для чего нужен фотодиод

Принцип работы фотодиода, схема и устройство фотодиода

Что такое фотодиод? Это полупроводник, создающий электрический ток, под воздействием света.

Чтобы понять работу фотодиода, разберемся сначала в работе диода. Диод – полупроводник, который пропускает ток в одном направлении.

Слева на рисунке полупроводник р-типа, справа n-типа, иными словами слева избыток «дырок» (положительно заряженных атомов), справа избыток свободных электронов. В результате диффузии дырки попадают в n-область, а электроны в p-область. На границе областей часть дырок и электронов рекомбинируют. Оставшиеся проходят, создавая запирающий слой, который препятствует перемещению дырок и электронов.

У фотодиода светочувствительная n-область. Если он затемнен, то ведет себя, как обычный диод. Свет – электромагнитные волны – попадая в n-область фотодиода, выбивает электроны с внешних оболочек атомов. Появляется множество дырок и электронов (фотоносителей), которые диффундируют во все стороны. Р-n-переход пропускает дырки, но задерживает электроны. Возникает электрический ток.

Режимы работы фотодиодов

В результате накопления дырок и электронов соответственно в р-слое и в n-слое, образуется разность потенциалов – электродвижущая сила, которая создает обратный ток, от катода к аноду. Во внешней цепи ток будет от анода к катоду. То есть имеем солнечную электрическую батарею. В зависимости от того, как используется эффект превращения света в электрический ток, фотодиоды делятся на:

Pin-фотодиод

В наше время широко применяются волоконно-оптические системы связи. В них для преобразования света в электрический сигнал применяются pin-фотодиоды. Р и n слои фотодиода изготавливают при помощи легирования (добавления примесей в полупроводник). Плюс говорит о том, что легирование повышенное, то есть добавок больше, чем обычно).

Средняя часть фотодиода – i часть – слаболегированный проводник n-типа. При подачи обратного напряжения, в этом слое возникает обедненная область (мало дырок и электронов). Поэтому сопротивление этой части диода велико, намного больше, чем в р+ и n+ слоях. Как следствие, электрическое поле сосредоточено в и-области. Фотон поглощенный в и-зоне рождает пару: электрон и дырка.

Сильное поле i-области мгновенно разделяет их по электродам: дырка поглощается катодом, электрон – анодом. Возникает электрический ток. Pin фотодиоды очень эффективны. Наибольшая частота, с которой они работают достигает 1010 герц. Что позволяет передавать терабайты информации за 1 секунду.

Как видим из рисунка, ширина и-слоя намного больше, чем ширина р+ и n+ слоев. Это сделано для того, чтобы фотоны поглощались бы в и-зоне, а не в соседних слоях.

Лавинный фотодиод

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

В волоконно-оптических системах связи помимо pin фотодиодов применяются лавинные фотодиоды (ЛФД).

ЛФД отличаются от ПИН фотодиодов наличием дополнительного р-слоя. Количество легирующих примесей подбирается так, что наибольшее сопротивление имеет р-слой. Это приводит к тому, что наибольшее падение напряжения происходит в р-слое. Фотон попадая в светочувствительный i-слой выбивает электрон, который устремляется к аноду. Соответствующая электрону дырка движется к катоду.

Электрон на своем пути попадает в зону высокого напряжения р-слоя. Здесь скорость электрона резко возрастает и становится достаточной для выбивания с внешней орбиты атомов р-слоя других электронов. Новые свободные электроны в свою очередь сбивают с валентных слоев дополнительные электроны. Процесс нарастает лавинообразно. Поэтому этот тип фотодиодов называется лавинным.

На рисунке показано резкое усиление электродвижущей силы в зоне р-слоя. Первичный ток, возникший в и-слое, лавинообразно усиливается в р-слое. Коэффициент умножения может достигать нескольких сотен. Слишком большое умножение приводит к большим шумам, которые увеличиваются быстрее сигнала. Оптимальный коэффициент умножения находится в пределах от30 до 100.

Основные характеристики фотодиодов

Мы рассмотрели физические аспекты работы фотодиодов. Чтобы до конца разобраться в том, что такое фотодиод необходимо ознакомиться с его математическим описанием. Главные характеристики фотодиодов: вольтамперная, световая и спектральная. Рассмотрим ВАХ:

Мы видим семейство кривых, характеризующих зависимость тока, проходящего через фотодиод от приложенного напряжения. Каждая кривая соответствует различным потокам излучения (светового или инфракрасного). Кривая Ф=0 характеризует функционирование фотодиода в темноте. Все кривые не заходят во II четверть. Рабочая область III четверть.

Очень интересный факт, заключается в том, что в III четверти сила тока почти не зависит от приложенного обратного напряжения и сопротивления нагрузки. Она зависит от величины светового потока. Чем больше поток, тем больше сила тока. Уравнение зависимости обратного напряжения от силы тока имеет вид:

Где Еобр – разность потенциалов источника обратного напряжения;

U – обратное напряжение на фотодиоде;

Iф– фототок (ток нагрузки);

R – резистор нагрузки.

Мы видим, что фотодиод в рабочей четверти является источником тока во внешней цепи.

I четверть – нерабочая зона фотодиода. Здесь приложено к нему прямое напряжение. Диффузный ток подавляет фототок.

В IV четверти фотодиод работает, как фотогальванический элемент. Точка пересечения кривой с осью абсцисс соответствует значению ЭДС, возникающей при отсутствии тока в цепи. То есть при R= ∞. У кремниевых фотодиодов Uх при разных потоках Ф равно приблизительно 0,5в.

Точка пересечения кривых с осью ординат показывает ток короткого замыкания. То есть ток при R=0.

Заштрихованная область показывает оптимальный режим для потока Ф1.

Источник

Как применять фоторезисторы, фотодиоды и фототранзисторы

Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.

Содержание статьи

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Основные виды фотоэлектронных приборов. Общие сведения

Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.

Фоторезисторы – изменяют сопротивление при освещении

Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора

Интересно:

Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.

Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.

Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.

У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.

Фотодиод – преобразует свет в электрический заряд

Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.

Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.

У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.

В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).

Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.

где Sинт – интегральная чувствительность, Ф – световой поток.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.

Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Фототранзисторы – открываются от количества падающего света

Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

В схему включают фототранзисторы подобным образом.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.

Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.

В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Области применения фотоэлектронных приборов

В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.

Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).

У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.

Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.

Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.

В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.

В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Применение для передачи сигналов в электронных схемах

Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.

Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.

Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Рассмотрим пару примеров использования таких приборов.

Управление симистором с помощью микроконтроллера

Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Обратная связь с помощью оптопары

В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.

Выводы

Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.

Источник

Что такое фотодиод?

В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.

Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.

Обозначение на схемах

На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.

Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Режимы работы фотодиода

Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).

В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Вольтамперная характеристика

Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.

При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.

При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.

Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.

Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:

— холостой ход (хх),
— короткое замыкание (кз).

Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.

В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.

В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.

Источник

Фотодиоды. Виды и устройство. Работа и характеристики

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиоды входят в состав многих электронных устройств. Поэтому они и приобрели широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы

Фотодиоды способны функционировать в следующих режимах:

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p i n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 10 10 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод
Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

для чего нужен фотодиод. Смотреть фото для чего нужен фотодиод. Смотреть картинку для чего нужен фотодиод. Картинка про для чего нужен фотодиод. Фото для чего нужен фотодиод

I — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность
Факторы, влияющие на эту характеристику:
Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *