для чего нужен индуктивный шунт на электровозе
Как уже было сказано, регулировать частоту вращения тяговых двигателей при неизменном подводимом напряжении можно, изменяя магнитный поток возбуждения тяговых двигателей.
В двигателях последовательного возбуждения, у которых ток якоря проходит и по обмотке возбуждения, возможно только уменьшать магнитный поток, что принято называть ослаблением возбуждения двигателей. В этом случае при той же частоте вращения увеличивается ток якоря, а следовательно, и мощность, потребляемая из контактной сети. Ослабление возбуждения осуществляют двумя способами: отключением части витков обмотки возбуждения (рис. 41, а) и включением параллельно ей регулируемого резистора (рис. 41, б).
Рис.41 Схемы, поясняющие способы ослабления магнитного потока полюсов
Рис.42 Тяговые характеристики электровоза ВЛ-10
Развиваемая сила тяги электровоза ограничивается прежде всего сцеплением колес с рельсами. Проектируя и изготовляя локомотив, устанавливают так называемую конструкционную скорость электровоза, т. е. максимальную скорость, при которой не нарушается его нормальная работа. Для электровоза ВЛ10 конструкционная скорость равна 100 км/ч. Поэтому на тяговых характеристиках электровоза нанесено ограничение по скорости 100 км/ч при параллельном соединении.
Как видно из рис. 41, б, последовательно с резистором включен так называемый индуктивный шунт ИШ. Необходимость его применения вызывается следующим. Кратковременно контактная сеть может быть отключена от тяговой подстанции; возможны также кратковременные отрывы токоприемника от контактного провода, после чего тяговые двигатели вновь включаются на полное напряжение. Ток в якорях двигателей при этом резко нарастает. Однако обмотки возбуждения двигателей обладают большим индуктивным сопротивлением, и поэтому большая часть тока идет через резистор, а меньшая — через обмотки возбуждения. Из-за этого увеличение магнитного потока и э. д. с. в обмотке якоря происходит со значительным запаздыванием относительно увеличения тока, поэтому под действием реакции якоря в сильной степени искажается магнитное поле возбуждения. В результате этого возникнет искрение под щетками, которое может перейти в круговой огонь.
Чтобы обеспечить заданное распределение тока между обмотками возбуждения и резисторами, применяют индуктивные шунты, обладающие индуктивным сопротивлением, соизмеримым с индуктивным сопротивлением обмотки возбуждения.
Индуктивные шунты
На электровозах и электропоездах постоянного и электровозах переменного тока для увеличения числа ходовых скоростных характеристик регулируют возбуждение тяговых двигателей, включая параллельно их об-
|
моткам возбуждения резисторы, последовательно соединенные с индуктивными шунтами (см. рис 233). Резистор обеспечивает заданное распределение тока между обмоткой возбуждения и шунтирующей цепью в установившихся режимах работы, индуктивный шунт — в неустановившихся (при резких изменениях напряжения на зажимах тягового двигателя). Наиболее опасным для тягового двигателя с ослабленным возбуждением является режим включения его на полное напряжение после кратковременной потери питания, например при отрыве токоприемника от контактного провода. В этом случае бросок тока якоря и скорость его нарастания зависят от распределения тока между обмоткой возбуждения и шунтирующей цепью, так как при значительной массе поезда частоту вращения якоря двигателя в течение переходного режима можно считать постоянной.
Ввиду значительной индуктивности LB обмотки возбуждения и отсутствия индуктивности (или ее малости) в шунтирующей цепн при работе двигателя в неустановивщемся режиме в первый момент весь ток якоря может пройти через шунтирующую цепь, минуя обмотку возбуждения. В результате этого произойдет значительный бросок тока якоря из-за резкого уменьшения э. д. с, опасный для изоляции обмотки и обусловливающий быстрое насыщение добавочных полюсов. Рост магнитного потока добавочных полюсов замедляется, в результате чего реактивная э. д. с. в коммутируемых проводниках якоря недостаточно компенсируется. Это приводит к сильному искрению под щетками, что может вызвать возникновение кругового огня по коллектору.
Индуктивность Lm шунта стремятся подобрать так, чтобы возникающие э. д. с. самоиндукции обеспечили такое распределение токов между обмоткой возбуждения и шунтирующей ее цепью, при котором коэффициент ослабления возбуждения соответствовал бы расчетному для двигателей данного типа. Обычно рекомендуется соотношение Lm/LB > 0,6.
Индуктивный шунт состоит из обмотки и магнитопровода, набранного из листов электротехнической стали толщиной 0,5—1 мм, покрытых лаком во избежание снижения индуктивности вихревыми токами.
|
но-шихтованным сердечником (шунты ИШ-95 электровозов ВЛ80\ ВЛ80 С и др., конструкция которых подобна конструкции сглаживающего реактора РС-53, см. рис. 119,а). Воздушные зазоры в стержнях обеспечивают малое изменение индуктивности шунта в диапазоне рабочих нагрузок тяговых двигателей, наличие этих зазоров позволяет устанавливать требуемую характеристику.
Обмотку катушек изготовляют из изолированной медной или алюминиевой полосы, обычно намотанной на ребро с зазорами между витками для лучшего охлаждения. Шунты выполняют как с естественным, так и с принудительным воздушным охлаждением (до 20 м3/мин на отечественных электровозах переменного тока). Основные технические данные некоторых индуктивных шунтов (рис. 123) приведены в табл. 8.
Для чего нужен индуктивный шунт на электровозе
Индуктивные делители. Для обеспечения необходимой мощности преобразователей (на электровозах ВЛвС и др.) из-за ограничения предельных токов тиристоры приходится соединять параллельно Для тиристоров особым режимом работы является процесс включения, обусловленный трудностями распределения токов в параллельных цепях.
Известно, что нарастание тока в каждой параллельной цепи определяется амплитудой управляющих импульсов и точностью подбора тиристоров по значению прямого падения напряжения Ди. После снятия управляющих импульсов тиристоры работают неустойчиво. В результате этого в одних параллельных цепях токи нарастают, в других спадают до нуля. Применение средств принудительного распределения тока в параллельных ветвях позволяет включать тиристоры импульсами меньшей длительности. Известно несколько способов выравнивания токов в параллельных ветвях тиристоров:
с помощью резисторов и индуктивных делителей, делительных реакторов и других устройств, включаемых в цепи переменного или постоянного тока. На отечественных электровозах с этой целью применяют индуктивные делители, включенные в цепь переменного тока Их соединяют друг с другом по схеме (замкнутая цепочка), приведенной на рис. 122,а. Такой делитель состоит из шихтованного сердечника и двух обмоток.
Выравнивание токов в параллельных ветвях индуктивными делителями L15 — L28 основано на взаимодействии м.д.с. обмоток, включенных встречно и индуктивно связанных. При этом нарастание тока, например, в обмотке делителя L15 вызывает в замкнутом магнитопроводе делителя значительный нарастающий магнитный поток, который приводит к резкому повышению разности потенциалов между анодом и катодом тиристора второй ветви и его открытие. В случае дальнейшего увеличения тока делитель обеспечивает его равномерное распределение между параллельно включенными тиристорами.
Индуктивные делители выполняют ненасыщенными. Это обеспечивает принятие нагрузки плечами преобразователя с фазовым регулированием напряжения при подаче импульса управления в любом месте зоны коммутации. Это возможно только, если по всей зоне коммутации на плече будут необходимые потенциальные условия.
Индуктивность делителей определяют в зависимости от параметров преобразователя. Габаритные размеры делителя не должны превышать размеры тиристора с охладителем в плане; масса сердечника равна примерно 3 кг. Соотношение между числом витков и воздушным зазором б (рис. 122,6) выбирают таким, чтобы делитель не насыщался во всем диапазоне нагрузок. Сердечник выполняют из электротехнической стали Э-330, площадь его сечения 1200 мм2, длина средней силовой линии 0,33 мм.
Индуктивные шунты. На электровозах и электропоездах постоянного и электровозах переменного тока для увеличения числа ходовых скоростных характеристик регулируют возбуждение тяговых двигателей, включая параллельно их об-
моткам возбуждения резисторы, последовательно соединенные с индуктивными шунтами (см. рис 233). Резистор обеспечивает заданное распределение тока между обмоткой возбуждения и шунтирующей цепью в установившихся режимах работы, индуктивный шунт — в неустановившихся (при резких изменениях напряжения на зажимах тягового двигателя). Наиболее опасным для тягового двигателя с ослабленным возбуждением является режим включения его на полное напряжение после кратковременной потери питания, например при отрыве токоприемника от контактного провода. В этом случае бросок тока якоря и скорость его нарастания зависят от распределения тока между обмоткой возбуждения и шунтирующей цепью, так как при значительной массе поезда частоту вращения якоря двигателя в течение переходного режима можно считать постоянной.
Ввиду значительной индуктивности /.„ обмотки возбуждения и отсутствия индуктивности (или ее малости) в шунтирующей цепн при работе двигателя в неустановившемся режиме в первый мо-
Рис. 122. Схема включения (а) и конструкция индуктивных делителей (б)
мент весь ток якоря может пройти через шунтирующую цепь, минуя обмотку возбуждения. В результате этого произойдет значительный бросок тока якоря из-за резкого уменьшения э. д. с, опасный для изоляции обмотки и обусловливающий быстрое насыщение добавочных полюсов. Рост магнитного потока добавочных полюсов замедляется, в результате чего реактивная э. д. с. в коммутируемых проводниках якоря недостаточно компенсируется. Это приводит к сильному искрению под щетками, что может вызвать возникновение кругового огня по коллектору.
Индуктивность Ьш шунта стремятся подобрать так, чтобы возникающие э. д. с. самоиндукции обеспечили такое распределение токов между обмоткой возбуждения и шунтирующей ее цепью, при котором коэффициент ослабления возбуждения соответствовал бы расчетному для двигателей данного типа. Обычно рекомендуется соотношение £ш/£.„ > 0,6.
Индуктивный шунт состоит из обмотки и магнитопровода, набранного из листов электротехнической стали толщиной 0,5—1 мм, покрытых лаком во избежа-
ние снижения индуктивности вихревыми токами.
Магнитные системы шунтов выполняют открытыми броневого типа в виде буквы Н с воздушным зазором посередине (индуктивные шунты ИШ-406 электровозов ВЛ8, ИШ-104А электропоездов
ЭР2 и др.), стержневого типа с горизонтальным (шунты ИШ-2К, электровозов ВЛ10, ВЛЮ», ВЛ11 и др.) и вертикальным расположением стержней, с воздушным зазором в стержнях (шунты СЬУН-3254/41 электровозов ЧС2Т и др.), с одним горизонтальным радиаль-
но-шихтованным сердечником (шунты ИШ-95 электровозов ВЛ80\ ВЛ80С и др., конструкция которых подобна конструкции сглаживающего реактора РС-53, см. рис. 119,а). Воздушные зазоры в стержнях обеспечивают малое изменение индуктивности шунта в диапазоне рабочих нагрузок тяговых двигателей, наличие этих зазоров позволяет устанавливать требуемую характеристику.
Обмотку катушек изготовляют из изолированной медной или алюминиевой полосы, обычно намотанной на ребро с зазорами между витками для лучшего охлаждения. Шунты выполняют как с естественным, так и с принудительным воздушным охлаждением (до 20 м8/мин на отечественных электровозах переменного тока). Основные технические данные некоторых индуктивных шунтов (рис. 123) приведены в табл. 8.
Индуктивный шунт ИШ-412
Назначение. Индуктивные шунты предназначены для улучшения коммутации двигателей в переходных режимах при ослабленном возбуждении и включаются последовательно в цепь активных сопротивлений шун-тировки катушек главных полюсов тяговых двигателей.
Конструкция. Индуктивный шунт ИШ-412 (рис. 8.21). состоит из шихтованного незамкнутого магнитопро-вода и цилиндрической катушки. Магиитопровод набран из листов лакированной электротехнической стали Э-22 толщиной 0,5 мм. Катушка намотана из провода ПСД с усиленной изоляцией, площадь сечения 10,8X4,4 мм по меди. Толщина изоляции на одну сторону 0,4 мм; число витков катушки 143,5; намотка правая в два параллельных провода. Число слоев 4, в каждом слое 36 витков.
Три индуктивных шунта собирают в блок и устанавливают на электровозе в вентиляционной шахте ниже реактора РЭД-4000 А.
Требования к эксплуатации. Эксплуатация индуктивных шунтов без охлаждения не допускается. При текущем ремонте ТР-2 необходимо подтянуть болты и шпильки крепления магнитопроводов, катушек и шунтов на каркасе.
Электровоз ВЛ60
Электродинамический тормоз электровозов ЧС2 Т и ЧС200
Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200
ИНДУКТИВНЫЙ ШУНТ ТИПА ИШ-063
(обозначение в схеме L3 и L 4)
Назначение. Индуктивный шунт служит для выравнивания индуктивности цепи ослабления возбуждения с индуктивностью обмоток возбуждения тяговых электродвигателей.
Устройство. Шихтованный, разрезной Ш-образный сердечник 1 (рисунок 82). Разрезным сердечник выполнен для исключения его насыщения. В разрез сердечника вставлены текстолитовые планки. Две дисковых катушки 2 намотанных из шинной меди. Межвитковая изоляция катушки асбестовая бумага, покровная изоляция пропиточный лак. Катушки соединены последовательно и имеют три клеммы. Катушки отделяются друг от друга текстолитовыми планками
Рисунок 82 Индуктивный шунт ИШ-063.
Действие индуктивного шунта в режиме ослабления возбуждения (рисунок 83). При отрыве полоза от контактной сети тяговый двигатель перестаёт потреблять электроэнергию из контактной сети, поэтому в его цепи ток, магнитный поток и противо-ЭДС спадают до нуля. При последующем касании полоза контактным проводом, вновь появившийся ток начинает быстро нарастать от нуля до своей прежней величины, то есть в это время он является током переменным по величине. При этом происходит следующее:
• цепь ОВ без ИШ: ввиду большой индуктивности обмотки возбуждения и большой скорости нарастания тока в обмотке возбуждения наводится ЭДС самоиндукции. Поэтому весь ток будет протекать по якорю и резистору цепи ослабления возбуждения. Поскольку магнитным потоком главных полюсов является остаточный магнетизм, тяговый двигатель будет работать в режиме глубокого ослабления возбуждения. Величина тока протекающего по якорю и резистору будет значительной, что приведёт к образованию кругового огня на коллекторе, а значит и порче двигателя.
• цепь ОВ и ИШ: ввиду одинаковой индуктивности обоих цепей, вновь появившийся ток, потечёт одинаковыми величинами по обоим цепям и опасного режима глубокого ослабления возбуждения не будет.
• цепь ОВ с ИШ в режиме короткого замыкания: при коротком замыкании в контактной сети или в крышевом оборудовании электровоза тяговые двигатели перестают потреблять ток из контактной сети но, имея частоту вращения по инерции и остаточный магнетизм главных полюсов, кратковременно переходят в режим генератора, то есть будут поддерживать ток короткого замыкания. Это ток потечёт от плюса якоря в контактную сеть и через место короткого замыкания в рельсовую цепь. Ввиду одинаковой индуктивности ток равными частями потечёт по обоим цепям и далее на минус якоря.
Рисунок 82 Действие индуктивного шунта.
Протекая по обмотке главных полюсов в направлении противоположном току, создавшему остаточный магнетизм он размагничивает полюсы и опасный режим генератора прекращается.
Действие ИШ с режиме рекуперативного торможения при возникновении короткого замыканияв схеме. В индуктивном шунте также наводится ЭДС самоиндукции, поэтому весь ток короткого замыкания потечёт по отключающим катушкам быстродействующих контакторов КБ45 и КБ46, вызывая их срабатывание. Таким образом, ИШ ускоряет действие защиты от токов короткого замыкания в режиме рекуперативного торможения.