для чего нужна нагрузка в электрической цепи

Электрические нагрузки

Наиболее распространенным и важным в производстве приемником является электродвигатель. Главными потребителями электрической энергии на промышленных предприятиях являются трехфазные двигатели переменного тока. Электрическая нагрузка электродвигателя определяется величиной и характером механической нагрузки.

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Нагрузки необходимо покрывать от источника электрической энергии, которым является электрическая станция. Обычно между генератором и потребителем электрической энергии существует целый ряд элементов электрической сети. Например, если двигатели, приводящие в движение механизмы в цеху питаются от сети напряжением 380 В, то в цеху или около цеха должна быть расположена цеховая трансформаторная подстанция, на которой установлены силовые трансформаторы для питания цеховых установок (для покрытия цеховых нагрузок).

Трансформаторы через кабели или воздушные провода питаются либо от более мощной подстанции, либо от промежуточного распределительного пункта высокого напряжения, или, что часто встречается на предприятиях, от тепловой электрической станции предприятия. Во всех случаях покрытие нагрузок осуществляется от генераторов электрической станции. При этом минимальное значение нагрузка имеет на конечном пункте, например в цехе.

Поскольку нагрузка измеряется в единицах мощности, она может быть активная РкВт, реактивная QкBap и полная S = √( P 2 + Q 2 ) кВА.

Нагрузка также может быть выражена в единицах тока. Если, например, по линии протекает ток I = 80 А, то эти 80 А являются нагрузкой линии. При прохождении тока по любому элементу установки выделяется тепло, в результате чего этот элемент (трансформатор, преобразователь, шины, кабели, провода и др.) нагревается.

Допустимые мощности (нагрузки) на данные элементы электротехнической установки (машины, трансформаторы, аппараты, провода и др.) определяются величиной допустимой температуры. Ток, протекающий по проводам, помимо потерь мощности, вызывает потери напряжения, которые не должны превышать величин, регламентированных руководящими указаниями.

В реальных установках нагрузка в виде тока или мощности не остается в течение суток неизменной, и поэтому в практику расчетов введены определенные термины и понятия различных видов нагрузок.

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Паспортная мощность Рпасп электроприемника в повторно-кратковременном режиме приводится к номинальной длительной мощности при ПВ = 100% по формуле P н = P пасп √ПВ

При этом ПВ выражен в относительных единицах. Например, двигатель с паспортной мощностью Рпасп = 10 кВт при ПВ = 25%, приведенный к номинальной длительной мощности ПВ = 100%, будет иметь мощность P н = 10 √25 = 5 кВт.

Расчетная, или максимальная активная, Рм, реактивная Qм и полная S м мощность, а также максимальный ток I м представляют собой наибольшие из средних величин мощностей и токов за определенный промежуток времени, измеряемый 30 мин. Вследствие этого расчетная максимальная мощность иначе называется получасовой или 30-минутной максимальной мощностью Рм = Р30. Соответственно, I м= I зо.

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Графиком электрических нагрузок принято называть графическое изображение расходуемой мощности за определенный отрезок времени. Различают суточный и годовой графики нагрузок. Суточный график показывает зависимость расходуемой мощности от времени в течение суток. По вертикали откладывается нагрузка (мощность), по горизонтали — часы суток. Годовой график определяет зависимость расходуемой мощности от времени в течение года.

По своей форме графики электрических нагрузок для различных производств и потребителей сильно отличаются друг от друга.

Необходимо различать графики: цеховых нагрузок и нагрузок на шинах главного распределительного устройства собственной электростанции или подстанции. Эти два графика отличаются друг от друга прежде всего по абсолютным величинам почасовых нагрузок, а также по своему виду.

График на шинах электростанции (ГРУ) получается путём суммирования нагрузок по всем цехам предприятия и прочим потребителям, включая и внешних потребителей. При этом к цеховым нагрузкам следует прибавить потери мощности в цеховых трансформаторах и проводах, подводящих к трансформаторам. Вполне естественно, что на шинах ГРУ мощность значительно превышает мощность каждой отдельно взятой подстанции.

Про электрические нагрузки жилых зданий: Суточные графики нагрузки жилых зданий

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Мощность электрического тока

Разомкнутые и замкнутые цепи

Начнем с самой простой схемы фонарика и от нее уже будет отталкиваться

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Здесь мы видим три радиоэлемента: источник питания Bat, выключатель S и кругляшок с крестиком внутри, то есть лампочку. Все это вместе называется электрической цепью. Так как по цепи не бежит электрический ток, то такую цепь называют разомкнутой.

Но стоит нам щелкнуть выключатель, и у нас тут же загорится лампочка. Такая цепь уже будет называться замкнутой.

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Электроэнергия и источник питания

Теперь давайте подробнее разберем нашу схему. Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы «оборвали» нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь » в обрыве». Ток не бежит, лампочка не горит.

Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.

Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что «побрейтесь» фанаты вечных двигателей).

В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.

Странно наверное что я пишу в середине статьи не по теме, НООО прочитай про протоны.

Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза «источник питания» уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.

А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье (элемент Пельтье), который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС (Что такое).

Электрический ток и нагрузка

В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам — это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения.

В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка — это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка — от слова «нагружать». Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки 😉

Теперь давайте представим все это с точки зрения гидравлики и механики.

Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.

Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.

Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе. Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.

А если нагрузить вал, чтобы тот поднимал грузовой лифт?

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.

Давайте разберем еще один пример для понимания. Все тот же самый рисунок:

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет…

Давайте снова вернемся к мини-мельнице

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.

Мощность электрического тока

Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Смотрим потребление тока. 0,71 Ампер

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.

Беру галогенную лампу от фары авто и также цепляю ее к блоку питания

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Смотрим потребление. 4,42 Ампера

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.

А теперь давайте посчитаем, какая лампочка больше всех Ватт «отбирает» у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.

Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность — это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг — на экскаваторе:

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Кто быстрее справится с задачей за одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.

А теперь представьте, что нам надо полностью под ноль сточить эту железяку:

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.

Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее. Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина — это давить железяку в полсилы.

Ну вот мы и снова переходим к электронике 😉

Поток воды — сила тока, давление в трубе — напряжение, давление железяки на круг — сопротивление. И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как и в прошлом опыте, где мы стачивали железяку за определенное время.

И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся, так как сила потока воды в трубе увеличится, а следовательно, мы еще быстрее сточим нашу железку.

Формула мощности для постоянного электрического тока

Поэтому формулы мощности в электронике имеют вот такой вид:

для чего нужна нагрузка в электрической цепи. Смотреть фото для чего нужна нагрузка в электрической цепи. Смотреть картинку для чего нужна нагрузка в электрической цепи. Картинка про для чего нужна нагрузка в электрической цепи. Фото для чего нужна нагрузка в электрической цепи

А — это полезная работа, Джоули

U — напряжение, Вольты

P — собственно сама мощность, Ватты

R — сопротивление, Омы

Как вы можете заметить, формула P=I 2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.

А из формулы P=U 2 /R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.

Источник

Электрическая нагрузка.

Характер нагрузки в сети может в процессе работы электроприемников оставаться неизменным, изменяться во всех или отдельных фазах, сопровождаться возникновением высших гармоник напряжения или тока. Ввиду этого электрическая нагрузка в сети бывает следующих типов:

— спокойная симметричная (преобладающее большинство трехфазных электроприемников);

К специфическим нагрузкам относятся резкопеременная, нелинейная и несимметричная нагрузка.

Резкими набросами и провалами тока или мощности характеризуется резкопеременная электрическая нагрузка. Неравномерная нагрузка фаз характерна для несимметричной нагрузки, вызывается она однофазными и трехфазными (реже) приемниками с неравномерной загрузкой фаз. В сети при несимметричной нагрузке возникают токи, которые имеют прямую, нулевую и обратную последовательности. Электроприемниками с нелинейной вольт-амперной характеристикой создается нелинейная нагрузка, при в сети ней появляются высшие гармоники напряжения или тока, происходит искажение синусоидальной формы напряжения или тока.

Созданию специфических нагрузок способствует работа электродуговых печей, полупроводниковых преобразовательных установок или сварочных установок. В основном эти установки принадлежат промышленным. Как известно, электрические сети промышленных предприятий связаны через трансформаторные подстанции с сетями сельскохозяйственного назначения, тогда можно считать, что на электросети сельскохозяйственного назначения оказывают влияние специфические электрические нагрузки промышленных предприятий.

Электроприемники сельскохозяйственного назначения по мощности подразделяются на три группы:

1. Большой мощности (больше 50 кВт)

2. Средней мощности (от 1 до 50 кВт)

3. Малой мощности (до 1 кВт)

Для работы некоторые электроприемники используют постоянный ток, а также токи повышенной частоты (до 400 Гц) или высокой (до 10 кГц).

Перерывы в электроснабжении могут допускать во время работы некоторые группы приемников, но существуют такие группы для которых перерыв в электроснабжении недопустим.

Электроприемники по надежности и бесперебойности электроснабжения разделены на 3 категории.

Первая категория включает электроприемники и комплексы электроприемников, при перерыве в электроснабжении которых может возникнуть опасность для жизни людей, расстройство технологического процесса, повреждение основного оборудования. Для этих приемников необходима возможность обеспечения электроэнергией не меньше, чем от двух независимых источников питания. На время автоматического восстановления электроснабжения от второго источника питания, допускается нарушение их электроснабжения.

Вторую категорию представляют электроприемники и комплексы электроприемников, при перерыве электроснабжения которых наблюдается массовый недовыпуск продукции, простои механизмов и рабочих.

От двух независимых источников питания необходимо обеспечивать электроснабжение приемников второй категории, допускается перерыв в электроснабжении только на время, необходимое для автоматического переключения на второй источник.

К третьей категории относятся электроприемники и комплексы электроприемников, которые не попадают по определение первых двух категорий. Их электроснабжение может осуществляться лишь от одного источника питания. На требующееся для проведения восстановительных работ время, но не больше суток допускается перерыв их электроснабжения.

Потреблением из сети не только активной, но также и реактивной мощности сопровождается работы подавляющего большинства электроприемников. Преобразуется активная мощность в механическую мощность на валу рабочей машины или теплоту, а на создание магнитных полей в электроприемниках расходуется реактивная мощность. Основными ее потребителями являются трансформаторы, асинхронные двигатели, индукционные печи, в которых отстает ток по фазе напряжения. Характеризуется потребление реактивной мощности коэффициентом мощности сosφ, представляющим отношение активной мощности Р к полной мощности S. Является удобным показателем коэффициент реактивной мощности tgφ, который выражает отношение реактивной мощности Q к активной Р (показывает, происходящее потребление реактивной мощности на единицу активной мощности).

Источниками реактивной мощности являются установки с опережающим током, они применяются для компенсации реактивной нагрузки с индуктивным характером цепи.

Электрическая нагрузка таким образом в электросети представляется активными и реактивными нагрузками.

При возникновении электрической нагрузки в распределительной сети, может возникать нагрев токоведущих частей (кабелей, проводов, обмоток трансформаторов и электродвигателей). Их чрезмерный нагрев приводит к преждевременному износу изоляции, поэтому не должна температура токоведущих частей превышать допустимые значения. Сечения кабелей и проводов необходимо выбирать по допустимому (расчетному) току нагрузки, для определения которого требуется определить расчетную мощность нагрузки.

При проектировании и эксплуатации СЭС за расчетную электрическую нагрузку принимается неизменная во времени нагрузка – Iрсч, вызывающая характеризующийся установившейся температурой максимальный нагрев токоведущих и с ними соседних частей. Допустимые значения нагрев превышать не должен. Для большинства кабелей и проводов установившееся тепловое состояние обычно наступает за 30 минут (около трех постоянных времени нагрева – 3Т, т. е. постоянная времени нагрева Т = 10 мин). В установках, имеющих номинальный ток нагрузки больше 1000 А, не менее 60 минут достигается установившаяся температура.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *