для чего нужен синтез белка

Биосинтез белка – важная часть пластического обмена всех клеток. Рассматривает данный процесс наука биология. В результате образуются специфичные вещества, характерные для данного организма. Происходит воспроизведение наследственной информации.

Последовательность процессов биосинтеза белка

Образование белка является многоступенчатым процессом.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Чтобы запустить реакции образования вещества, осуществляется целый ряд последовательных событий:

Перемещение и-РНК к месту синтеза белка.

Где происходит синтез белка

Образование высокомолекулярного соединения протекает в цитоплазме. Именно здесь находятся органоиды, на которых осуществляется данный процесс. Рибосома представляет собой две части: малую и большую. Чтобы биосинтез белка начался, необходимо доставить информацию из ядра в цитоплазму.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Ядро эукариот хранит информацию о первичной структуре природных полимеров. Её называют наследственной. Эта важная информация должна быть без искажения перенесена к месту синтеза белка.

С этой целью в ядре идут матричные реакции. На одной из цепей ДНК синтезируется и-РНК. Именно она является посредником между двумя частями клетки.

Этапы биосинтеза белка

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Транскрипция

Процесс протекает в ядре. ДНК образована большим количеством нуклеотидов. Это единица макромолекулы. Она включает в свой состав 3 компонента:

углевод, представленный пентозой – дезоксирибозой;

минеральную кислоту – фосфорную;

органическое соединение, относящееся к классу азотистых оснований.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

В составе ДНК могут содержаться 4 разных основания. Они имеют краткое обозначение, по первой букве названия:

Именно этими основаниями и отличаются нуклеотиды. Чередование 3 нуклеотидов образует триплет. Один триплет соответствует одной аминокислоте. Вопрос соответствия аминокислот триплетам изучен и указан в таблице генетического кода.

Последовательность триплетов в молекуле дезоксирибонуклеиновой кислоты, отвечающей за синтез одного белка, называют геном. Между разными генами расположены триплеты, которые не соответствуют аминокислотам. Их называют стоп-кодонами. Они служат сигналом начала и окончания гена.

Для осуществления транскрипции, участок макромолекулы ДНК раскручивается. Он выполняет роль матрицы. На нём выстраивается и-РНК. Осуществляется синтез по принципу соответствия. Еще его называют комплементарностью.

РНК также имеет нуклеотидное строение. Вместо дезоксирибозы присутствует углевод рибоза. Содержится остаток ортофосфорной кислоты. Третьим компонентом является азотистое основание. Три основания одинаковые – А, Г, Ц в ДНК и РНК. Четвертое основание рибонуклеиновой кислоты – урацил (У).

Комплементарными основаниями являются: Т – А, А – У, Г – Ц, Ц – Г. В парах комплементарных оснований первое соответствует ДНК, второе – РНК. Таким образом, на макромолекуле ДНК по принципу соответствия выстраивается и-РНК. В дальнейшем цепь РНК транспортируется через ядерную мембрану к месту синтеза белка.

Трансляция

Процесс идет на органоидах – рибосомах. Они нанизываются на цепь и-РНК, передвигаются по ней не плавно, а прерывисто. Располагаются таким образом, что внутри рибосомы находится полностью 1-2 триплета. На одну РНК может одновременно нанизываться большое количество рибосом.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

В процессе принимают участие т-РНК. Они имеют пространственную структуру, принимают форму трилистника. Верхняя часть листа, то есть молекулы, содержит антикодон. Это триплет, распознающий кодон (один триплет) и-РНК.

Каждая т-РНК транспортирует к рибосоме строго определенную аминокислоту. Если триплет-антикодон т-РНК распознает триплет-кодон и-РНК, тогда аминокислота встраивается в макромолекулу белка. Следующая т-РНК подтаскивает другую аминокислоту, снова идет процесс распознавания. В данном случае также идет матричный процесс сборки белка. РНК служит матрицей для синтеза белка.

Как только белковая молекула синтезирована, она освобождается от рибосомы. Правильное чередование аминокислот в макромолекуле образует первичную структуру белковой молекулы. Она является определяющей, поэтому так важен матричный синтез белков. Другие структуры белковые макромолекулы приобретают самопроизвольно.

Схема биосинтеза белка

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Процессы, ведущие к синтезу белка, можно кратко изобразить на схеме:

Первый этап – реакции, идущие в кариоплазме. Раскручивание ДНК. Транскрипция. Образование м-РНК.

Второй этап – транспорт м-РНК к рибосомам.

Третий этап – реакции, идущие в цитоплазме. Трансляция. Биосинтез белковой молекулы, протекающий при участии РНК, клеточных органоидов – рибосом.

Заключение

В реакциях матричного синтеза происходит реализация наследственной информации. В каждом организме синтезируются специфичные белковые молекулы. Они вместе с углеводами и жирами накапливаются в плодах растений. В организмах животных выполняют множество разнообразных функций.

Источник

Общая информация о биосинтезе белка: значение, код ДНК, процесс считывания и передачи информации

Общая информация о биосинтезе белка

Значение биосинтеза белка в клетке

Процесс биосинтез белка — наиболее значимая реакция пластического обмена. Способность синтезировать белок есть у всех клеток живых организмов: сложных и простых, грибов, растений и животных. Клетка содержит несколько тысяч различных белков. При этом, для каждого вида клеток характерны специфические белки.

Способность к синтезу собственных уникальных белков является наследственной и сохраняется на протяжении всей жизни организма. Биосинтез белков происходит наиболее интенсивно, когда клетки активно растут и развиваются.

Что такое биосинтез белка?

Процессом синтеза белка называется — процесс, состоящий из множества стадий, на которых происходит синтез белковой макромолекулы и последующее созревание (формирование) белка, и происходящий в живых организмах.

Фотосинтез связан с большими энергетическими затратами. Благодаря ему происходит обеспечение клеток так называемым строительным материалом, биологическими катализаторами (ферментами), регуляторами и средствами защиты организма.

Каково значение белков в клетке? Значение белков неоценимо. Для этого рассмотрим, что такое биосинтез подробнее.

Код ДНК

Определение места синтеза белковых макромолекул — наивысшее достижение молекулярной биологии. ДНК играет ключевую роль в определении структуры синтезируемого белка. Молекула ДНК содержит информацию о первичной структуре молекулы белка.

Геном — часть молекулы ДНК, содержащая информацию о первичной структуре одного белка.

Генетический код — единая для всех живых организмов система сохранения полной наследственной информации.

Если говорить о структуре, то она представляет собой определенную последовательность нуклеотидов в молекулах нуклеиновых кислот. Эта последовательность задает последовательность введения аминокислотных остатков в полипептидную цепь в ходе ее синтеза.

Согласно исследованиям ученых, каждая аминокислота в полипептидной цепи кодируется последовательностью, которая состоит из 3 нуклеотидов (это триплет нуклеотидов).

Всего выделяют 20 основных аминокислот. Каждая аминокислота имеет способность кодироваться несколькими разными триплетами.

Матрица — молекула ДНК, которая содержит информацию.

Процесс считывания и передачи информации

Расположение молекул ДНК — ядро клетки. Также они могут находиться в пластидах и митохондриях. В определенный момент происходит деспирализация молекулы ДНК и расхождение ее параллельных цепей.

В соответствии с принципом комплементарности, на этих цепях происходит синтез небольших молекул и-РНК (информационной РНК). Это транскрипция или считывание.

Молекула и-РНК, синтезированная таким образом, направляется к месту синтеза белка.

Трансляция — процесс переноса и-РНК из ядра к месту синтеза белка.

Механизм биосинтеза белка

Синтез белковых молекул осуществляется на мембранах ЭПС (эндоплазматическая сеть). Рибосома является органеллой, которая отвечает за синтез белка. Рибосомы, нанизываясь на молекулу и-РНК, формируют полисому. Молекула т-РНК (транспортная РНК), которая несет кислотный остаток, подходит к каждой рибосоме.

т-РНК отличается формой трилистика: верхушка — это триплет нуклеотидов или антикодон. Он формирует комплементарную пару с соответствующим триплетом и-РНК (кодоном).

Рибосома в процессе синтеза белка надвигается на нитевидную молекулу и-РНК, которая оказывается двумя ее субъединицами. Присоединение т-РНК к и-РНК происходит в определенном месте — в месте совпадения кодона и антикодона. Присоединение аминокислотных остатков к синтезируемой цепи происходит при помощи полипептидных связей. Происходит отсоединение т-РНК, после чего она покидает рибосому.

Это продолжается до завершения синтеза нити аминокислотных остатков (белковой молекулы).

Заключительный этап — приобретение синтезированным белком пространственной структуры. Благодаря соответствующим ферментам от него отщепляются лишние аминокислотные остатки, происходит введение небелковых фосфатных, карбоксильных и других групп, присоединение углеводов, липидов и т. д. Белок «созревает». Как только все эти процессы заканчиваются, молекула белка становится полностью функционально активной.

Источник

Как клетка синтезирует белок

(Статья для аудитории детей 12 лет)

Роль основных «рабочих лошадок» в клетках и, следовательно, во всем нашем организме исполняют разнообразные белки. Мы – многоклеточные существа (у шестиклассника, например, 30 триллионов клеток!), следовательно, белков нам нужно много. И это должны быть не те же самые белки, которых в целом литре газировки всего 1 грамм, а в одной котлете – 25. Это наши собственные белки, только нам свойственные, по крупинкам собранные из того, что мы съели, переварили и усвоили. Итак, если белок – главный работник, то его надо много, и он должен быть качественным, именно тем, какой положен (запрограммирован, зашифрован!). Значит клетка, словно завод по производству белков, должна иметь, во-первых, надежные станки по производству этих белков, а во-вторых, надежную программу-инструкцию для производства каждого конкретного белка.

Мы решаем контрольную или спим на уроке, мерзнем на остановке или едим дома горячую котлету – и организм постоянно приспосабливает работу наших клеток, а стало быть белков, под набор тех условий, в которые мы его, организм, поместили. Поэтому так не бывает, чтобы один белок работал вечно. Поработал – клетка его расщепила и чаще всего пересобрала во что-то другое, в другой белок. И эта белковая карусель крутится все время, пока живет организм. А мы еще помним, что белков очень много – и по общему количеству молекул, и по их разновидностям. И для каждого вида белка при каждом станке – своя инструкция по сборке. Имеет смысл микроскопической клетке хранить килограмм инструкций у каждого станка на все случаи жизни? Разумеется, нет.

В работе у занятой делом клетки должны быть только самые нужные на данный момент инструкции, а остальные пусть хранятся в сборниках инструкций в библиотеке. Нужна инструкция – библиотекарь нашел нужную страницу в сборнике – помощник откопировал ее – персонал, обслуживающий станок, по инструкции собрал нужное количество белка – белок пошел работать, пока не настанет срок разобрать его на запчасти, да и отслужившая инструкция тоже разбирается. В клетке никакое добро не пропадает. А кто все эти сотрудники клетки? Разумеется, это тоже белки, точнее – особый их класс – ферменты. Белки, управляющие процессами в клетках и многократно ускоряющие их.

Итак, давайте все-таки ближе к биологии. Библиотека – это набор наших хромосом в ядре каждой клетки. Основа каждой хромосомы – длинная молекула под названием ДНК* (шестиклассник про ДНК уж наверняка хоть раз, да слышал). Сборник инструкций – одна нить ДНК. Но чтобы заработало производство конкретного белка, весь сборник не нужен, нужна только инструкция-информация о составе этого белка. Эта информация – малая часть цепочки ДНК под названием «ген». (Тоже наверняка знакомое слово. Если у вас абсолютный музыкальный слух – как у мамы, то она всем радостно хвастает, что это у вас ее гены). Текст гена в каком-то смысле гораздо проще, чем любой текст на любом языке. Он написан только четырьмя буквами! Откуда же тогда такое многообразие кодируемых генами белков и признаков? В «тексте» гена чаще всего сотни или тысячи «букв», и комбинация букв может быть любой. (Кстати, «буквы» – это структурные части молекулы ДНК, ее блоки под названием нуклеотиды, запоминайте. Их четыре типа: А, Т, Г и Ц**).

Копирование инструкции по сборке белка, т. е. гена, – это процесс транскрипции (дословно – переписывание). Он происходит в ядре клетки. Образуется копия гена – молекула-матрица, или матричная РНК*. Но она, как ни странно, не очень-то похожа на исходный ген ДНК. Более того, она является в некотором смысле «копией наоборот», как негативное фотоизображение, где белое становится черным, а черное – белым. К слову, РНК тоже состоит из нуклеотидов, и их тоже четыре типа – те же А, Г, Ц, но есть замена: вместо Т – У**. Как получается «негативная» копия, да еще и с заменой буквы? В клетке работает особое правило – комплементарности. Разбираемся.

Комплимент/комплемент – дословно – дополнение! Вам сделали комплимент? Это такое приятное дополнение к вашей неотразимости. Комплимент от шефа – вкусное бесплатное дополнение к вашему заказу в ресторане. Комплементарность в биологии – взаимная дополняемость биологических молекул или их частей. Согласно правилу комплементарности фермент-копировальщик, собирающий РНК, напротив «буквы»-нуклеотида А в образце, молекуле ДНК, обязан поставить «букву» У в РНК, напротив Т – А, напротив Г – Ц, напротив Ц – Г. (Проще всего запомнить Г–Ц и наоборот, не так ли?). Например, в ДНК было ГТАЦ, а в РНК станет ЦАУГ. И так далее – десять тысяч раз подряд и без ошибок! А главное – с умопомрачительной скоростью, которую обеспечивают быстрые и точные работники-ферменты.

Итак, непохожая, перешифрованная, но все-таки копия (!) фрагмента ДНК – матричная РНК готова, ее можно «выносить» за пределы «библиотеки». Именно она послужит той матрицей-инструкцией, по которой персонал по обслуживанию «станка» по производству белка осуществит его многократный синтез. Синтез белка, к сведению, идет уже не в ядре, а в более просторной цитоплазме клетки. Белка, мы помним, надо много, а в ядре – тесно, да и не надо его лишний раз беспокоить такой суетой: хромосомы должны храниться в тишине и порядке. Всё как в настоящей библиотеке.

Матричная РНК выходит на работу. По записанной в ней инструкции клеточный органоид (маленький орган) рибосома будет синтезировать белок. Именно рибосома является тем самым «станком» по производству белка. Но белки состоят не из нуклеотидов. Белки – тоже длинные молекулы, состоящие из других блоков – аминокислот. Их 20 разновидностей. Т. е. «язык» белков – это целых 20 букв! Как текст-комбинацию из 4 букв перевести в текст-комбинацию из 20 букв? Просто. Каждая аминокислота белка зашифрована последовательностью из трех нуклеотидов матричной РНК, каждой из комбинаций трех нуклеотидов РНК соответствует одна аминокислота (за исключением трех случаев – последовательностей УАГ, УГА и УАА). Таких комбинаций получается 61, а вместе с тремя исключениями – 64. Это число всех возможных комбинаций трех нуклеотидов четырех разновидностей. Хотите – проверьте перебором.

Чтобы было понятнее, поясним на примере. Возьмем последовательность нуклеотидов ГЦУ на матрице РНК. Ей, к сведению, соответствует аминокислота под названием аланин. И – о радость! – никто не заставит учить наизусть, какая аминокислота какой последовательности нуклеотидов в РНК соответствует – на это есть специальная таблица генетического кода. А в ней, кстати, есть повторы нуклеотидных последовательностей. Мы помним, аминокислот 20, а кодирующих комбинаций из трех нуклеотидов – 61, поэтому повторы неизбежны.

Рибосома-«станок» нанизывается на свою инструкцию, матричную РНК, как бусина на нитку. (А чтобы не терять время, обычно сразу много «станков»-рибосом по очереди нанизывается на инструкцию-матрицу). И начинается настоящий балет с участием обслуживающих его ферментов и еще одного вида РНК – транспортных РНК. Именно они помогают расшифровать код матричной РНК (они знают таблицу генетического кода наизусть!) и собрать аминокислоты в единую белковую цепочку.

Транспортные молекулы тоже состоят из нуклеотидов, все те же «положенные» для РНК знакомые А, У, Г и Ц. Но только в отличие от матричной РНК, транспортная гораздо более легкая и компактная, специально свернутая для мобильности наподобие листа клевера. И на верхушке этого «листа» находится ключевая последовательность из трех нуклеотидов, комплементарных трем кодирующим «буквам» матричной РНК. Так, например, уже знакомую аминокислоту аланин принесет транспортная РНК с «ключом» ЦГА на верхушке, встанет рядом с ГЦУ в матричной РНК – ага, подошло! Таких транспортных РНК (тРНК для краткости) – 61 вид.

Итак, создаем белок из аминокислот по нуклеотидной инструкции матричной РНК на «станке»-рибосоме. В активном центре рибосомы как на парковке встают рядом две комплементарно подходящие к матрице транспортные РНК со своими «ключами» на макушке – тройками нуклеотидов, и «прицепами» на хвосте – соответствующими аминокислотами. Предположим, это только начало синтеза: у каждой транспортной молекулы по одному прицепу. Но особый фермент-сшивальщик, который всегда рядом, соединяет между собой оказавшиеся рядом «прицепы»-аминокислоты. А со стороны выглядит это так, словно одна тРНК, к примеру, правая на «парковке», говорит левой «подержи мой прицеп, а я сейчас…» – и быстро-быстро улепетывает. И у доброй левой тРНК оказывается уже двойной прицеп – из двух аминокислот: ближайший к ней – свой, а дальний – чужой.

И тут рибосома сдвигается на три нуклеотида влево. Не удивляйтесь, «гаражи»-рибосомы сами тоже вполне мобильны и, как мы помним, норовят по очереди нанизаться на нитку матричной РНК. В итоге бывшая левая тРНК со своим двойным прицепом становится правой. Слева, соответственно, освобождается новое парковочное место». Приходит новая тРНК, паркуется слева. И тут уже уставшая держать двойной «хвост» из аминокислот поумневшая правая тРНК говорит левой «подержи мой прицеп, а я сейчас…» – и быстро-быстро… Ну вы поняли. Так образуется цепочка-хвост из трех, потом четырех… до многих тысяч аминокислот. Процесс называется трансляция (дословно – перенос, перемещение, передача).

Синтез белковой цепочки обрывается, когда в активном центре рибосомы оказывается одна из трех последовательностей нуклеотидов матричной РНК, у которых нет в принципе соответствующих аминокислот. Это те самые исключения УАГ, УГА или УАА. На этих последовательностях нарастание белковой нитки прекращается, поскольку не бывает тРНК с «ключами» АУЦ, АЦУ или АУУ на верхушке, некому везти «прицепы»-аминокислоты к месту сборки.

Белковая цепочка сворачивается в компактную структуру и отправляется на работу. Если на сегодня всё, и белка такого типа клетке больше не нужно, она с помощью специальных ферментов разбирает инструкцию по его сборке, т. е. матричную РНК, на нуклеотиды, чтобы потом повторно их использовать. А если и сам белок уже свое отработал – то и его разбирает. На аминокислоты, конечно же. И карусель транскрипции-трансляции работает дальше, обслуживая новые потребности клетки. Шестиклассник написал контрольную – пора есть котлету.

Источник

Транскрипция и трансляция

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.

Транскрпиция (лат. transcriptio — переписывание)

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Образуется несколько начальных кодонов иРНК.

Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Трансляция (от лат. translatio — перенос, перемещение)

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Биосинтез белка в клетке кратко и понятно

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Как объяснить, кратко и понятно, что такое биосинтез белка, и какого его значение?

Если вам интересна эта тема, и вы хотели бы подтянуть школьные знания или же повторить пропуски, то эта статья создана для вас.

Что такое биосинтез белка

Сначала стоит ознакомиться с определением биосинтеза. Биосинтезом называется синтез живыми организмами природных органических соединений.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Если быть проще, то это получение различных веществ с помощью микроорганизмов. Этот процесс занимает важную роль во всех живых клетках. Не забываем и о сложном биохимическом составе.

Транскрипция и трансляция

Это два наиглавнейших шага биосинтеза.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Транскрипция с латинского означает «переписывание» – в качестве матрицы применяется ДНК, поэтому происходит синтезирование трёх видов РНК (матричной/информационной, транспортной, рибосомной рибонуклеиновых кислот). Реакция осуществляется с помощью полимеразы (РНК) и с использованием большого количества аденозинтрифосфата.

Выделают два основных действия:

Трансляция с латинского означает «перевод» – используется иРНК в качестве матрицы, синтезируются полипептидные цепочки.

Трансляция включает в себя три этапа, которые можно было представить в виде таблицы:

Схема биосинтеза белка

По схеме видно, как протекает процесс.

для чего нужен синтез белка. Смотреть фото для чего нужен синтез белка. Смотреть картинку для чего нужен синтез белка. Картинка про для чего нужен синтез белка. Фото для чего нужен синтез белка

Точкой стыковки этой схемы являются рибосомы, в которых синтезируется белок. В простой форме синтез осуществляется по схеме

ДНК &gt, PHK &gt, белок.

Первым начинается этап транскрипции, в котором молекула изменяется в одноцепочную информационную рибонуклеиновую кислоту (иРНК). В ней содержится информация аминокислотной последовательности белка.

Следующей остановкой иРНК будет рибосома, в которой происходит сам синтез. Происходит это путём трансляции, формирования полипептидной цепочки. После этой заурядной схемы, полученный белок транспортируется в разные места, выполняя определённые задачи.

Последовательность процессоров биосинтеза белка

Биосинтез белка – сложный механизм, который включает в себя два выше упомянутых этапа, а именно транскрипцию и трансляцию. Первым происходит транскрибируемый этап (он разделяется на два события).

После идёт трансляция, в которой участвуют все виды РНК, у каждой есть своя функция:

Какие компоненты клетки участвуют в биосинтезе белка

Как мы уже говорили, биосинтез разделяют на две стадии. В каждой стадии участвуют свои компоненты. На первой стадии это дезоксирибонуклеиновая кислота, информационная и транспортная РНК, нуклеотиды.

Во второй же стадии участвуют компоненты: иРНК, тРНК, рибосомы, нуклеотиды и пептиды.

Каковы особенности реакций биосинтеза белка в клетке

В список особенностей реакций биосинтеза стоит отнести:

Признаки биосинтеза белка в клетке

Для такого сложного процесса, конечно же, характерны различные признаки:

Заключение

Многоклеточный организм аппарат, состоящий из разных клеточных типов, которые дифференцированы – отличаются структурой и функциями. Кроме белков, присутствуют клетки этих типов, которые синтезируют так же себе подобных, в этом заключается различие.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *