для чего нужен развязывающий трансформатор
Трансформатор разделительный (тр-р развязки)
Разделительный трансформатор – это устройство, назначение которого для так называемого гальванического разделения потребителей электроэнергии и питающей их электрической сети, для чего отсутствуют во вторичных цепях электрические связи с землей или с источниками напряжения, выполненными в виде глухозаземленной или эффективно заземленной нейтрали на трансформаторных подстанциях.
В чем заключается защитное действие разделительного трансформатора, принцип работы
Устройство и принцип работы разделительного трансформатора ничем принципиально не отличается от принципа работы трансформатора; устройством осуществляется такое же преобразование электроэнергии.
На общем магнитопроводе устройства размещены две обмотки из одного и того же изолированного провода с одинаковыми намоточными характеристиками. Электрическая мощность синусоидальной гармоники пропускается через первичную обмотку, на основе законов электромагнитной индукции преобразуется во вторичной. Вектор напряжения в выходных цепях вторичной обмотки повторяет полностью параметры первичного. Конечно, если учесть классы точности метрологических измерений, то определенные погрешности по величине и углам существуют. Однако, это чистая теория; при эксплуатации погрешности не учитываются.
Основной задачей изолирующего трансформатора является повышение электробезопасности за счет того, что его вторичные цепи не имеют электрической связи с землей, а значит — и с заземленной нейтралью трансформаторной подстанции – источником напряжения.
В этом случае возникновение электрического пробоя на корпус не вызывает перегрузок по току, а сам прибор остается в рабочем состоянии. При случайном прикосновении человека к части устройства, аварийно находящегося под напряжением, ток утечки не превысит жизненно опасного порога и трагедии не случится.
Исходя из назначения, разделительный трансформатор применяется во всех пространствах, входящих в группу высокой опасности. В первую очередь его используют для установки в бассейнах, саунах, ванных комнатах и помещениях, где размещены металлоизделия с неустойчивым заземлением.
Действующие нормативы и правила безопасности в России и Европе также предписывают устанавливать их в особо опасных пространствах, где присутствует мелкозернистая токопроводящая пыль, имеются стены и полы из металла, а также в подземных сооружениях, укомплектованных местным освещением, автоматикой и сигнализацией.
Поскольку вторичная электрическая цепь распределителя не связана с землей, к нему подключают оборудование, которое также не соединяется с землей. В зависимости от показателей мощности и назначения, к однофазным понижающим разделительным трансформаторам подсоединяют электроинструменты, полупроводниковые преобразователи станков и лифтов, а также другую аппаратуру. См. Трансформатор разделительный 220/220 В
Трехфазные агрегаты чаще всего используют для питания и локальной защиты систем управления и мобильных комплексов, вычислительной техники и оборудования, задействованного в медицине, химической, машиностроительной, горнодобывающей и железнодорожной промышленности.
В числе главных преимуществ применения разделительного трансформатора можно отметить:
Важным достоинством является то, что подключение разделительного трансформатора полностью соответствует требованиям пожарной и экологической безопасности.
Условия подключения и эксплуатации разделительных трансформаторов
Оборудование, соответствующее стандартам ГОСТ 15543.1 и ГОСТ 15150, предназначено для эксплуатации в условиях умеренного и холодного климата. В зависимости от типа корпуса и назначения, его можно монтировать в закрытых пространствах с естественным воздухообменом и без искусственной регуляции внутреннего микроклимата, а также на открытом воздухе под навесом или в сухом неотапливаемом помещении, где имеется свободный доступ внешнего воздуха.
Во избежание механического напряжения все шины и провода должны быть закреплены. Расстояние от обмоток разделительного трансформатора до стены или другой заземленной конструкции должно составлять 300 мм. Работы по профилактическому обслуживанию распределителей напряжения проводятся два раза в год. Они включают в себя операции по очищению обмоток, системы магнитопровода и охлаждающих каналов от грязи, пыли и посторонних частиц.
Кроме того, в ходе сервисного обслуживания обязательно проводится тестирование надежности болтовых соединений, для чего используются динамометрические ключи и влажное очищение обмоток губкой, смоченной в растворителе или спиртовом растворе. Объемы и периодичность каждого вида операций напрямую зависят от условий эксплуатации. Также время от времени рекомендуется производить визуальный осмотр аппаратуры.
Разделительные трансформаторы и их использование
Вопросы безопасности в отношении сетей переменного тока невозможно переоценить. Взять к примеру привычные всем 220 вольт. В определенных условиях даже это невысокое напряжение может оказаться смертельно опасным, несмотря на то, что присутствует оно в каждой современной розетке.
Главная опасность обычной сетевой розетки заключается в том, что порой не обязательно прикасаться к двум проводам сети одновременно, иногда хватает прикосновения к фазе, случайно попавшей на корпус прибора, при этом стоя на земле или держась рукой за проводящую батарею. Чтобы получить остановку сердца этого уже бывает достаточно. Для защиты от подобных неприятностей, применяют разделительные трансформаторы.
Разделительным трансформатором называется такой трансформатор, чей коэффициент трансформации равен единице, то есть число витков в первичной обмотке равно числу витков во вторичной обмотке (n1/n2 = 1). Функция такого трансформатора — безопасная подача к потребителям сетевого питания. Это достигается путем изоляции цепи первичной обмотки от цепей вторичных, причем вторичная цепь принципиально не заземляется, чтобы полностью исключить возможность замыкания вторичного тока в направлении заземления.
Первичная и вторичная обмотки разделительного трансформатора гальванически развязаны друг от друга с применением усиленной или двойной изоляции, либо путем установки между обмотками защитного экрана. Кроме того обмотки обычно разделены (разнесены на разные части магнитопровода) физически. А провода, которыми намотаны обмотки, имеют приблизительно равные или полностью одинаковые характеристики.
Вторичная цепь, как отмечалось выше, от контура заземления изолирована — это принципиальная особенность разделительного трансформатора. И хотя КПД разделительного трансформатора находится в районе 85%, это считается целесообразным ради достижения безопасности, не даром разделительные трансформаторы называют еще «трансформаторами безопасности».
Разделительными трансформаторами необходимо оснащать любые помещения особой опасности и повышенной влажности, а также места с повышенными требованиями к безопасности. Например в ванной комнате или в сауне влажность всегда повышена, здесь, как правило, есть много изделий из металла с неустойчивым заземлением, часто течет вода, и вообще условия не подходящие для пользования электричеством в присутствии людей.
Но даже имея дело с «безопасными» разделительными трансформаторами следует придерживаться определенных правил. Недопустимо касаться одновременно двух выводов вторичной обмотки разделительного трансформатора. Прикосновение к одному из выводов не причинит никакой опасности, так как цепь источника опасной переменной ЭДС останется разомкнутой. Но если коснуться обеих выводов вторичной обмотки, это окажется равносильно поражению от обычной (без разделительного трансформатора) розетки.
Первичная цепь разделительного трансформатора должна быть оснащена УЗО. Ни в коем случае нельзя заземлять корпуса приборов, питаемых от разделительного трансформатора, ведь даже в случае пробоя изоляции на корпус, ток не должен иметь возможности замкнуться на землю, а если корпус заземлить, то возникает опасность появления дополнительных путей для тока, в этом случае смысл использования разделительного трансформатора будет попросту утрачен.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Для чего нужен разделительный трансформатор 220/220 и как он работает
Здравствуйте, дорогие подписчики и посетители моего канала. В сегодняшнем материале пойдет речь о таком интересном и не так сильно распространенном изделии (в частном секторе), как разделительный трансформатор 220/220 Вольт. Также речь пойдет о принципе его работы и основной области применения. Итак, начнем.
Как работает разделительный трансформатор
По своей сути работа разделительного трансформатора (РТ) практически ничем не отличается от принципа работы самых обыкновенных повышающих, а также понижающих трансформаторов. В нем тоже проходят процессы трансформации электрической энергии.
Есть только одно отличие, которое состоит в том, что на магнитопроводе в разделительном трансформаторе устанавливаются одинаковые обмотки. У них совпадают такие параметры как: толщина намоточного провода, число витков и изоляция.
При этом в процессе трансформации полностью сохраняется как величина, так и векторы напряжения, индуцируемого во вторичной обмотке.
Для чего необходим разделительный трансформатор
В первую очередь он необходим для того, чтобы разделить цепи напряжения электроприборов от главной электрической сети за счет применения изолированных силовых обмоток.
Так вот РТ необходим для того, чтобы поднять на максимальный уровень безопасности электроприборы, а, следовательно, служит для снижения электротравматизма в целом.
Подключение разделительного трансформатора в сеть
Итак, давайте для примера изучим типовую новую проводку жилого здания, выполненную трехпроводным кабелем, где кроме фазы и рабочего нуля присутствует и заземление.
Подключенные к подобной сети электроприборы заземляются, и в случае возникновения тока утечки установленное в вашем распределительном щитке УЗО отключает повреждённый участок или же дом сразу целиком.
Но существуют приборы, у которых нет возможности заземления. Так вот именно в таком случае нам и потребуется РТ, ведь через него как раз и нужно подключать электроприборы без возможности заземления.
Все дело в том, что во вторичной цепи РТ создается собственная и изолированная от общей сети и соответственно земли электрическая цепь.
Значит, разность потенциалов присутствует исключительно на клеммах разделительного трансформатора и в случае возникновения ситуации, когда у электроприбора будет повреждена изоляция или будет повреждена сама линия, такой прибор не будет представлять для человека никакой опасности по причине отсутствия соединения сети с потенциалом земли.
Все хорошо, но даже в таком вроде бы полностью безопасном варианте есть риски поражения током, поэтому нужно строго соблюдать правила.
Правила безопасности во время использования разделительного трансформатора:
1. Запрещается касаться одновременно выводных клемм трансформатора.
2. Первичная обмотка, которая подключается в общую сеть, должна в обязательном порядке заземляться.
3. Запрещено заземлять корпуса электроприборов, подключенных к сети после разделительного трансформатора.
4.Разрешено подключать через РТ только один электрический прибор. Если необходимо подключить сразу несколько приборов, то применение специальных приборов по контролю напряжения строго обязательно.
КПД и область применения РТ
Разделительные трансформаторы в основном используют в тех местах, где предъявляются повышенные требования к электробезопасности:
· Помещения с повышенной влажностью.
· Применяются во время проведения работ с электроинструментом, отнесенным к первому классу электробезопасности.
· Подключение медицинских приборов стационарной установки.
Так вот разделительный трансформатор — это достаточно полезный прибор, который существенно повышает электробезопасность.
Что такое разделительный трансформатор: конструкция, принцип действия
Напряжение 220 В небезопасно для человека. Случайное прикосновение к фазному проводу или к корпусу прибора, оказавшемуся под напряжением, может привести к летальному исходу, если человек стоит на земле или заземленной поверхности. Особую опасность представляют сетевой ток во влажных помещениях. Безопасную эксплуатацию оборудования обеспечивает разделительный трансформатор. Он применяется для развязки гальванической связи блока питания с сетевым напряжением, что сводит к нулю вероятность поражения током.
Конструкция и принцип действия
Главное отличие разделительного трансформатора – отсутствие гальванической связи между катушками, которые надежно отделены гальванической изоляцией. Обычно обмотки образующие первичную цепь трансформатора по параметрам идентичны обмоткам во вторичных цепях. В таком случае коэффициент трансформации для данного разделительного трансформатора равен 1. То есть, устройство используется исключительно для гальванической развязки. Пример разделительного аппарата смотрите на рис. 1.
Рис. 1. Разделительный трансформатор
Характерной особенностью трансформаторов этого типа является то, что цепи вторичных обмоток в разделительной трансформации не оборудуются защитным заземлением. С целью обеспечения надежности гальванической развязки применяют дополнительную изоляцию между катушками. В отдельных случаях витки первичных обмоток отделяют защитным экраном от вторичных обмоток или разносят их физически на разные части магнитопровода.
В остальном конструкция и принцип работы не отличается от трансформаторов других типов:
Между напряжениями в катушках и токами существует зависимость: величины вторичных напряжений прямо пропорциональны первичным напряжениям, с коэффициентом пропорциональности k=W2/W1, а выходной ток обратно пропорционален току в первичной обмотке.
Благодаря отсутствию гальванической связи между катушками и отделению от цепи заземления первичной обмотки случайное прикасание к любому выводу вторичной катушки не приводит к поражению током. Остерегаться необходимо только одновременного касания разных выводов трансформатора.
Таким образом, при электрическом контакте с токоведущими частями оборудования запитанного от разделительного трансформатора электрическая цепь с землей не образуется, что исключает возможность поражения электротоком. Разделительные трансформаторы обеспечивают также защиту подключенных электроприборов при однофазных замыканиях. Если КЗ произойдет в первичной цепи, то вторичная цепь просто обесточивается. Однако для полной защиты в первичную цепь подключайте УЗО.
Назначение
Автономные силовые обмотки в основном применяются для отделения цепей электротехнических устройств от напряжений, поставляемых электрической сетью. При этом мощность нагрузки составляет от 100 Вт до 60 кВт. Электрические приборы, отделенные от питающей сети, получают дополнительную защиту, они безопаснее в обслуживании.
Разделительные трансформаторы применяются для подключения нагрузки в помещениях с условиями. повышающими уровень опасности поражения электрическим током. Такими сооружениями являются подвалы, ванные комнаты, и другие помещения с повышенной сыростью.
В целях безопасности делают гальваническую развязку оборудования применяемого в медицинских учреждениях. Подключать разделительный трансформатор целесообразно везде, где существуют повышенные требования к безопасности, там, где нет надежной изоляции с землей.
Разновидности
В электротехнике довольно часто используют понижающий трансформатор с гальваническим разделением цепей первичной обмотки и вторичной катушки.
Такого типа разделительный понижающий аппарат позволяет решить две задачи:
Семейство силовых трансформаторов включает в себя серии однофазных трансформаторов, обладающими различными номинальными мощностями. Промышленные силовые агрегаты обычно бывают внушительных размеров и устанавливаются стационарно в специальных боксах (см. рис. 2).
Рис. 2. Промышленный разделительный трансформатор
Существуют компактные переносные устройства (см. рис. 3).
Применение переносных трансформаторов удобно в тех случаях, когда электрооборудование не может быть установлено стационарно, а используется периодически. Например, при использовании электроинструмента в кабельных колодцах, в подвалах и т.п. При номинальных первичных напряжениях эти устройства стабильно работают. Они хорошо защищены от воздействия влаги и прочих влияний окружающей среды.
Рис. 3. Переносной разделительный агрегат
Во входных сигнальных блоках, а также в других цепях электронного оборудования применяются малогабаритные, высокочастотные импульсные трансформаторы.
По конструкции сердечника сетевой трансформатор чаще всего бывает стержневого типа. Встречаются также тороидальные модели.
Рис. 4. Тороидальный разделительный трансформатор
Технические характеристики
Промышленность поставляет на рынок множество моделей с различными характеристиками. Запомнить их просто невозможно. Да в этом нет необходимости. Большинство характеристик будут интересны только узким специалистам.
Для практических целей достаточно знать основные параметры трансформатора. Обычно эти параметры указаны в паспорте устройства.
При выборе разделительного трансформатора обращайте внимание на следующие основные характеристики:
Номинальная мощность должна совпадать или немного превышать мощность нагрузки. Первичное напряжение должно соответствовать параметрам первичной сети, а вторичное – напряжению питания подключаемых электроприборов. При выборе импульсных трансформаторов обращайте внимание на частоту тока.
Характеристики, выделенные курсивом важны, но для их понимания требуются более глубокие познания в сфере электротехники.
Порядок подключения
Однофазное напряжение формируется методом подключения одной из фаз к нулевому проводу через нагрузку. В нашем случае нагрузкой служит первичная обмотка. Поэтому, когда фазный ток попадает на корпус прибора, то при его касании и одновременном контакте с заземленным предметом, через тело оператора проходит электрический ток.
Применение метода гальванической развязки исключает такую возможность, так как вторичная обмотка не заземлена. Поэтому, перед подключением убедитесь, что вы действительно имеете дело с разделительным трансформатором. Для этого тестером проверьте отсутствие соединения вторичной обмотки с корпусом и с витками первичной обмотки.
В том случае, если вторичная обмотка одна, а обе катушки физически разнесены на разные части сердечника, можно обойтись визуальным осмотром. В противном случае проверка обязательна. Заметьте, что между вторичными обмотками (если их несколько) гальваническая связь может существовать, и это нормально.
Пример схемы подключения приведен на рисунке 5. Обратите внимание, что корпус подключенного оборудования в первичную цепь на этой схеме заземлен. Кроме того, того, чтобы усилить защиту применено УЗО. Если вы используете переносной или стационарный разделительный трансформатор то заземлять оборудование во вторичной цепи не нужно.
Рис. 5. Схема подключения
Разница потенциалов между фазой и землей в первичной цепи составляет 220 В, в то время, как в защищенной цепи напряжение между фазой и землей нулевое.
Подключайте нагрузки, мощность которых не превышает номинала трансформатора. Несоблюдение этого правила может привести к перегреву обмоток, что чревато разрушениями изоляции.
Отказ от ответственности
В данной статье затрагиваются вопросы, касающиеся сетевого напряжения, которое может представлять угрозу жизни и здоровью человека, а также работоспособности приборов. Вся информация в этой статье представлена исключительно в ознакомительных целях. Вы используете указанную информацию на свой страх и риск. Автор ни в коем случае не несет ответственности за какой-либо прямой, непрямой, особый или иной косвенный ущерб в результате любого использования информации из данной статьи.
Структура источника питания
В данном разделе, конечно, мы не будем подробно рассматривать устройство импульсных преобразователей, это тема для целой серии статей. Мы рассмотрим этот вопрос в минимальном объеме, необходимом для понимания темы статьи. Итак, на рисунке ниже приведена по сути структурная схема простейшего обратноходового преобразователя. Обратноходовый преобразователь здесь выбран исключительно для примера, совершенно не важно, какая топология источника питания (прямоходовый, мост, полумост, пуш-пул или вообще балластный конденсатор), все сказанное верно для любой из них.
В ней не показаны фильтры синфазных и дифференциальных помех, цепи защиты и некоторые другие компоненты, однако для рассмотрения нашего вопроса это и не нужно. На схеме мы видим диодный мост, к которому подводится сетевое напряжение, микросхему ШИМ-контроллера, объединенную с силовым транзистором, трансформатор и цепь обратной связи. Сетевое напряжение выпрямляется диодным мостом: плюс подводится к трансформатору и коммутируется силовым транзистором, а минус образует потенциал локальной (силовой) земли. Относительного этого потенциала питается ШИМ-контроллер, измеряется напряжение обратной связи, а также относительно него подаются управляющие напряжения на затворы силового транзистора (который в данной схеме находится внутри контроллера). Если мы хотим измерить какое-то напряжение на первичной стороне, это тоже надо делать относительного этого потенциала. В общем, классический такой GND, за исключение одного нюанса: он гальванически не развязан от сети (имеет прямую связь с фазой и нейтралью через пару диодов). И вот именно этот нюанс и является решающим, однако об этом позднее.
Структура осциллографа
В данном разделе будет рассмотрен вопрос, касающейся гальванической связи как между непосредственно самими каналами осциллографа, так и между каналами осциллографа и линией заземления. Существует два типа осциллографов: с изолированными каналами и без такой изоляции. Осциллографы с изолированными каналами – довольно редкий вид приборов, и этот факт будет обязательно подчеркнут в описании устройства. Если вы никогда не задумывались о том, есть ли у вашего осциллографа такая изоляция, то, скорее всего, ее нет. Что это значит на практике? Это значит, что сопротивление между земляным хвостом щупа осциллографа и земляным выводом в сетевой розетке 230 В близко к нулю. Для лучшего понимания, этот факт продемонстрирован на рисунке ниже.
На данном рисунке показано измерение сопротивление между земляным хвостом щупа осциллографа и земляным контактом шнура питания осицллографа. Как видим, величина сопротивления очень мала и составляет всего 2,18 Ома. В реальности она еще меньше, потому что здесь не учитывалось сопротивление самих щупов мультиметра, которое может быть более 1 Ома.
Итак, сделаем важный вывод: у осциллографа земляной хвост щупа соединен с земляным контактом розетки и через нее заземлен в электрическом щитке.
Структура бытовой сети 230 В
Наиболее полное описание структуры сети 230 В, конечно, лучше найти в какой-нибудь литературе по теории электрических цепей, прочитав раздел про трехфазные цепи. В рамках данной статьи будет представлена только очень маленькая часть этого курса, имеющая непосредственное отношение к нашей проблеме.
В обычную бытовую розетку приходит как правило 3 провода: фаза, нейтраль и заземление. В старых домах советской постройки третьего провода (заземления) может и не быть. Провод заземления в общем-то соответствует своему названию: в конечном итоге он переходит в шину (контур заземления), которая закапывается глубоко в землю где-нибудь под зданием или в непосредственной близости от него (разумеется, не просто абы как, а в соответствии с определенными правилами). Этот провод предназначен для защиты человека от возможного поражения электрическим током: в случае нештатной ситуации, например, попадания напряжения на корпус прибора, ток начинает идти по проводу заземления, что приводит к срабатыванию защитной автоматики и отключению напряжения.
Нейтраль по сути своей очень близка к заземлению. Если вы внимательно рассмотрите линию электропередач в сельской местности, то заметите, что нейтральный проводник заземляется на каждой опоре.
Кроме того, нейтральный проводник заземлен также и на подстанции (здесь есть свои нюансы, но в быту обычно это так, схемы с изолированной нейтралью мы не рассматриваем).
В идеальном мире сопротивление между проводом заземления и нейтралью в розетке равно нулю, и они имеют абсолютно одинаковый потенциал. В реальном мире сопротивление проводников вносит свои коррективы и между нейтралью и заземлением имеется сопротивление порядка единиц-десятков Ом. Запомним этот факт, он пригодится нам в дальнейшем.
Фазный проводник – это непосредственно сам «рабочий» проводник, который формирует синусоиду относительно нейтрали. Синусоида в бытовой розетке имеет амплитуду порядка 325 В и колеблется в плюс и в минус относительно нейтрального проводника. Таким образом, при положительной полуволне синусоиды ток течет из фазного проводника в нейтральный, а при отрицательной полуволне наоборот – ток течет из нейтрального проводника в фазный.
Что происходит при подключении осциллографа?
Итак, сведем в кучку выводы по предыдущим разделам статьи:
Для начала давайте посмотрим, как ведет себя схема без подключенного осциллографа. На рисунке ниже приведены результаты моделирования такой схемы (картинка кликабельна).
Сопротивление R1 в данном случае – это сопротивление нагрузки. Я выбрал его равным 100 кОм. Можно взять любое другое, в данном случае его величина не принципиальна. Сопротивление R2 – это сопротивление между нейтральным и проводником и заземлением. Я выбрал его равным 10 Ом. Амплитудное напряжение между фазой и нейтралью составляет 325 В, что соответствует действующему значению напряжения в 230 В, сигнал показан на зеленом графике.
Как видно из графиков тока, он нигде не превышает величины нескольких миллиампер и вся система чувствует себя хорошо.
А что будет, если подключить к такой цепи осциллограф? Результат показан на рисунке ниже (картинка кликабельна).
Как видим, в модель добавился резистор R3 с сопротивлением 2 Ома. Этот резистор соответствует сопротивлению между земляным хвостом щупа осциллографа и контактом заземления шнура питания осциллографа. Чуть выше мы проводили измерение этого параметра и получили величину равную порядка 2 Ом. Этот резистор подключен к локальной силовой земле PGND: именно к этой цепи вы скорее всего и подключите землю осциллографа, если захотите произвести измерения на первичной стороне источника питания. Но как же ведет себя при этом ток? А он вырастает до катастрофических величин. Величина тока в нашей модели составляет более 25 А! В данном случае ток ограничен величиной сопротивления между нейтралью и заземлением, внутренним сопротивлением диодного моста, а также величиной сопротивления всех проводов. И этот ток протекает, помимо всего прочего, через резистор R3, т.е. через щуп осциллографа и через его внутренние цепи. 25 А через внутренние цепи осциллографа гарантированно выжгут внутри все, что возможно, не факт даже, что уцелеет сама печатная плата. Таким образом, данная картинка весьма наглядно показывает, что будет с прибором, если вот так просто попытаться измерить сигналы на не отвязанном от сети источнике.
Если чуть проанализировать результаты выше, то становится понятным, что смертельным для осциллографа оказывается отрицательная полуволна синусоиды в розетке. Отрицательная полуволна создает в точке между диодами D1 и D3 отрицательный потенциал. К точке PGND оказывается приложен нулевой потенциал (GND) через хвост щупа осциллографа, который соединен внутри него с землей розетки. Таким образом, у нас образуется разность потенциалов, причем диод D1 оказывается включенным в прямой полярности, что и приводит к резкому росту тока. Все вышесказанное наглядно проиллюстрировано на рисунке ниже.
А как же УЗО?
Действительно, при подключении земляного хвоста осциллографа к локальной (силовой) земле на стороне сетевого напряжения возникает дисбаланс токов и это должно отрабатываться УЗО. Возможно, оно и спасет цепи осциллографа от полного выгорания, однако, увы, УЗО срабатывает отнюдь не мгновенно, время его реакции составляет десятки миллисекунд. За это время вполне успеет проскочить хотя бы одна полуволна синусоиды сетевого напряжения, которая если не выжжет прибор совсем, скорее всего, все равно повредит чувствительные входные цепи осциллографа. Кроме того, в электрическом щитке УЗО присутствует далеко не всегда. Поэтому, не смотря на то, что УЗО, безусловно, полезный компонент электропроводки, в данном случае неразумно полагаться на защиту прибора с его помощью. Но как же быть, если все-таки необходимо посмотреть какие-то сигналы у прибора, работающего от сети 230 В? На самом деле, есть несколько способов, как это можно сделать относительно безопасно, об этом в следующем разделе
Как посмотреть сигналы на стороне сетевого напряжения и не спалить приборы?
1. Использовать осциллограф с гальванически развязанными каналами
У осциллографа с гальванически развязанными каналами все каналы имеют изоляцию как друг относительно друга, так и относительно земли. Таким образом, при подключении прибора к схеме, у нас не будет образовано контура, через который может произойти короткое замыкание и выгорание схемы. Однако будьте все равно предельно внимательны, даже если у вас осциллограф с развязанными каналами. Внимательно изучите документацию на свой прибор и обратите внимание на конкретные цифры по максимально допустимому напряжению относительно земли. Если вы будете анализировать сигналы на стороне сетевого напряжения, то, скорее всего, вам понадобятся специальные высоковольтные щупы, которые позволяют проводить измерения под большим потенциалом. Использование осциллографа с развязанными каналами имеет один большой недостаток – цена. Такие осциллографы заметно дороже осциллографов с аналогичными характеристиками, земли каналов которых соединены на общем шасси. Кроме того, модельный ряд таких осциллографов довольно-таки скудный, по сравнению с классическими осциллографами, конечно же. В общем, если у вас есть осциллограф с изолированными каналами и вы умеете с ним работать, скорее всего, вы мало что нового узнали из этой статьи.
2. Использовать дифференциальный пробник
Если у вас нет осциллографа с гальванически развязанными каналами, но есть обычный, то можно развязать какой-либо его канал с использованием специального устройства, которое называется дифференциальный пробник. Пример такого устройства приведен на рисунке ниже.
С помощью данного устройства возможно относительно безопасно смотреть сигналы на стороне сетевого напряжения. Существует достаточно большое число видов подобных устройств на разные входные напряжения и частот с разными коэффициентами деления входного напряжения. Как правило это активные устройства, требующие дополнительного питания, например, устройство с рисунка выше требует адаптер 9 В. Цена подобных устройств обычно тоже не очень демократична и составляет десятки, а иногда и сотни тысяч рублей (по курсу на момент написания статьи).
3. Использовать развязывающий трансформатор
Вполне рабочий способ защитить осциллограф и посмотреть при этом сигналы на стороне сетевого напряжения – использование развязывающего трансформатора с коэффициентом трансформации 1:1 (т.е. величина напряжения на выходе трансформатора равна величине напряжения на его входе). Через такой трансформатор необходимо подключить объект исследования (например, все тот же анализируемый нами источник питания). Поясняющий рисунок с результатами моделирования приведен ниже (картинка кликабельна).
Как видим, не смотря на то, что к схеме точно таким же образом подключен заземленный хвост щупа осциллографа, на графиках тока нет никаких запредельных величин. Ток через внутренности осциллографа (через сопротивление R3) равен нулю, а амплитуда тока источника питания и нагрузки составляет несколько миллиампер, как было у нас при не подключенном осциллографе. Это происходит потому, что теперь у нас земля PGND гальванически развязана от сетевого напряжения. Однако это вовсе не значит, что теперь все безопасно для человека: на выходе трансформатора по-прежнему 230 В действующего напряжения, которые могут представлять смертельную опасность.
При использовании развязывающего трансформатора помимо коэффициента трансформации необходимо также обязательно посмотреть на такой параметр, как максимально допустимая мощность. Очевидно, что потребляемая вашей нагрузкой мощность не должна превышать максимально допустимую мощность, на которую рассчитан трансформатор. Таким образом, этот способ вряд ли подойдет для анализа установок на несколько киловатт: габариты и масса требуемого трансформатора будут слишком велики.
4. Использовать лабораторный источник питания
Если ваш объект исследования – импульсный источник питания, то безопасно посмотреть его первичные цепи можно запитав его не от сети 230 В, а через лабораторный источник питания постоянного тока. Внутри такого источника питания всегда стоит трансформатор, таким образом достигается гальваническая развязка, и осциллограф можно безбоязненно подключать к анализируемой схеме. Поскольку на входе импульсного источника питания стоит выпрямитель, то для его работы нет большой разницы, подадите вы на вход синусоиду или же постоянное напряжение. Разумеется, величина этого постоянного напряжения должна соответствовать выпрямленному сетевому напряжению с каким-либо допуском. На прошлой работе в качестве такого источника питания мы использовали источник Б5-50, он изображен на рисунке ниже.
Он выглядит не очень современно, однако умеет выдавать на выходе напряжение до 300 В и неплохо подходит для отладки схем мощностью до пары сотен ватт.
Дополнительный очень жирный плюс использования лабораторного источника питания при отладке – вы можете выставить на источнике питания необходимое ограничение по току. Таким образом, даже если схема неисправна, у вас не будет громкого ба-баха и с большой долей вероятности ничего не сгорит. Такой подход несравнимо лучше всем известного включения схемы через лампочку накаливания. Единственное о чем стоит помнить – мощность лабораторного источника питания должна быть достаточной для организации питания исследуемой схемы.
5. Использовать розетку без заземления
Внимание! Данный способ относится к категории опасных, поэтому я не могу рекомендовать использовать его. Однако все-таки для полноты картины я должен про него рассказать, хотя бы для того, чтобы сообщить о возможных опасностях. Более того, бывает, что зачастую он оказывается единственным возможным способом посмотреть сигнал на стороне сетевого напряжения без привлечения какого-либо специального оборудования типа развязывающего трансформатора или осциллографа с изолированными каналами. Данный способ заключается в том, что осциллограф включается в розетку без клеммы заземления (см. рисунок ниже).
Таким образом разрушается контур протекания тока, однако это приводит к одной большой проблеме. Теперь земля осциллографа оказывается под смертельно опасным потенциалом. Это значит, что опасное для жизни напряжение будет присутствовать на всех BNC-разъемах осциллографа, на земляных хвостах всех подключенных щупов, а также, возможно, и на корпусах всех других приборов, включенных в ту же розетку (в случае, если в розетке все же есть контакты заземления, но к ней не подведен заземляющий провод). И если теперь одной рукой просто задеть коаксиальный разъем на корпусе осциллографа, а другой при этом, условно, схватиться за батарею… в общем, вы понимаете. Совершенно недопустимо использовать этот способ, если у вас осциллограф в металлическом корпусе. Если все-таки используете этот способ, то отключите все лишние щупы, а также другие провода (USB, RS-232 и др.), убедитесь, что в розетку включен только один осциллограф, выполните все подключения, настройте заранее все крутилки на осциллографе, убедитесь, что не заденете случайно BNC разъемы и только потом подавайте сетевое напряжение.
Тем не менее, при соблюдении всех мер предосторожностей, этот способ в целом рабочий. Под спойлером ниже приведена осциллограмма напряжения из розетки, снятая мной еще в студенческие годы как раз с использованием этого самого способа. Поскольку сетевое напряжение имеет размах, превышающий количество клеток на экране осицллографа, измерение происходило через резистивный делитель напряжения 1:5.
6. Использовать осциллограф с питанием от аккумуляторной батареи
Некоторые осциллографы могут работать от встроенных аккумуляторных батарей. Сетевой шнур при этом не подключается, соответственно, осциллограф оказывается не заземленным. По сути этот способ является полным аналогом предыдущего, только вместо розетки без заземления используется питание осциллографа от встроенной батареи. Этот способ абсолютно точно также опасен, как и предыдущий: на всех разъемах осциллографа будет присутствовать все тот же смертельно опасный потенциал, поэтому все меры безопасности, описанные в предыдущем пункте статьи, в равной степени справедливы и для этого способа.
7. Запитать управляющие микросхемы низким напряжением от лабораторного источника
Иногда бывают ситуации, когда для отладки не обязательно наличие высокого сетевого напряжения. В таком случае лучше просто запитать управляющие цепи с помощью низковольного лабораторного источника питания. Величина требуемого напряжения всегда прописана в документации на конкретные микросхемы (например, в случае исследования ШИМ-контроллера оно обычно не превышает 20 В). Сетевое напряжение 230 В при этом, само собой, не подается, поэтому можно абсолютно безопасно исследовать осциллографом импульсы на выходе контроллера, работу осциллятора, величину опорных напряжений и другие критические сигналы. Конечно, без наличия сетевого напряжения все проверить не получиться, но откровенно мертвый контроллер без проблем можно продиагностировать.
Общие рекомендации по работе с сетевым напряжением
1. При работе с сетевым напряжением всегда соблюдайте технику безопасности
Да, сто раз про это везде уже писали, но, тем не менее, почему-то часто то, как делать не надо, выясняется только на своей шкуре своем опыте. Не стоит лезть в приборы под напряжением во время работы, лучше выполните все подключения до включения питания. Не забывайте про накопительные конденсаторы: на их разряд нужно некоторое время, которое может стремиться к бесконечности (условно, конечно же), если разработчик не поставил разрядных резисторов.
2. Изучите инструкцию на ваш прибор
Конечно, жизнь слишком коротка, чтобы читать инструкции, поэтому их обычно открывают только когда что-то не работает или сломано. Но если вы работаете с сетевым напряжением, все-таки стоит заранее посмотреть, а какие, собственно, предельные цифры у вашего прибора. Небрежность в этом вопросе может стоить очень дорого.
3. Используйте недорогие приборы
Если вы исследуете сетевое напряжение, то отложите в сторону ваш крутой Tectronix DPO 7254 ценою в несколько миллионов и возьмите какой-нибудь Наntек DSO 5102 за пару десятков тысяч рублей. На стороне сетевого напряжения вам не нужны гигасемплы и крутая математика, зато если что-то пойдет не так, ошибка не будет стоить настолько дорого.
4. По возможности всегда работайте с гальванической развязкой от сети
Из-за несоблюдения этого правила в этом мире погорело уже куча электроники. В моей практике был случай, который стоил мне ноутбука и JTAG-отладчика. Я проводил отладку одного устройства и вроде бы ничего не предвещало беды. Устройство имело металлический корпус и на корпусе была установлена неоновая лампочка, которая светилась от сети 230 В. Корпус, естественно, был заземлен. Сама плата с микроконтроллером была запитана от отдельного изолированного источника питания. И в один прекрасный момент эта лампочка пробилась на корпус устройства. В этот момент к плате был подключен JTAG-отладчик, который был воткнут в ноутбук. Ноутбук же в свою очередь был включен в розетку с заземлением. Таким образом, ток пошел по цепочке «неоновая лампочка – корпус – плата – JTAG-отладчик – ноутбук – источник питания ноутбука – заземление». Разумеется, ноутбук и программатор при этом выгорели без возможности восстановления. Этого можно было бы избежать, если бы применялся JTAG-отладчик с гальванической развязкой. Ну и использовать топовый MacBook Pro в качестве рабочей машины при отладке силовой электроники, конечно же, тоже не стоит (см. предыдущий пункт).