для чего нужен кварцевый резонатор в микроконтроллере
Что такое кварцевый резонатор и как он работает?
Кварцевый резонатор является электронным прибором, построенным на пьезоэффекте, а также механическом резонансе. Применяется радиостанциями, где задает несущую частоту, в часах и таймерах, фиксируя в них интервал в 1 секунду.
Что это такое, и зачем он нужен
Прибор является источником, обеспечивающим гармонические колебания высокой точности. Имеет, при сравнении с аналогами, большую эффективность работы, стабильные параметры.
Первые образцы современных устройств появились на радиостанциях в 1920-1930 гг. как элементы, имеющие стабильную работу, способные задавать несущую частоту. Они:
Чуть позже кварцевые резонаторы стали составной частью таймеров, часов. Электронные компоненты с собственной резонансной частотой 32768 Гц, которая в двоичном 15-разрядном счетчике задает временной промежуток равный 1 секунде.
Приборы используются сегодня в:
Устройства изготавливаются с разными корпусами. Делятся на выводные, применяемые в объемном монтаже, и SMD, используемые в поверхностном монтаже.
Их работа зависит от надежности схемы включения, влияющей на:
Свойства кварцевого резонатора
Превосходит ранее существовавшие аналоги, что делает прибор незаменимым во многих электронных схемах и объясняет сферу использования устройства. Это подтверждается тем, что за первое десятилетие с момента изобретения в США (не считая другие страны) выпущено больше 100 тыс. штук приборов.
Среди положительных свойств кварцевых резонаторов, объясняющих популярность, востребованность устройств:
Кварцевые резонаторы имеют и недостатки:
Принцип работы кварцевого резонатора
Работает прибор на основе пьезоэффекта, проявляющегося на пластинке из кварца, причем низкотемпературного. Элемент вырезают из цельного кристалла кварца, соблюдая задаваемый угол. Последний определяет электрохимические параметры резонатора.
Пластинки с обеих сторон покрывают слоем серебра (подходит платина, никель, золото). Затем их прочно фиксируют в корпусе, который герметизируется. Устройство представляет колебательную систему, которая обладает собственной резонансной частотой.
Когда электроды подвергаются переменному напряжению, пластинка из кварца, обладающая пьезоэлектрическим свойством, изгибается, сжимается, сдвигается (зависит от типа обработки кристалла). Одновременно в ней появляется противо-ЭДС, как это происходит в катушке индуктивности, находящейся в колебательном контуре.
Когда подается напряжение с частотой, совпадающей с собственными колебаниями пластинки, то в устройстве наблюдается резонанс. Одновременно:
Энергия, которая необходима для поддержания колебаний, в случае равенства частот низкая.
Обозначение кварцевого резонатора на электрической схеме
Прибор обозначается аналогично конденсатору. Отличие: между вертикальными отрезками помещен прямоугольник — символ пластинки, изготовленной из кварцевого кристалла. Боковые стороны прямоугольника и обкладки конденсатора разделяет зазор. Рядом на схеме может присутствовать буквенное обозначение прибора — QX.
Как проверить кварцевый резонатор
Проверка резонатора на работоспособность требует наличия тестера. Его собирают по схеме на основе транзистора КТ3102, 5 конденсаторов и 2 резисторов (устройство подобно кварцевому генератору, собранному на транзисторе).
Прибор необходимо в подключаемых соединениях, подключениях подключить к базе транзистора и отрицательному полюсу, защищая установкой защитного конденсатора. Питание схемы включения постоянное — 9В. Плюс подключают на вход транзистора, к его выходу — через конденсатор — частотомер, который фиксирует частотные параметры резонатора.
Схемой пользуются при настройке контура колебаний. Когда резонатор исправный, он при подключении выдает колебания, которые приводят к появлению переменного напряжения на эмиттере транзистора. Причем частота напряжения совпадает с аналогичной характеристикой резонатора.
Прибор неисправен, если частотомер не фиксирует возникновение частоты или определяет наличие частоты, но она — либо намного отличается от номинала, либо при нагреве корпуса паяльником сильно изменяется.
Стабилизация частоты микроконтроллера кварцевым резонатором
Чем стабильнее работает МК, тем лучше. Эта аксиома в первую очередь относится к тактовой частоте задающего генератора. Обеспечить её высокую стабильность могут кварцевые резонаторы, подключаемые к выводам ХТ1 (вход) и ХТ2 (выход) подсистемы синхронизации МК.
Немного истории. В 1880 г. французскими учёными братьями Пьером и Жаком Кюри было открыто новое физическое явление — пьезоэлектричество. В 1921 г. профессор Веслейского университета У. Кэди подключил кварцевую пластину к радиогенератору, что обеспечило заметную стабилизацию излучаемой частоты. Радиолюбители сразу же применили эту новинку в самодельных коротковолновых радиопередатчиках середины 1920-х годов.
К настоящему времени существование пьезоэлектрического эффекта обнаружено более чем у 1000 веществ. Вначале использовались кристаллы турмалина и сегнетовой соли. Позже стали применяться кристаллы природного кварца Si02 различной окраски: горный хрусталь (бесцветный), раухтопаз (дымчатый), морион (чёрный), цитрин (золотисто-жёлтый), аметист (сиреневый).
В 1950-х годах была успешно решена проблема выращивания монокристаллов искусственного кварца, который не только не уступает, но и по ряду показателей даже превосходит свой природный аналог.
Диапазон частот современных кварцевых резонаторов составляет от 32768 Гц до 300. 400 МГц. Среди них условно выделяют низкочастотные (до 1 МГц), сред-нечастотные (1. 30 МГц) и высокочастотные (свыше 30 МГц) резонаторы.
На Рис. 5.1 показана эквивалентная схема кварцевого резонатора. Элементы L1, С1, R1 относятся к ветви последовательного контура. Физически они не существуют, но являются аналогами механических характеристик: массы (L1), упругих свойств (С1), потерь энергии (R1). Последний параметр определяет добротность колебательной системы.
Рис. 5.2. Схемы пьезостабилизированных генераторов: а) генератор с параллельным резонансом; б) генератор с последовательным резонансом.
Статическая ёмкость кварцедержателя СО параллельно с элементами L1, С1, образует ещё один контур, параллельный. Итого на частотной оси размещаются две базовые точки — последовательного и параллельного резонансов. В первой точке кварцевый резонатор имеет минимальное сопротивление, во второй — максимальное, между ними он ведёт себя подобно высокодобротной индуктивности.
Существование двух «седловых» частот у кварцевых резонаторов позволяет разделить схемы их включения на два типа:
При покупке кварцевого резонатора (на сленге «кварца») следует проверить его внешний вид на «фирменность», а именно, убедиться в наличие легко читаемой и не стираемой пальцами лазерной маркировки с обозначением частоты, знака изготовителя, даты производства, рекомендуемой ёмкости нагрузки. Последний параметр важен, если требуется обеспечить устойчивость запуска строго на штатной частоте в условиях разброса питания и температуры окружающей среды.
Для бытовых схем с МК, как правило, применяют недорогие низко- и средне-частотные кварцевые резонаторы без претензий на высокую стабильность параметров и точность настройки. Основным является режим генерации с параллельным резонансом (Рис. 5.3, а. и). Ещё бывают схемы с электронной подстройкой частоты (Рис. 5.4, а. в), а также с несколькими резонаторами (Рис. 5.5, а. г).
Рис. 5.3. Схемы подключения кварцевых резонаторов к МК (начало):
а) необходимость в резисторах R1, R2 определяется экспериментально по устойчивости запуска МК во всём диапазоне рабочих температур и напряжений питания. Реально в схемах ставится один из двух резисторов или оба заменяются перемычками. Конденсаторы С1, С2 могут отсутствовать, что определяется указаниями из даташита для выводов ХТ1, ХТ2 или RTC1, RTC2;
б) отсутствие конденсаторов «обвязки» возле низкочастотного кварцевого резонатора ZQ1 является штатным режимом работы при условии, что конденсаторы находятся внутри МК и подключаются к выводам ХТ1, ХТ2 установкой определённых конфигурационных битов. Высокочастотные кварцевые резонаторы тоже могут подключаться к МК напрямую, но устойчивость запуска не гарантируется, надо проверять на практике;
в) цепочка СЗ, L1 шунтирует вывод ХТ2 на низких частотах, предотвращая запуск кварцевого резонатора ZQ1 на первой гармонике. Эта схема эффективна для кварцевых резонаторов, работающих на третьей и пятой механических гармониках. Элементы СЗ, L1 могут подключаться не только к выводу ХТ2, но и к выводу ХТ1;
г) кварцевый резонатор ZQ1 включается по стандартной схеме между выводами ХТ1 и ХТ2 МК. Конденсатор С1 подстраивает в небольших пределах частоту генерации. Рекомендуемые ёмкости конденсаторов указываются в даташитах, но реально они могут быть другими и не обязательно одинаковыми. Общий принцип — чем выше частота, тем меньше ёмкость. Один из двух параллельно включённых конденсаторов С1 и С2 может отсутствовать;
д) конденсатором СЗ подстраивают частоту генерации в небольших пределах. Резисторы R1, R2 облегчают условия автозапуска при крайних значениях температуры и напряжения питания. Резистор R2 может отсутствовать, а конденсатор СЗ и резистор R1 допускается заменить перемычками:
Рис. 5.3. Схемы подключения кварцевых резонаторов к МК (окончание):
е) резистор R1 по высокой частоте шунтирует вход ХТ1 генератора МК, что может улучшить условия самовозбуждения при низком напряжении питания;
ж) общая точка соединения конденсаторов С1, С2 подключается не к общему проводу, а к питанию. Это может понадобиться, например, если «плюс» питания соединяется с «массой», или таким путём удобнее делать разводку проводников на печатной плате;
з) запуск кварцевого резонатора ZQ1 на третьей гармонике (24 МГц). Требуется предварительное макетирование с подбором элементов L1, С1, R1
и) схема применяется, если один из выводов кварцевого резонатора ZQ1 обязательно должен иметь соединение с общим проводом. Требуется предварительное макетирование с подбором ёмкостей конденсаторов.
Рис. 5.4. Схемы с электронной подстройкой частоты кварцевого резонатора:
а) параллельно конденсатору СЗ подключается цепочка, состоящая из конденсатора С2 и двух варикапов VDI, VD2. Резистором RI изменяется напряжение на варикапах (их ёмкость), вследствие чего подстраивается в небольших пределах частота генерации;
б) транзистор VTJ используется как варикап с изменяемой ёмкостью. Частота генерации регулируется резистором R1. Вновь испечённый «транзисторный варикап» по высокой частоте подключается параллельно конденсатору СЗ с учётом последовательного конденсатора С2;
в) частота задающего кварцевого генератора МК модулируется управляющим напряжением с частотой /^од- Ёмкость высокочастотного варикапа VD1 изменяется в пределах от 20 до 40 пФ при напряжении модулирующего сигнала соответственно от +5 до +0.5 В.
Рис. 5.5. Схемы подключения нескольких кварцевых резонаторов к МК (начало):
а) переключение двух тактовых частот F1 (32768 Гц) и F2 (1 МГц) осуществляется по сигналу от МК. Когда электронный ключ микросхемы DA J разомкнут, то М К работает на частоте F1 когда замкнут — на частоте F2. Резистор R2 может отсутствовать. Вывод 7 микросхемы DA1 соединяется с общим проводом, а вывод 14 — с цепью +5 В. На время переключения частоты должна быть сделана программная пауза. Не лишним будет предусмотреть рестарт МК;
б) параллельное включение нескольких низкодобротных кварцевых резонаторов ZQl. ZQn расширяет диапазон регулирования частоты. Конденсатором С J можно плавно перестраивать тактовую частоту 20 МГц на 120 кГц при сохранении «кварцевой» стабильности генерации. Это очень хороший показатель для схем подобного класса. Резистор RI сопротивлением 4.7. 20 кОм уменьшает неравномерность амплитуды. Конденсатор СЗ и катушка L1 задают диапазон перекрытия по частоте. Кварцевые резонаторы должны быть одного типа и одной номинальной частоты. Оптимальное их количество подбирается экспериментально, обычно 4 или 5;
Рис. 5.5. Схемы подключения нескольких кварцевых резонаторов к МК (окончание):
в) движковый переключатель S1 коммутирует тактовый сигнал М К от кварцевого генератора G1 или от кварцевого резонатора ZQ1. После переключения необходимо произвести сброс МК;
г) смена частоты генерации осуществляется механическим переключателем SA У, который должен иметь малую переходную ёмкость между своими контактами (единицы пикофарад). После изменения частоты необходимо сделать начальный сброс МК.
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.
Как тактировать AVR
Введение
Прежде чем разбирать, какие бывают источники тактирования, чем они отличаются, их плюсы и минусы и тд, нам нужно определиться, что вообще означает словосочетание тактовая частота. Да и вообще, что означает термин «частота»?
Как нам говорит учебник физики, частота — это количество колебаний, произведенных за определенный промежуток времени. Чаще всего этот промежуток времени называют периодом и для удобства измерений его берут равным одной секунде.
Какие можно привести примеры подобных колебаний? Это могут быть часы с кукушкой, маятник, качели
и даже круги на воде от камушка, который мы кинули в воду:
Более подробно про частоту и период можно прочитать в статье Электрические сигналы и их виды.
Так, теперь ближе к делу. Что же такое тактовая частота?
Любая операция МК или его мегакрутого брата-микропроцессора состоит из отдельных элементарных действий, то есть тактов.
Получается, тактовая частота — это сколько тактов в секунду может выполнить наш МК или процессор. Отсюда напрашивается вывод, чем больше тактовая частота, тем больше количество операций за секунду может сделать МК или микропроцессор.
В МК AVR тактовая частота в основном измеряется в МегаГерцах. Как помните, приставка «Мега» означает один миллион. Если у нашего МК тактовая частота 8 МегаГерц, то это означает, что он может выполнять 8 000 000 тактов в секунду, или, грубо говоря, около 8 000 000 различных операций в секунду ;-). Пусть вас не пугает это число, потому что ваши настольные компьютеры, телефоны и планшеты уже работают на частоте в несколько ГигаГерц. Гига — это уже миллиард! Например, если частота процессора вашего компа 2 ГГц, это означает, что он может произвести 2 миллиарда операций в секунду). Мало? Как оказалось на практике, уже стает мало)).
Вернемся к нашим баранам), а именно, к тактовой частоте. Допустим, мы имеем МК Tiny 2313, сконфигурированный на работу 8 МегаГерц и который может выполнять при этом 8 миллионов тактов в секунду. Каждая операция процессора состоит из тактов. А когда процессор выполняет нашу программу, записанную во Flash память, он тоже производит определенные операции которые указаны в программе. Граничная частота МК Tiny 2313, как говорит нам Datasheet, довольно высокая и составляет аж целых 20 МГц! Это довольно много по меркам МК
Правда, это только с применением внешнего кварцевого резонатора.
Кварцевый резонатор, называемый часто просто кварц, может выглядеть по-разному:
На схемах он обозначается так:
На кварце часто указана частота, на которой он работает. Ниже на фото мы видим кварц, который работает на частоте 8 МегаГерц (8.000MHz)
В большинстве случаев стараются указывать частоту на корпусе кварца. Если у вас есть какое-либо ненужное цифровое устройство, вы вполне можете выпаять кварц на нужную частоту прямо оттуда. Но в большинстве случаев в этом нет необходимости, так как новый кварцевый резонатор в радиомагазине стоит порядка 20-30 рублей.
Есть один нюанс, любезно предоставленный нам производителями микроконтроллера. Если нам нужно, чтобы программа выполнялась медленнее в восемь раз, мы можем этого добиться даже не переписывая программу и не выставляя задержки по новой, то есть в 8 раз длиннее. Нам достаточно уменьшить частоту МК в восемь раз и программа будет для нас выполняться медленнее в восемь раз. Забегая вперед, скажу, что сделать это мы можем очень легко, выставив всего одну галочку при программировании фьюз-битов, в бите CKDIV 8. Также легко мы можем отменить все наши изменения.
Этот способ мы использовали при прошивке МК в прошлой статье.
Существуют 4 варианта, которые применяются для тактирования МК:
— тактирование от внутреннего RC-генератора
— тактирование от внешнего кварца
— тактирование от внешнего генератора
— тактирование от RC-цепочки
Тактирование от внутреннего RC-генератора
На тактирование от внутреннего RC генератора МК настроен сразу с завода и не требует внешних деталей. Это означает, что с помощью МК, питания +5 Вольт и одного светодиода с резистором, мы уже можем заставить наш МК работать и выполнять программу без всяких сложных настроек и дополнительных деталей, задав скорость программно, путем выставления задержки «Delay». Имейте ввиду, что встроенный RC-генератор может работать только на четырех частотах: 1, 2, 4 или 8 МегаГерц, поэтому если вам требуется какая-нибудь эксклюзивная частота, типа 1 638 000 Герц, то такой способ не прокатит.
Тактирование от внешнего кварца
Тактирование от внешнего кварца чуточку сложнее. Как же нам подключить внешний кварц? Для начала нам надо найти цоколевку МК, которую мы собираемся тактировать от внешнего кварца. Пусть в нашем примере это будет Тiny 2313. Чтобы подключить внешний кварц, достаточно найти ножки микросхемы с названием «XTAL1» и «XTAL2».
Потом подсоединить кварц вот по такой схеме:
Потом при прошивке надо правильно выставить фьюзы. О них мы с вами поговорим в следующих статьях.
Как видно на схеме подключения кварца к МК, номинал нужных нам конденсаторов должен составлять 15-22 пикофарада. Расшифровать номинал таких конденсаторов, можно с помощью этого рисунка:
Тактирование от внешнего генератора
К тактированию от внешнего генератора прибегают тогда, когда требуется синхронизовать МК с внешними цепями, либо этот МК тактируют какой-либо своей частотой от генератора частоты. Тактирующий сигнал подают на ножку XTAL1:
Тактирование от RC-цепи
Тактирование от RC-цепочки осуществляется вот по такой схеме:
Здесь мы берем конденсатор емкостью не менее 22 пФ, а резистор от 10 Ом и до 100 КилоОм. По простой формуле можно с легкостью рассчитать частоту, на которой будет тактироваться наш МК:
R — сопротивление резистора, Ом.
Внутренний RC-генератор и внешняя RC-цепь дают нестабильную частоту, которая «гуляет» и зависит от температуры. Для того чтобы помигать светодиодом и прочих неответственных действий, нам это будет не принципиально. В наших проектах, поначалу не требующих особой точности, мы будем использовать тактирование от внутреннего RC-генератора.
Но чтобы получить очень точную частоту тактирования, которая почти не гуляет, надо использовать кварц. Тактирование от кварца важно при создании точных измерительных приборов, электронных часов, устройств сложной и точной автоматики, да и вообще любых устройств, где важна точность и не допустимы малейшие отклонения.
Итак, как мы помним из предыдущей статьи, некоторые ножки имеют двойное назначение, и помимо того, что могут использоваться как порты ввода-вывода, также используются для обеспечения расширения функций МК. Действительно, если МК сконфигурирован для работы от внутреннего RC-генератора, вам достаточно подать на него питание +5 Вольт и землю, и микроконтроллер включится и начнет выполнять программу. Но если вы выпаяли микроконтроллер из какого-либо устройства и он должен был в нем тактироваться от кварца, или по ошибке выставляя биты конфигурации, вы выставили тактирование от кварца, МК перестанет у вас быть виден в программе оболочке, и не сможет выполнять программу, даже если вы подадите на него +5 Вольт и землю.
Что же делать в таком случае? В первую очередь не паниковать) и собрать схему с тактированием от кварца, и тогда мы сделаем видимым наш МК, который вдруг может быть переставать у вас определяться оболочкой программатора и работать в схеме, если вы ошибочно переведете МК в режим тактирования от кварца, путем выставления определенных фьюзов. Об этом мы как-нибудь еще поговорим 😉
Кварцевые резонаторы: назначение, применение, принцип работы, особенности использования
Для чего нужны кварцевые резонаторы
Современная цифровая электроника, изобилующая микропроцессорами и микроконтроллерами, просто немыслима без тактовых колебаний. А где получение тактовых колебаний — там функционирование генератора и колебательной системы, и где колебательная система — там обязательно проявляют себя и явление резонанса и такой важный параметр как добротность. Здесь то и знакомимся мы с кварцевыми резонаторами (генераторами).
Кварцевый резонатор (кварц) — генератор электромагнитных колебаний с высокой степенью постоянства частоты, в котором используются пьезоэлектрические и механические свойства кварцевой пластинки.
По принципу работы кварцевый резонатор является автогенератором с кварцевой стабилизацией частоты. Такие генераторы применяется как высокостабильный генератор задающий в измерительной аппаратуре, эталонах частоты и времени, кварцевых часах, а также в различной электронной аппаратуре.
Недостаток кварцевых резонаторов заключается в том, что он может генерировать только на фиксированных частотах, определяемых резонансной частотой кварца, и практически не допускает перестройки частот.
Все схемы кварцевые резонаторы подразделяются на две большие группы в зависимости от того, какой вид резонанса кварца (параллельный или последовательный) в них применен. Наибольшее распространение получили схемы кварцевые резонаторы, в которых кварц работает вблизи своей частоты параллельного резонанса.
Итак, кварцевый резонатор в электронной схеме выступает непревзойденной альтернативой любому колебательному контуру, состоящему из конденсатора и катушки индуктивности. Суть в высочайшей добротности кварцевых резонаторов. Тогда как хороший LC-контур достигает добротности 300, добротность кварцевого резонатора может доходить до 10000000. Как видим, превосходство составляет десятки тысяч раз. Таким образом, ни один колебательный контур не сравнится с кварцевым резонатором по добротности.
Что и говорить о влиянии температуры на резонансную частоту. Резонансная частота того же колебательного контура сильно зависит от ТКЕ (температурного коэффициента емкости) входящего в него конденсатора. Кварц же обладает очень высокой температурной стабильностью, именно по этой причине кварцевые резонаторы прочно удерживают свои позиции в роли источников колебаний для генераторов тактовой частоты различного назначения.
Как работает кварцевый резонатор
Чтобы понять как устроен и работает кварцевый резонатор, достаточно вспомнить о том, что такое пьезоэлектрический эффект. Представьте себе пластинку низкотемпературного кварца (диоксид кремния), вырезанную из кристалла определенным образом. То, под каким углом данная пластинка вырезана из кристалла, определяет электромеханические свойства изготавливаемого резонатора. Теперь на эту пластинку с двух сторон прикрепляют электроды, путем нанесения слоев никеля, платины, золота или серебра, а к ним присоединяют жесткие проволочные выводы. Всю конструкцию помещают в небольшой герметичный корпус.
Итак, получилась электромеханическая колебательная система, обладающая (благодаря природным особенностям низкотемпературного кварца) пьезоэлектрическим эффектом, и имеющая собственную резонансную частоту.
Если теперь на электроды подать переменное напряжение, частота которого близка к резонансной частоте полученной колебательной системы, то пластинка начнет механически сжиматься-расширяться с максимальной амплитудой, причем благодаря пьезоэлектрическому эффекту, чем ближе частота прикладываемого напряжения к резонансу — тем меньше будет сопротивление резонатора. В этом и заключается сходство кварцевого резонатора с высокодобротным колебательным контуром. Получился по сути аналог последовательного LC-контура.
Особенности кварцевого резонатора
Кварцевый резонатор можно представить в виде эквивалентной схемы, в которой C0-это монтажная электроемкость, образуемая металлическими выводами-держателями и электродами. C1, L и R – это емкость, индуктивность и активное сопротивление непосредственно пластинки с электродами, как аналога реального колебательного контура, получаемого за счет электромеханических свойств пластинки.
Если исключить из схемы монтажную емкость C0, то получится в явном виде последовательный колебательный контур. Что же касается обозначения резонатора на схеме, то он похож на конденсатор с прямоугольником, символизирующим кристалл кварца, между обкладками.
В процессе монтажа и демонтажа кварцевых резонаторов на платы путем пайки, следует помнить, что перегрев кварца выше 573°C чреват утратой кристаллом пьезоэлектрических свойств.