для чего нужен рефлектометр
Рефлектометр. Виды и устройство. Работа и применение. Как выбрать
Рефлектометр представляет собой специальное устройство, которое предназначено для нахождения дефектов в кабельных линиях с помощью локационного метода. За счет того, что данный прибор направляет импульсы по проводу, можно находить и классифицировать разрывы, короткое замыкание и другие типы повреждений. Появление подобных приборов было вызвано использованием цифрового формата и отказом от аналоговой передачи данных. Поэтому появилась нужда в качественной передаче информации, ведь в аналоговой телефонии было достаточно того, что абонент просто слушает другого. Шумы и трески на линии считались обычным явлением.
Однако сигнал цифрового качества должен доставляться полностью, наличие проблем с кабелем может приводить к потере части информации, вследствие чего связь имеет нестабильность. Поэтому и появилась необходимость проверять и исправлять минусы кабелей, а значит без рефлектомерных устройств здесь не обойтись. При помощи таких приборов удается быстро обнаружить и устранить проблемы с кабелем.
Рефлектометр имеет два основных вида. Одни модели используются для проводов, другие применяются для оценки параметров оптических кабелей, передающих сигнал с большой скоростью и минимальными потерями. Поэтому рефлектометры классифицируются на импульсные и оптические устройства.
Импульсные также имеют два основных вида. Это определяется тем, для чего они применяются. Устройства для проводов могут классифицироваться на узкополосные и широкополосные. Вид прибора зависит от того, какой тип приемного блока применяется в их конструкции. В большинстве случаев применяется узкополосный блок. Вызвано это тем, что в этом случае задействуется узкополосный усилитель, что позволяет снизить мощность, в том числе и цену устройства.
Широкополосные устройства, используемые для кабелей, позволяют снизить степень шумов до минимальных показателей. Данный параметр лучше всего подойдет для использования прибора на большой дальности. Это вызвано тем, что в устройстве нет схемы выборки хранения, что свойственно узкополосным приборам. В то же время следует учитывать, что невозможно использовать подобные устройства на коротких расстояниях, так как нет возможности подать импульс на малую дальность. Широкополосное устройство работает по принципу измерения скорости прямого движения импульса, а также скорости обратного перемещения, при встрече с неоднородностью в кабеле.
Оптические используются для оптических кабелей. В целом они довольно схожи с импульсными приборами, однако у них есть некоторые отличия. Главная особенность оптических приборов в том, что по кабелю отправляется не электроимпульсы, а световые импульсы. Данный прибор можно задействовать с целью диагностических работ при проверке линий связи, включая проверку сигнальных и силовых проводов.
Исходя из мощности, дальность применения этих приборов может составлять в пределах 10000-50000 метров. С их помощью можно найти обрывы, определить наличие короткого замыкания, отводов и так далее. К тому же рефлектометр можно подключить к ПК, что позволяет сохранить итоги измерений и провести их обработку.
Устройство
Оптический рефлектометр имеет следующие основные элементы:
Импульсный лазер создает световые импульсы определенной мощности и длительности. Данные параметры зависят от блока управления, который задает ток накачивания для лазера. Лазер вырабатывает импульсы, которые по времени составляют от одной наносекунды до 10 микросекунд.
Импульсы, создаваемые блоком управления, имеют частоту, которая задается вручную, любо определяется автоматизированным способом в зависимости от длины исследуемого участка кабеля. В тот же момент времени на блок обработки направляются синхронизирующие импульсы.
Световые импульсы направляются на кабель через разветвитель, который имеет входящие и выходящие порта. Через входные порты соединяются лазер и преобразователь. А через выходной порт подключается кабель, который исследуется.
Обратный сигнал, который возвращается из кабеля, принимается фотоприемником преобразующего устройства. В результате происходит преобразование оптических сигналов в электрические.
Чтобы увеличить полученный сигнал, применяется предусилитель, который монтируется вместе с фотоприемником.
Далее сигнал направляется в блок обработки. В нем электросигнал обрабатывается, после чего создается рефлектограмма, которая направляется на дисплей. К тому же в указанном блоке выполняется обработка рефлектограммы и проводятся измерения. В современных устройствах блок обработки включает цифровой блок и преобразователь, который переводит аналоговый сигнал в цифровой.
Чтобы снизить уровень шумов и расширить диапазон, в блоке обработки накапливаются данные от огромного количества отраженных сигналов. Преобразованная рефлектограмма направляется на дисплей или блоки автообработки, после чего на дисплее высвечиваются итоги измерений. Они могут сохраняться в памяти или сравниваться с другими данными, которые хранятся в памяти.
Принцип действия
Если вкратце, то пользователю необходимо подсоединить прибор к исследуемому кабелю, после чего нажать кнопку. Все остальное прибор делает сам и выводит полученный результат на экран. Останется только проанализировать полученную информацию и устранить возникшую проблему. При необходимости рефлектометр можно подсоединить к ПК, чтобы сохранить полученные результаты или провести сравнение с уже имеющейся информацией.
Применение
Рефлектометр позволяет:
Рефлектометр может применяться для:
Как выбрать
Виды рефлектометров, краткая характеристика, особенности применения.
С переходом от аналоговой передачи данных к цифровой связи, к качеству доставки информации стали предъявляться более жёсткие требования. Если при аналоговом сигнале посторонние шумы на линии считались обычным явлением, то использование цифрового формата предусматривает совершенно иной подход к состоянию связи.
Сигнал цифрового качества определяется полнотой и стабильностью доставки к потребителю. Любые проблемы с кабелем могут привести к потере определённой доли информации. Именно для поиска повреждений и устранения неполадок в кабеле используется особый прибор-рефлектометр.
Виды рефлектометров
В зависимости от типа проверяемых кабелей, различают два основных вида рефлектометров:
Импульсные приборы
Эти устройства предназначены для осуществления профилактических и аварийных работ на кабельных линиях связи и электропередач, для локализации недостатков и повреждений на них. Рефлектометры позволяют быстро определить:
Оптические устройства
Такие рефлектометры разработаны для проверки волоконно-оптических кабелей, по которым передаётся цифровой сигнал. Прибор позволяет не только найти проблему в оптическом волокне, но и определить место её нахождения. Оптический рефлектометр свободно подключается к компьютеру, что позволяет сохранить результаты измерений и провести их дальнейший анализ.
Принцип действия рефлектометров
Система работы устройства довольно проста.
Импульсный прибор подключается к кабелю и посылает вдоль него электрический импульс. Если он встречает на своём пути любые преграды и неполадки, сигнал немедленно отражается. В свою очередь, рефлектометр идентифицирует отражённый сигнал, измеряет его параметры и соизмеряет с начальными показателями.
Программы, используемые в работе устройства, безошибочно определяют характер повреждений и расстояние до них. Вся информация выводится на экран рефлектометра. Специалисту требуется лишь подключить прибор к кабелю, и получить сведения о результатах измерений.
По такому же принципу работает и оптический рефлектометр. Разница состоит лишь в том, что вдоль кабеля посылается не электрический импульс, а световой. Как только световой импульс сталкивается с какой-либо неоднородностью в волокне, часть света отражается, движется в обратную сторону и доходит до фотоприёмника рефлектометра.
Области применения рефлектометров
Благодаря огромным возможностям, область применения рефлектометров обширна:
Принцип работы оптического рефлектометра (OTDR)
Оптический рефлектометр (OTDR) – это измерительный прибор, предназначенный для определения расстояния до неоднородностей показателя преломления оптического волокна: сварных соединений, макро изгибов, коннекторов, обрывов и т д. Его работа основана на детектирование отраженных сигналов вследствие Релеевского рассеяния и Френелевского отражения.
В ходе диагностики оптического волокна, оптический рефлектометр посылает в него зондирующий импульс.
Зондирующий импульс – это световой импульс определенной амплитуды и длительности. Его характеристики во многом определяют максимальную протяженность измеряемой линии и разрешающую способность измерения.
Одновременно с запуском зондирующего импульса, рефлектометр начинает отсчет времени. Распространяясь по оптическому волокну, импульс сталкивается с различными препятствиями (повреждениями, неоднородностями), от которых происходит отражение части сигнала. Отраженный сигнал распространяется в обратном направлении и время его поступления на вход рефлектометра фиксируется.
Все неоднородности показателя преломления в рефлектометрии называются “События”. В свою очередь, события делятся на отражающие (вызванные Френелевским отражением) и неотражающие (вызванные Релеевским рассеянием)
Рисунок 1 – Структурная схема оптического рефлектометра
В результате, время распространения сигнала до повреждения вычисляется как разделенное на два время прохождения импульса до повреждения и обратно.
Скорость распространения импульса в волокне вычисляется из формулы
Рисунок 2 – Формула определения показателя преломления
Используя показатель преломления n (выставляется в рефлектометре) и скорость распространения света в вакууме C0 (константа).
Результат измерения рефлектометр представляет в виде графика, называемого рефлектограммой.
Рисунок 3 – Типичная рефлектограмма
Подведя курсор к какому-либо событию, на нижней оси можно увидеть на каком расстоянии от точки измерения оно находится.
Чаще всего, результаты измерений в численном виде приводятся и в таблице событий, в которой указываются для каждого события:
Рисунок 4 – Оптическая рефлектограмма с таблицей событий
Однако в таблицу в автоматическом режиме попадают только идентифицированные рефлектометром события. Вместе с тем, в ряде случаев рефлектометр не способен идентифицировать сварное соединение с малыми потерями, и приходится находить его на рефлектограмме в ручном режиме. Программное обеспечение некоторых рефлектометров позволяет добавить в таблицу найденное в ручном режиме сварное соединение.
Пример
При измерении 12 волоконного кабеля, выяснилось, что 10 волокон имеют по 3 сварки ( на расстоянии 4км, 8 км и 12 км). В 2-х остальных волокнах в автоматическом режиме обнаружено только 2 сварных соединения (на расстоянии 4 км и 12 км). Это вызвано тем, что сварные соединения получились очень хорошими. Вместе с тем, соединения на расстоянии 8 км есть на всех волокнах и ее необходимо показать в отчете. В этом случае, в программном обеспечении открывается рефлектограмма, выставляется курсор на расстояние 8 км и добавляется событие. На этом событии появляется возможность в ручном режиме измерить потери. После добавления такого события, информация о нем появляется в таблице событий и отчете. Таким же способом можно удалить ошибочно найденное событие (Фантом), которое иногда появляется вследствие переотражения сигнала от некачественного или грязного коннектора на входе рефлектометра.
Для получения корректных результатов потерь на событиях, необходимо проводить двусторонние измерения с последующем вычислении среднего значения на каждом событии.
Определение сварного соединения (макро изгиба) оптического волокна при помощи рефлектометра (OTDR)
Как известно, сварное соединение и макро изгиб, относятся к не отражающим событиям, то есть от этих событий не происходит отражения сигнала. Соответственно, для определения их местоположения оптический рефлектометр производит измерение рассеяния света (Релеевского рассеяния) в каждой точке волокна. Причем количество точек измерения является характеристикой АЦП рефлектометра и чем больше количество этих точек, тем больше разрешающая способность прибора.
В настройке рефлектометра присутствует такой параметр как «Порог по не отражающим событиям». Этот параметр определяет минимальный перепад уровня рассеяния, который будет восприниматься рефлектометром как не отражающее событие. Так, минимальное значение порога неотражающих событий у большинства оптических рефлектометров: 0,01 дБ. Это значит, что перепады со значением менее 0,01 дБ будут восприниматься как шумы, а перепады рассеяния более 0,01 дБ – как неотражающее событие, попадать в таблицу событий и обозначаться соответствующим значком (рис 4, события №2,3,4). На первый взгляд кажется, что настройка этого коэффициента не нужна и стоит использовать всегда минимально возможный порог, однако в случае наличия большого количества помех, возможно появление ложных событий, что может ввести измерителя в заблуждение.
Рисунок 5 – Процессы, происходящие в месте сварки волокон различных производителей
На рисунке 5 продемонстрирован случай, когда волокно с большим количеством примесей сварено с волокном с меньшим количеством примесей. В этом случае при измерении слева направо, рефлектометр фиксирует резкое уменьшение уровня обратного рассеяния (Релеевского рассеяния) и идентифицирует событие как неотражающее с большими потерями. При измерении с обратной стороны, при переходе с одного волокна в другое уровень обратного рассеяния резко увеличивается, что идентифицируется как усиление. Естественно, в данном случае мы имеем дело не с реальным усилением, а с псевдо усилением. Поэтому для определения реальных потери на сварном соединении необходимо проводить двусторонние измерение, и вычислять среднее значение потерь на сварном соединении по формуле Асв сред = (А св А-Б + А св Б-А)/2.
Определение разь ё много соединения (коннекторного) оптического волокна при помощи рефлектометра (OTDR)
Разъёмное соединение относится к отражающим событиям. Уровень отражения сигнала от коннекторного соединения описан в соответствующих стандартах и в вебинаре “Оптические разъемы: типы, установка, чистка”. Отраженный от такого соединения сигнал напрямую фиксируется оптическим рефлектометром и отображается на рефлектограмме и таблице событий см. рисунок 3, а также рис 4 (события № 1,5,6,7).
Измерения на ВОЛС
Когда говорят об измерениях ВОЛС, прежде всего имеют в виду измерения оптических потерь в волокне. Действительно, в первую очередь именно потери мощности излучения (а не дисперсия) становятся определяющим критерием, ограничивающим длину ретрансляционного участка линии связи. Информация, полученная в результате измерения уровня мощности сигнала в линии, понимание того, как меняется мощность этого сигнала, дает возможность судить о качестве построенной ВОЛС. И правильно получать эту информацию, уметь её интерпретировать и обрабатывать — очень важный момент в работе специалистов, имеющих дело с волоконно-оптической техникой.
Различают несколько направлений деятельности, связанных с ВОЛС, где возникает задача проведения измерений:
Комплекс измерений, которые необходимо проводить при строительстве линий связи — самый обширный. На этапе строительства параметры линии измеряются наиболее тщательно. Результаты заносятся в протоколы и оформляются в виде исполнительной документации на построенную ВОЛС, которая, в свою очередь, служит важнейшим документом, на основании которого ведется дальнейшая эксплуатация этой ВОЛС. Именно качество исполнительной документации, точность указанных в ней данных и определяет удобство и правильность работы с линией связи.
Измерения в процессе эксплуатации обычно подразумевают периодический контроль состояния линии связи. Проводятся они согласно регламенту, принятому в той организации, которая эту линию эксплуатирует. Они могут производиться в автоматическом режиме, когда за состоянием линии следит специальный программно-аппаратный комплекс, получающий информацию с оптических датчиков. В некоторых случаях достаточно измерений в «ручном» режиме, когда инженер сам проверяет линию с помощью измерительного оборудования. Но и в том, и в другом случае, крайне важна квалификация персонала, ответственного за состояние линии, его умение разобраться в том, что с ней происходит.
Под обслуживанием ВОЛС обычно понимается деятельность, направленная на поддержание линии связи в рабочем состоянии. Обслуживание производится на основании договора между владельцем линии и некоей обслуживающей организацией. Как правило, в рамках договора такая организация обязана не только следить за работоспособностью линии, но и устранять аварийные ситуации, которые на ней могут возникнуть. В таких случаях измерения проводятся с целью локализации повреждения, выяснения его характера, позволяют оперативно это повреждение устранить.
Причины потерь в оптоволокне
Потери измеряют в децибелах (дБ) и описывают отношение сигнала прошедшего через линию и сигнала, введенного в линию. Потери в линии связи будут всегда, избавиться от них невозможно, поэтому требуется принять меры, чтобы их минимизировать. Причин возникновения этих потерь много и необходимо точно понимать их характер:
Оптическое волокно (ОВ) служит хорошей средой для распространения оптического сигнала. Но даже в этой замечательной среде, а именно в кварцевом стекле, из которого изготовлена сердцевина волокна, всегда содержатся примеси, включения, из-за которых волокно теряет часть проходящего по нему света. Точечные области, в которых сконцентрированы эти примеси, служат источником рассеяния полезного сигнала и, соответственно, вызывают частичную его потерю. Поскольку распределение примесей по длине ОВ можно считать равномерным, то и свет будет равномерно ослабевать по мере прохождения по ОВ. При этом с ростом длины волны излучения способность рассеивать у волокна уменьшается. Почему бы тогда не использовать самую большую длину волны, чтобы обратить в ноль рассеяние света? К сожалению, начиная с некоторого значения длин волн в волокне появляется ещё одна составляющая затухания, а именно — инфракрасное поглощение света, то есть, преобразование оптической энергии в тепловую. А это снова потери! Результатом действия двух этих причин будет сумма потерь от каждой из них. Минимума потери в ОВ достигают при передаче сигнала на длине волны 1550 нм.
Потери света в волокне описываются величиной, называемой километрическим затуханием (т. е. величина потерь на единицу длины ОВ) и выражаются в дБ/км.
В настоящее время для λ = 1550 нм стандартным значением затухания в одномодовом ОВ считается α = 0,19–0,22 дБ/км. В зависимости от марки ОВ это значение может быть разным. Поэтому, когда выбираете кабель для будущей трассы, этот параметр важно знать и учитывать. Например, в кабельной продукции «Инкаб» используется исключительно волокно фирмы Corning®, а это дает понимание того, что у волокна в кабеле будет иметь всегда заранее известное значение затухания. Затухания волокна марки Corning SMF-28 ULTRA, которая выбрано заводом «Инкаб» в качестве основной, составляет всего лишь 0,18 дБ/км.
Следующей причиной потерь служат изгибы ОВ. Принято разделять их на два типа — микро- и макроизгибы. В первом случае речь идет о незначительном, но неизбежном изгибе волокон при размещении их в кабеле. Этот изгиб присутствует по всей длине кабеля и проконтролировать его мы не в состоянии, но, к счастью, его вклад в потери ничтожен. Второй случай гораздо серьёзнее. Потери при макроизгибах появляются уже по вине человека, который работает с волоконно-оптическим кабелем. Основная причина изогнутого волокна в построенной ВОЛС — неправильно проложенный кабель. В некоторых случаях — нарушения при монтаже кросса или муфты. Чем больше изгиб, тем больше потери. Причиной появления потерь на месте изгиба служит простое физическое явление — угол падения света на границу раздела сердцевины и оболочки превышает критический и часть излучения выходит из сердцевины. При этом, чем больше длина волны, тем больше будет величина потерь.
Потери на сварных соединениях появляются, в основном, из-за несовпадения сердцевин соединяемых волокон, которая может быть вызвана нарушением геометрии сечения ОВ. В этом случае ответственность за качество сварных несёт, если можно так выразиться, сварочный аппарат. Именно технология юстировки волокон перед сваркой, распознавание компьютером сварочного аппарата местоположения сердцевин ОВ и определяет качество сварки в плане потерь. Разные марки волокон могут иметь разные диаметры сердцевин, разные допуски на эксцентриситет и аппарат должен уметь с ними работать. При этом, разумеется, необходимо соблюдение всех сопутствующих требований к подготовке ОВ к сварке, чтобы соединение не имело дополнительных дефектов. Любой дефект сразу же переводит сварное соединение в разряд некачественного, даже без измерений. Качественным же сварное соединение обычно считается, если потери не превышают 0,05 дБ (на длине волны 1550 нм). Необходимо также помнить, что потери на стыке оцениваются только при измерении с двух сторон.
Потери на разъёмных соединениях, проще говоря — на разъёмах, вносят потери гораздо большие, нежели на сварках ОВ. За счёт того, что между поверхностями коннекторов всегда присутствует небольшой воздушный зазор, на соединение теряется гораздо больше полезного сигнала. Величину потерь, допустимых на таком соединении, принято считать равной 0,5 дБ. При этом надо понимать, что складывается эта величина из потерь на поверхностях двух коннекторов, и каков вклад каждого из них, точно определить невозможно. Величину потерь на коннекторе контролируют на производстве, но, как показывает практика, и здесь не всегда достигается хороший результат, поскольку серийное производство оптических шнуров подразумевает выборочный контроль. Поэтому для подключения измерительных приборов к тестируемой линии рекомендуется использовать прецизионные шнуры, которые проходят поштучный контроль и соответствуют более высоким требованиям. Среди продукции ООО «СвязьСтройДеталь» такие шнуры представлены серией HS (High Solution).
Все перечисленные составляющие потерь в ВОЛС могут дать представление о том, на что можно рассчитывать, проектируя будущую линию связи. Имея информацию о составе будущей линии, о марке кабеля, который собираемся использовать, о строительных длинах, из которых будет состоять трасса, о количестве сварных сростков ОВ, о количестве коннекторов в линии, можно подсчитать так называемый оптический бюджет линии. Как его рассчитывать, читайте в нашем отдельном материале.
Приборы для измерения потерь в оптическом волокне
Для контроля качества волоконно-оптических линий связи путем измерения в них потерь необходимо и достаточно применения двух типов измерительной аппаратуры. Это оптические тестеры (OLTS — Optical Loss Test Set), позволяющие измерять полные потери в линии и оптические рефлектометры (OTDR — Optical Time Domain Reflectometer), с помощью которых можно измерять распределение потерь вдоль линии.
Отличие в их применении заключается в том, что при использовании тестера необходимо использовать два устройства и подключаться к обоим концам линии, в то время как рефлектометр для измерения нужно подключать к линии только на одном конце. Разница обусловлена различными принципами измерения потерь. Оптический тестер, который в общем случае представляет из себя комплект из двух устройств — источника оптической мощности и измерителя оптической мощности, — проводит прямые измерения, то есть для определения потерь сравнивается уровень мощности на входе в линию и на выходе из неё. Разница в дБ и будет искомым результатом. Рефлектометр же, будучи подключенным только с одного конца ВОЛС, зондирует волокно тестовыми импульсами и получает отклик в обратном направлении, вызванный обратным рассеянием в волокне. Анализируя этот отклик, процессор рефлектометра рассчитывает, сколько оптической мощности теряет сигнал в каждой точке ОВ. Такой вид определения потерь можно назвать косвенным. Именно с этим, с погрешностью косвенного метода, связаны некоторые приближения в подсчёте полных потерь в линии. Этим же объясняется и превосходство по точности оптических тестеров. Помимо этого, тестером можно измерять потери в линиях любой протяжённости (от 0 м), в то время как рефлектометр не позволяет оценить потери в коротких, порядка нескольких метров волокнах (оптические шнуры). Эта особенность работы будет рассмотрена далее.
Принимая во внимания перечисленные отличия, можно описать задачи, которые решаются двумя этими типами приборов:
Тестер:
Рефлектометр:
Измерения рефлектометром и его принцип работы
Рис. 1. Структурная схема рефлектометра.
На рис. 1 показана схема OTDR, по которой наглядно можно пояснить принцип работы рефлектометра. Как правило, в состав прибора входят два основных блока. Базовый модуль содержит основной корпус, дисплей, органы управления и самую важную часть — процессор. Второй блок — оптический, в нём располагается электроника, отвечающая за генерацию оптических сигналов, источник излучения и различные оптические порты.
В измерительный порт вставляется коннектор оптического шнура (патч-корда), которым прибор подключается к тестируемому волокну линии. При запуске процесса измерения процессор даёт команду на формирование зондирующего импульса определенной мощности и длительности. Генератор формирует его в электрической форме, лазерный диод преобразует его в оптическое излучение определенной длины волны и посылает в линию. Импульс проходит через оптический порт и распространяется далее в волокне линии. В каждой точке ОВ свет испытывает рассеяние. Совсем незначительная часть света рассеивается во все стороны, причём бОльшая его часть рассеивается в обратном направлении. Эта часть возвращается по волокну обратно и, пройдя входной порт, через ответвитель попадает на фотоприёмник. Этот элемент обладает очень высокой чувствительностью, что позволяет ему улавливать сигнал, в тысячи раз ослабленный по сравнению с уровнем мощности зондирующего импульса. Сигнал регистрируется на протяжении определенного времени, оцифровывается (АЦП) и анализируется процессором. Результатом обработки этого цифрового сигнала будет некая зависимость уровня мощности от времени. Для удобства временная шкала пересчитывается в шкалу расстояний и на экран выводится результирующая кривая, характеризующая уровень обратного рассеяния в каждой точке тестируемого ОВ. Эта кривая называется рефлектограммой.
Состав рефлектограммы
Рис. 2. Общий вид рефлектограммы
На рис. 2 можно увидеть рефлектограмму, содержащую несколько характерных участков, соответствующих различным неоднородностям в ОВ. Эти неоднородности принято называть событиями.
Чтобы получить значения потерь, возникающих в той или иной части линии, необходимо прежде всего правильно интерпретировать всё, что видно на этой кривой.
Основными типами событий можно назвать следующие:
На практике можно столкнуться с различными вариациями и комбинациями этих событий и умение их корректно идентифицировать — задача иной раз не из лёгких. Но упростить себе жизнь можно, получив рефлектограмму красивого, информативного вида. Для этого следует придерживаться некоторых правил и правильно установить параметры прибора.
Самое главное правило при работе с OTDR — аккуратное обращение с вводным коннектором. Следует помнить, что в корпусе прибора установлен точно такой же коннектор (как правило, типа UPC), какой вставляем в измерительный порт снаружи. Но за одним исключением — если повредим коннектор патч-корда, всегда можно взять новый патч-корд. Коннектор, установленный в оптическом тракте прибора, заменить не сможем. При его повреждении придётся обращаться в сервис. Поэтому перед началом измерений рекомендуется убедиться в чистоте всех коннекторов, в случае загрязнений очистить все торцевые поверхности. Для этих целей рекомендуется использовать специальные чистящие приспособления. После окончания измерений все коннекторы закрываются колпачками, измерительный порт — специальной крышечкой.
Для контроля чистоты коннекторов наилучшим решением будет использование специального компактного микроскопа. Но он достаточно дорог. Поэтому в его отсутствие можно сделать оценку по следующему признаку. Если, начав измерения, видим на рефлектограмме область ввода, схожую с изображением на рис. 3, можно смело утверждать — на каком-то из коннекторов осталась грязь.
Рис. 3. Область ввода в случае загрязнения («лыжа»).
Необходимо извлечь коннектор патч-корда, провести чистку и при последующем подключении картинка будет иметь такой же вид, как на рис. 4.
Рис. 4. Область ввода с чистыми коннекторами.
Если коннекторы чистые, необходимо произвести настройку параметров измерения.
Перечислим эти параметры и поясним, на что они влияют:
Оптические рефлектометры могут производить измерения на различных длинах волн. Как правило, длины волн выбираются производителями в соответствии с рабочими диапазонами (окнами прозрачности) оптических волокон.
Хотя километрическое затухание в ОВ различно на разных длинах волн, принципы и методы проведения измерений являются одинаковыми для всех длин волн. Если для отчёта не требуется предоставить результаты измерений на нескольких длинах волн, достаточно провести измерения с λ = 1550 нм.
Под диапазоном измеряемых длин понимается длина волокна, которую рефлектометр будет изображать на рефлектограмме. Правило довольно простое — необходимо установить этот диапазон таким, чтобы на рефлектограмме уместилась вся линия целиком. Если линия будет обрываться на середине, это будет считаться недопустимым результатом.
Длительность импульса — один из самых ключевых и неоднозначных параметров. Дело в том, что при увеличении его длительности, можно обнаружить такой эффект, как увеличение так называемых «мёртвых зон» после отражающих неоднородностей. Мёртвой зоной называют участок рефлектограммы, на котором нельзя получить никакой информации об истинном уровне обратного сигнала. Связано это с тем, что всё время, которое испускается зондирующий импульс, рефлектометр будет получать и отклик от него. Этот отклик будет иметь вид резкого всплеска. И чем длиннее импульс, тем дольше будет этот всплеск перекрывать любые события, следующие за этим отражением. На рис. 5 приведены рефлектограммы, полученные на одной и той же линии, но с разными tимп.. При самом большом импульсе мы уже не «видим» сварного соединения на расстоянии 540 м от начала линии.
Рис. 5. Сравнение мёртвых зон при импульсах разной длительности.
Почему бы тогда не ставить всегда длительность импульса на минимум? В этом и заключается коварная особенность этого параметра — при уменьшении длительности импульса обнаружим, что уровень обратного сигнала из линии падает настолько быстро, что обращается в шум, не достигая конца линии. Наглядно это показано на рис. 6, где приведены рефлектограммы, снятые с линии довольно большой протяжённости, и с импульсами разной длины.
Видим, что короткие импульсы начинают искажаться и превращаются в шумы, делая часть рефлектограммы совершенно непригодной для измерения.
Рис. 6. Измерение с разной длительностью импульсов линии большой длины.
Варьируя этим параметром, в итоге можем получить результат, который нас интересует в конкретном случае: либо получить высокую детализацию и разглядеть события, находящиеся вблизи друг от друга, либо увидеть линию целиком и точно измерить потери по затуханию на линейных участках.
Кстати, с появлением мёртвой зоны на вводе связано ограничение по минимальной измеряемой длине волокна, упомянутое в начале статьи. Рефлектометр практически не способен различить длину волокна порядка 1–2 метров, поскольку даже у самых совершенных моделей эта начальная мёртвая зона составляет порядка 3 метров.
Также начальной мёртвой зоне можно приписать невозможность измерения потерь на коннекторе ближнего к измерителю кросса. Если уровень обратного сигнала после коннектора отчётливо видно, то каким был уровень до него — не позволяет мёртвая зона. Для борьбы с этим применяются так называемые согласующие кабели, представляющие из себя катушки волокна, имеющие длину, как правило, от 200 м до 1 км. Такая катушка оконечена разъёмами и ставится в оптический тракт между прибором и тестируемой линией. В результате получим рефлектограмму вида, изображенного на рис. 7.
Рис. 7. Рефлектограмма, полученная с применением согласующего кабеля.
Зная уровень сигнала до разъема на кроссе и уровень после него, определяем, сколько децибел сигнал потерял на этом разъёме.
Следующим установочным параметром является коэффициент преломления кварцевого стекла сердцевины. Для нас этот параметр правильнее будет определить как величину, показывающую, во сколько раз скорость света в вакууме превышает скорость света в волокне. Это отношение используется прибором для расчёта расстояний, которые проходит в ОВ зондирующий импульс.
И последний параметр — время усреднения. В режиме работы OTDR с усреднением происходит запоминание результатов от всех зондирующих импульсов, которые прибор посылает в линию и дальнейшее усреднение этих результатов. Это позволяет улучшить вид рефлектограммы, сглаживая линейные участки, особенно на линиях большой длины. Чем больше время усреднения, тем больше результатов будет накоплено и тем более гладкий вид будет иметь кривая. Но вместе с увеличением этого времени, увеличивается общее время, которое уйдет на измерения. Особенно это актуально при измерениях линий, содержащих большое число волокон.
Помимо режима работы «с усреднением» в рефлектометре есть режим «в реальном времени». В этом случае рефлектометр постоянно зондирует ОВ импульсами и результат каждого отклика выводит на экран. В этом случае вид кривой получается неустойчивым, колеблющимся и непригодным для снятия показаний. Использование такого режима удобно, когда необходимо определить место обрыва в линии или для идентификации нужного волокна.
Смотрите обзоры рефлектометров на канале ВОЛС.Эксперт в Ютубе