мочи снижается. Количество креатинина, выводимого с мочой за сутки, у доношенных новорожденных составляет 10-13 мг/кг, у недоношенных – 3 мг/кг, у взрослых не превышает 30 мг/кг.
При выявлении в семье врожденного нарушения АО необходимо проведение медико-генетического анализа.
1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М., 1982. – С. 431.
2. Вельтищев Ю.Е. с соавт. Обмен веществ у детей. М., 1983. – С. 53,
3. Дудел Дж. с соавт. Физиология человека / пер. с англ. – М., 1985. – т. 1-4.
4. Зилва Дж.Ф., Пэннелл П.Р. Клиническая химия в диагностике и лечении / пер. с англ. – М., 1988. – С. 298-398.
5. Кон Р.М., Рой К.С. Ранняя диагностика болезней обмена веществ / пер. с англ. – М., 1986. – С. 211.
6. Лабораторные методы исследования в клинике / под ред. В.В. Меньшикова. – М., 1987. – С. 222.
7. Ленинджер А. Основы биохимии / пер. с англ. М., 1985. – Т. 2.
8. Мазурин А.В., Воронцов И.М. Пропедевтика детских болезней. М., 1985. – С. 322.
9. Руководство по педиатрии / под. ред. У.Е. Бермана и В.К. Вогана: пер. с англ. – М., 1987. – кн. 2. – С. 337
10. Страйер Л. Биохимия / пер. с англ. – М., 1985. – т. 2. – С. 233.