для чего нужен пластинчатый теплообменник
Что такое пластинчатые теплообменники
Основные виды, которые вы можете встретить:
В этой статье подробно поговорим о пластинчатых теплообменниках, рассмотрим конструкцию, область применения и принцип работы.
Первоначальная идея пластинчатых теплообменников была запатентована во второй половине 19 века, а первая известная конструкция была представлена в 1923 году доктором Ричардом Селигманом, главой компании Aluminium Plant and Vessel Company Ltd.(Алюминиевый завод и Судостроительная компания) известной сегодня как APV. Самый первый пластинчатый и рамный теплообменник был сконструирован из литых пластин из пушечной бронзы и заключен в раму, которая установила стандарт для современных компьютерных тонких металлических пластинчатых теплообменников, известных во всем мире. Базовая конструкция осталась неизменной, но постоянные усовершенствования позволили повысить рабочее давление в современных машинах с 1 до 25 атмосфер
Пластинчатые теплообменники применяются в различных сферах, включая: пищевую и химическую промышленность, системы нагрева технических и пищевых жидкостей, охлаждение промышленного оборудования, для подключения зданий к сетям централизованного отопления и охлаждения.
Особенно широко используются в пищевой промышленности, поскольку они компактны и могут быть изготовлены в различных видах и легко чистятся. Осаждение материалов на горячих поверхностях (загрязнение) снижает тепловые и гидродинамические характеристики, требует периодической очистки (часто всего через несколько часов работы).
Многие промышленные предприятия используют пластинчатые теплообменники для таких целей, как пастеризация и утилизация отходящего тепла. Например, производственное предприятие может использовать воду для охлаждения горячего, недавно произведенного напитка. Горячий готовый жидкий продукт необходимо охладить перед розливом в бутылки, чтобы он прошел через пластинчатый теплообменник, подключенный к охлаждающему контуру чиллера(водоохлаждающая машина). Это отводит нежелательное тепло без смешивания двух жидкостей.
Пластинчатый теплообменник состоит из нескольких листов тонкого гофрированного металла (пакет пластин), образующих каналы. Прокладки находятся между пластинами и образуют уплотнение. Уплотнение предотвращает смешивание и утечку жидкостей, но они также определяют, по каким каналам может протекать каждая жидкость.
Пластинчатые теплообменники могут увеличивать или уменьшать свою нагревательную или охлаждающую способность за счет добавления или удаления внутренних пластин. Их также можно разобрать для очистки и обслуживания, кроме неразборных.
Эти аппараты могут быть :
В разборных теплообменниках теплопередача состоит из ряда гофрированных пластин, установленных между рамой и прижимными пластинами, которые сохраняют расчетное давление. Для достижения наивысших тепловых характеристик и обеспечения очень близкого температурного приближения жидкости обычно проходят через теплообменник противотоком.
Полуразборные теплообменники используются, когда прокладки не подходят в качестве одной из технологических сред, а также могут выдерживать более высокое расчетное давление по сравнению с полностью разборными пластинчатыми теплообменниками. Уплотнение между пластинами на промышленной полусварной линии чередуется между лазерной сваркой и прокладками. Канал, сваренный лазерной сваркой, позволяет использовать жидкости, несовместимые с обычными прокладками, а также обеспечивает более высокое расчетное давление, чем полностью разборные пластинчатые теплообменники.
Неразборные теплообменники не имеют не имеют открытых прокладок, это цельносварной пластинчатый теплообменник, который используется, прежде всего, в нефтегазовой, химической и нефтехимической промышленности. Рама, прочно закрепленная на болтах, состоит из четырех колонн, верхней и нижней частей, а также четырех боковых панелей. Используются для решения сложных задач, связанных с агрессивными средами, экстремальными температурами и высоким давлением.
Основным недостатком этих теплообменников является то, что они не снимаются, поэтому техническое обслуживание и очистка невозможны или, по крайней мере, трудны, а количество пластин поменять нельзя, но зато гораздо меньше подвержены загрязнению и засорению и требуют лишь периодического осмотра и очистки.
Отметим такую тонкость: Поверхность пластин гофрирована для увеличения турбулентности жидкости во время перетекания в каналы.
На рисунке показаны основные параметры гофры:
Шаг гофры р ; угол шеврона β по сравнению с основным направлением потока.
Угол наклона гофрированного рисунка влияет на теплообмен и производительность:
1. Требуемое пространство и вес меньше по сравнению с другими теплообменниками.
2. Благодаря модульной конструкции плит монтаж и установка могут быть выполнены быстро.
3. Коэффициенты теплоотдачи выше.
5. Быстрая и легкая разборка для очистки и контроля.
6. Адаптация к изменяющимся условиям эксплуатации путем добавления или удаления нагревательных пластин для изменения установленного теплового потока.
Самым большим преимуществом пластинчатых теплообменников по сравнению с другими теплообменниками является их эффективность теплопередачи. Пластины, разделяющие две жидкости, тоньше по сравнению с другими материалами. Это увеличивает скорость передачи тепла и, таким образом, снижает тепловые потери, которые могут возникнуть во время передачи.
Обменники бесценны благодаря этим функциям, которые увеличивают срок службы системы. Пластинчатые теплообменники могут выполнять множество функций, таких как нагревательный элемент, охлаждающий элемент, автоматический включатель или выключатель давления.
1. Часто механическая очистка не является предпочтительной, так как прокладки и пластины легко повреждаются в процессе очистки. Химическая очистка необходима.
2. Прокладки необходимо время от времени заменять, а это дорогостоящий элемент обслуживания.
3. Небольшие отверстия между пластинами склонны к забиванию посторонними частицами. Поэтому в процессе эксплуатации необходимо периодическое реверсирование потока. По некоторым свойствам жидкости обратный поток требуется часто. Так что это может повлиять на поток процесса.
Еще к недостаткам можно отнести, скорей не к недостаткам, а к неудобству это то что, при эксплуатации пластинчатых теплообменников, в 95 % случаев собственный персонал не имеет нужной квалификации и ничего не может поделать с чисткой, сборкой-разборкой и заменой прокладок на данном типе теплообменников, часто этот не квалифицированный персонал при замене уплотнений и промывке используют металлические щетки, чтобы сократить время мойки пластин. А это приводит к более быстрому износу и последующему прогоранию пластин.
Почти всегда приходится нанимать специализированную организацию для качественной работы или замены прокладок, поэтому необходимо оценивать состав своей ремонтной службы либо последующую готовность нести затраты на обслуживание пластинчатого теплообменника.
В славном городе Челябинске находится один из наших ключевых партнеров. Их главным преимуществом является собственное производство пластинчатых теплообменников с 2008г. Эти ребята знают про них все.
Они является сертифицированным сборочным производством и официальными дилерами немецких теплообменников Funke.Также они представляют другие бренды из Турции и Швеции.
Благодаря их большому ассортименту различных пластин, компания Квип может осуществлять ремонт теплообменников других производителей своими силами! Для того чтобы разобраться в проблеме от вас нужна спецификация вашего теплообменника.
Также есть возможность подобрать на замену те пластины и уплотнения, которые есть у заказчика.
Если проблема более серьезная, то потребуется демонтаж теплообменника и отправка его в Челябинск для диагностики и ремонта. Но это в любом случае намного дешевле, чем отправка за границу или покупка нового и это несомненно еще один плюс.
Мы регулируем пар, который подается в теплообменник.
Мы можем подобрать клапан для регулировки, шкаф, датчики и вообще собрать всю обвязку для осуществления правильной регулировки.
Не самая приятная история, но что есть, то есть. Эта история еще и связана с работой конденсатоотводчика. Мы отгрузили оборудование на один из молочных заводов Свердловской области, запустили процесс, через один теплообменник они грели воду и моющие растворы, а на другом узле молоко. Давление подающего пара в этих теплообменниках было рассчитано на 3 Бар.
В редукционном узле не был подключен клапан RP45, из-за этого давление в теплообменнике давило 5-6 Бар, как с котельной поступает, так и распределяется дальше без изменений. Максимальная эксплуатация уплотнений теплообменника 150°С, а 5-6 Бар это почти 160°С температура пара, что негативно влияет на сами уплотнения, они пересыхают, трескаются и начинается смешивание жидкостей внутри. Если вода попадает в пар это еще терпимая ситуация, а в этом случае смешивались моющие средства и продукт(молоко), происходило закисление конденсата, это в свою очередь начало разрушать и пластины, в них стали появляться “свищи”, сначала маленькие и незаметные, а потом уже прямо очень заметные. А это уже потеря потерь не только по теплу, но и по продукту.
Стали менять оборудование на конденсатной линии и добавилась проблема невозможности использования конденсата повторно. А это возможность экономии на нагреве, на водоподготовке конденсата, а по нашим расчетам это экономия до 1 миллиона рублей в месяц.
Начались упреки в нашу сторону, что мы отгрузили бракованные конденсатоотводчики. Мы конечно очень переволновались, т.к за свою продукцию отвечаем головой и уверены в ее качестве на все 100%. Собрали мощную доказательную базу, что наши конденсатоотводчики не при чем, а все дело в клапане!
Недоразумение было улажено, вопрос решился хорошо, инженеры завода все поправили, а мы и дальше сотрудничаем в мире и согласии.
Вторая история нам покажет, что внимательность и упорство дает свои плоды)
Один из наших сотрудников в годы своей юности работал на молочном заводе столкнулся со следующей ситуацией: пришло время технического обслуживания пастеризационно-охладительной установки ОКЛ-10, оно производится через определенные часы наработки. В этом теплообменнике около 250 пластин и они разбиты по секциям: подогрев, пастеризация, нормализация молока. При ослаблении резьбы на раме пластины можно растянуть, достать и помыть, что они благополучно и сделали. Сложности начались позже…., 200 с лишним пластин и у каждой свой вход/выход, собрали и ничего не работает. Надо искать ошибку, где-то неправильно установили пластину.
В итоге, чтобы разобраться и найти ошибку 3 человека потратили 2 дня, собирали в различных вариациях, сравнивали со схемой, нарисованной кем-то от руки в единственном экземпляре на весь завод, запускали и так по кругу, пока не нашли.
Вот схема ниже на фото, представляете, какая работа была проделана?
Прочитав эту статью до конца, мы надеемся, что вы узнали про пластинчатый теплообменник чуть больше.
Подписывайтесь на наш канал Телеграм, там всегда много полезного и интересного.
Пластинчатый теплообменник: конструкция, принцип работы, виды
Пластинчатый теплообменник – это важный элемент в системе отопления и горячего водоснабжения, который предназначен для теплообмена между двумя рабочими средами. Между теплопередающими пластинами в противотоке двигаются греющий и нагреваемый теплоносители без смешивания между собой.
Например, устройство для ГВС мощностью 670 ккал/ч. Один контур – горячая вода 70 градусов, а второй контур холодная вода 5 градусов. Установка позволяет нагревать второй контур до 50 градусов, охлаждая первый до 40 градусов.
Теплообменник и его виды
Теплообменник – это специальный аппарат, который предназначен для обмена тепла между двумя рабочими средами с различной температурой. Существует множество типов и конструкций. По принципу работы теплообменные устройства разделяются на регенеративные и рекуперативные.
Рекуперативный тип отличается тем, что процесс обмена происходит между теплопередающими пластинами. Потоки изолированы и разделены.
Регенеративный тип характеризуется тем, что обмен осуществляется на одной поверхности, с которой теплоносители контактируют поочередно.
Из рекуперативных наиболее распространенными являются:
Рекуперативные наиболее востребованы в промышленности, жилищно-коммунальном хозяйстве и производстве.
Просто позвоните.. Наш инженер осуществит точный расчет оборудования.
Конструкция пластинчатого устройства
Основой конструкции пластинчатого вида агрегатов являются теплопередающие пластины и уплотнения, которые стянуты болтами между прижимными плитами. Основной материал из которого изготавливают пластины AISI 316 (нержавеющая сталь) толщиной от 0,4 до 1 мм. Для специальных применений возможно изготовление из титана и других сплавов.
На основе синтетического каучука производятся уплотнения, которые препятствуют протечкам и служат для герметичности агрегата.
Принцип работы
Сферы применения ЖКХ
В жилищно-коммунальном хозяйстве в основном применяют пластинчатые для подогрева воды в системе отопления и горячего водоснабжения, вентиляции, нагрева воды в бассейнах.
В пищевой промышленности агрегаты нашего типа нашли применение в системах пастеризации молока и молочных продуктов, в системах охлаждения и пастеризации пивного сусла, вина и других напитков.
В металлургической промышленности их применяют для охлаждения оборудования и рабочих сред. Например, жидкости в станках и печах для плавки.
В нефтегазовой отрасли теплообменное оборудование используют для охлаждения жидких и газообразных сред, в установках химподготовки.
На судах теплообменные устройства служат для охлаждения двигателя, масел и основных узлов с применением морской воды.
Разборные пластинчатые виды
Паяные виды
Нужна консультация?
Инженеры компании помогут Вам осуществить правильный расчет для Вашего объекта и подобрать наиболее подходящую модель.
Свяжитесь с нами любым удобным для Вас способом и получите расчет в течение 20 минут.
Заполните форму в правой части страницы или позвоните по номеру +7 (804) 333-70-94 и проконсультируйтесь с нашим специалистом.
Пластинчатые теплообменники
Купить пластинчатые теплообменники. Изготовление, сборка, тестирование и испытание пластинчатых теплообменников
производится на заводах в Швейцарии, Германии, Франции, Турции, США, Японии и Кореи
Компания в России Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию пластинчатые теплообменники.
Пластинчатые теплообменники: описание, назначение и принцип действия
Пластинчатый теплообменник предназначен для переноса тепла между различными средами, причем парами рабочих сред могут служить как пар-жидкость, так и жидкость-жидкость.
Теплопередающей поверхностью служат тонкие штампованные гофрированные пластины.
Теплоносители движутся в теплообменнике между соседними пластинами по щелевым каналам сложной формы. Каналы для теплоносителя, отдающего и принимающего тепло, следуют друг за другом, чередуясь.
Тонкие гофрированные пластины имеют небольшое термическое сопротивление и, кроме того, обеспечивают турбулентность потока теплоносителя, в связи с чем теплообменники такого типа обладают высокой эффективностью теплопередачи.
Герметичность каналов, по которым движутся теплоносители, и их распределение по каналам обеспечивается резиновыми уплотнителями, расположенными по периметру пластины.
Одно из этих уплотнений охватывает два отверстия по углам пластины, через которые теплоноситель входит в канал между пластинами и выходит из него. Поток встречного теплоносителя проходит транзитом через другие два отверстия, которые дополнительно изолированы кольцевыми уплотнениями. Герметичность каналов обеспечивается двойным уплотнением вокруг входных и выходных отверстий. В случае повреждения уплотнения теплоноситель вытекает наружу через специальные канавки (на рисунке показаны стрелками). Это помогает определить нарушение герметичности визуально и быстро заменить уплотнение.
Схема движения и распределения потока теплоносителей по каналу
Системы каналов между пластинами соединены каждая со своим коллектором и имеют каждая свои точки входа и выхода теплоносителя на неподвижной плите.
На раме теплообменника укрепляется пакет пластин.
Принцип работы пластинчатого теплообменника
Конструктивная схема пластинчатого теплообменника. Основные узлы и детали
Устройство рамы теплообменника: неподвижная плита, подвижная плита, штатив, верхняя и нижняя направляющие, и стяжные болты.
Одноходовые теплообменники сконструированы таким образом, что присоединительные патрубки расположены на неподвижной плите. Для того, чтобы крепить теплообменник к строительным или технологическим конструкциям, на штативе и неподвижной плите имеются монтажные пятки.
Виды и типы пластинчатых теплообменников
Пластинчатые теплообменники делятся по конструкции и по размеру теплообменной пластины на нескольких видов.
По конструкции теплообменники делят на:
Преимущества пластинчатых теплообменников
Пластинчатые теплообменники имеют следующие преимущества по сравнению с другими видами:
Уменьшение площади, которое занимает теплообменное оборудование.
Способность к самоочищению теплообменника.
Высокий коэффициент теплопередачи.
Маленькие потери давления.
Уменьшение расхода электроэнергии.
Простота ремонта оборудования.
Небольшое время, необходимое для ремонта оборудования.
Небольшая величина недогрева.
Далее, все подсоединительные порты находятся на его неподвижной плите, что делает монтаж и подключение теплообменника значительно более простым. Кроме того, для ремонтных работ требуется значительно меньше площади, чем при ремонте теплообменников другого типа.
Небольшая величина недогрева
Движение теплоносителя по каналам тонким слоем, высокая турбулентность его потока обеспечивает высокий коэффициент теплоотдачи. При этом гофрированная поверхность пластины дает возможность получить турбулентный поток уже при относительно небольших скоростях движения потока теплоносителя. Поэтому величина недогрева в этом случае при расчетных режимах работы достигает 1-2 оС, в то время как для кожухотрубных теплообменников в лучшем случае эта величина составляет 5-10 оС.
Низкие потери давления
Конструктивная особенность пластинчатых теплообменников позволяет уменьшать гидравлическое сопротивление, например, за счет плавного изменения общей ширины канала. Кроме этого, максимальная величина допустимых гидравлических потерь может быть уменьшена увеличением количества каналов в теплообменнике. В свою очередь, уменьшение гидравлического сопротивления снижает расход электроэнергии на насосах.
Небольшие трудозатраты при ремонте теплообменника
Кроме того, мощность теплообменника может быть плавно изменена увеличением поверхности теплообмена. Это его особенность важна, когда, например, при расширении производства, возникает необходимость увеличения мощности теплообменного оборудования. В этом случае достаточно, не заменяя всего теплообменника, прибавить нужное количество пластин.
Зачем нужен пластинчатый теплообменник и какие они бывают?
Задачей этого узла является передача энергии от первоисточника к холодной рабочей жидкости: пластинчатый теплообменник распределяет тепло с помощью гофрированных пластин в качестве стенок, что защищает систему от смешивания сред.
Конструкционные характеристики теплообменника и пластин
При расчете пластинчатого теплообменника нужно принимать во внимание, что в основу аппарата закладываются:
Энергия передается между теплоносителями через пластины, выполненные из устойчивых к ржавчине инертных материалов. Последние обрабатываются методом штамповки, их толщина варьируется в пределах 0,4-1 мм. В собранном виде узел представляет собой плотно прилегающие тонкие панели, в которых предусмотрены щелевые каналы. У всех элементов с лицевой стороны есть контурное углубление, в которое закладывается резиновый уплотнитель (за счет него обеспечивается герметичное прилегание элементов).
Пластины единообразны по форме и материалу, они могут быть изготовлены из нержавеющей стали, титана, тугоплавких сплавов (выбирают в зависимости от сферы применения). Для производства уплотнителей используются сложные полимеры на базе синтетического каучука, их можно эксплуатировать с гликолем и неагрессивными средами, паром и высокотемпературными жидкостями, нефтесодержащими и масляными теплоносителями.
Принцип работы и схема агрегата
Устройство, расчет и промывка пластинчатых теплообменников для отопления основываются на том, что узел функционирует благодаря наличию 4 отверстий:
Движение жидкости в агрегате осуществляется по принципу завихрения потока. В результате из-за относительно небольшого сопротивления движению рабочей среды усиливается интенсивность передачи тепловой энергии. Также вследствие небольшого сопротивления при прохождении жидкости уменьшается количество накипи во внутренних полостях.
Как выглядит пластинчатый теплообменник
Принцип работы пластинчатого теплообменника, базирующийся на петлях и завихрениях, способствует многократному обмену энергией. В результате достигается максимальный КПД агрегата, на что оказывает положительное влияние и вывод патрубков в оба виды панелей – прижимные и неподвижные.
Устройство теплообменника идеально соответствует условиям эксплуатации: количество пластин увеличивается соразмерно потенциальным потребностям в мощности системы. Число рабочих элементов оказывает прямое влияние на КПД и производительность отопительного или охлаждающего оборудования.
Технические параметры моделей
При изучении ассортимента опираются на следующие технические характеристики:
Одна рабочая единица способна обеспечить площадь теплообмена в пределах 0,1-2100 кв. м.
Разновидности пластинчатых теплообменников
По специфике исполнения и возможностям применения устройства делятся на паяные, сварные и разборные.
Паяные модели
Представляют собой цельные устройства, в их конструкции не предусмотрены уплотнительные резинки. Пластины объединены друг с другом методом пайки. Достоинства решения:
Паяные теплообменники распространены в системах вентиляции и кондиционирования, их применяют в турбинной и компрессорной технике, внедряют в холодильные установки.
Разборные
Образуются из комплекта панелей и полимерных уплотнителей. Причины широкого распространения разборных пластинчатых теплообменников:
Разборные пластинчатые теплообменники
Узлы обрели широкое применение в системах отопления домов и обслуживания бассейнов, ГВС, климатической и холодильной технике, тепловых пунктах.
Полусварные и сварные
Здесь рабочие элементы соединяются посредством сварных швов, в конструкции отсутствуют герметизирующие прокладки. Характеристики моделей:
Сварные и полусварные модели распространены в пищевой, фармацевтической, химической промышленности, системах вентиляции, кондиционирования, рекуперации, тепловых насосах. Устройства обеспечивают охлаждение техники, позволяют координировать температуру воды в ГВС бань и аналогичных общественных объектов.
Преимущества и недостатки
Плюсы применения агрегатов:
Слабой стороной агрегатов признаются высокие требования к качеству очистки рабочей среды. Так как между панелями остается небольшое расстояние, загрязнение каналов происходит быстрее по сравнению с полостями ближайшего конкурента – кожухотрубного теплообменника. Засорение ведет к понижению эффективности теплопередачи, уменьшению КПД устройства.
Критерии выбора
При определении оптимальной модели аппарата следует опираться на технические характеристики изделия:
В последнем пункте принимается во внимание такая информация, как входная и выходная температура в зимние и летние периоды, потенциальный расход среды и допустимые потери давления, процентное соотношение запаса мощности. Эти сведения берутся за основу при расчете производительности пластинчатого теплообменника.
Нюансы монтажа и подключения
Теплообменник применяется только в связке и не подразумевает самостоятельного использования. Агрегат во время установки окружают вспомогательным оборудованием, таким как обратные клапаны, контрольно-измерительные устройства в виде термометров и манометров, запорная арматура (ручные заслонки и задвижки), циркуляционные насосы.
Подключение производится по одной из следующих схем:
Монтаж пластинчатого теплообменника
В первом случае образуется изрядная экономия полезной площади в зоне монтажа. Ключевое преимущество этого способа – простота исполнения (что важно в условиях ремонта, обслуживания, замены узла). Недостаток методики – отсутствие возможности подогрева холодной рабочей среды.
При двухступенчатом смешанном методе температура входящего теплоносителя повышается за счет обратного потока, в результате эффективность связки увеличивается на 35-40%. Но в этом случае для обеспечения горячего водоснабжения придется предусмотреть в системе два теплообменника, что увеличивает расходы на закупку и монтаж оборудования.
Последовательный двухступенчатый способ позволяет увеличить эффективность использования рабочей среды и стабилизировать нагрузку в сети. По сравнению с параллельной схемой здесь затраты на теплоноситель уменьшаются на 50%, на фоне смешанной методики – на 25%. Единственный недостаток решения – невозможность полной автоматизации теплового узла.
Сферы использования оборудования
Рассматриваемые модели применяются в коммунальном хозяйстве для достижения следующих целей:
В таких условиях максимальная температура воды может составлять 180°C на фоне давления в пределах 10-16 кПа. Пластины изготавливаются из нержавейки толщиной 0,4 мм, для уплотнителей используется этиленпропилен.
В пищевой отрасли теплообменники задействованы при производстве растительных масел, молочных продуктов, спирта, сахара, пива. Они применяются в качестве элементов испарительных, охладительных, пастеризующих линий. Здесь актуальны паяные и разборные модели.
В металлургии пластинчатые компоненты включены в оборудование для охлаждения рабочих жидкостей. В данной отрасли в интенсивном охлаждении нуждаются плавильные печи, прокатные и разливочные механизмы, травильные растворы, гидравлические смазки.
Теплообменники в нефтегазовой сфере помогают подогревать и охлаждать жидкости, вещества, задействованные в крекинге и технологической подготовке сырья. Агрегаты применяют в качестве составных частей сетевых систем, оборудования для химобработки воды, обеспечения низкого давления. Пластины для газовой и нефтяной промышленности изготавливают на базе чистого титана в виде листов толщиной не более 0,7 мм. К маркам полимера, применяемым для производства уплотнительных прокладок, предъявляются высокие требования по устойчивости к химическому и термическому воздействию.
Пластинчатые теплообменники, востребованные в судостроении, служат охладителями для всей системы и главного двигателя. Носителями в подобных условиях являются моторные масла, отличающиеся по вязкости, морская вода, СОЖ. Агрегаты также актуальны в составе отопительных контуров и ГВС на крупных морских судах.