для чего нужно тепловое реле в пускателе
Тепловое реле
2016-07-01 Статьи
3 комментария
Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.
Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.
Принцип работы теплового реле
Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.
Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.
Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.
Таблица по выбору тепловых реле РТИ
Устройство и подключение теплового реле
На примере РТИ 1312 покажу устройство теплового реле.
РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.
В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.
В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.
Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.
Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.
После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.
Электрическая схема реле РТИ
Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).
Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.
Схема подключения нереверсивного магнитного пускателя с тепловым реле
Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:
Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.
При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.
Тепловая защита электродвигателя. Электротепловое реле.
17 Дек 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.
Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.
1. Устройство и работа электротеплового реле.
Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.
Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:
1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.
Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.
Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.
Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.
По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.
В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.
Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.
«Индикатор» информирует о текущем состоянии реле.
Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.
Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).
Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.
Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».
Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.
Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.
При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:
Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.
2. Принципиальные схемы включения электротеплового реле.
В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.
При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.
При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.
При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.
Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.
На фотографиях ниже показана часть монтажной схемы цепей управления:
Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.
При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.
И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.
От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.
При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».
Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.
И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.
Тепловое реле: устройство и принцип действия
Для обеспечения безопасной эксплуатации электротехнического оборудования используются разнообразные электронные приборы и другие приспособления. Они предназначены для контроля нормативных параметров работы электрических установок, а в случае аварийных ситуаций для их отключения. Ярким представителем таких устройств является электротепловое реле, отключающее электроустановку от питающей электрической сети в случае длительного превышения номинального значения рабочего тока. Термореле — это автомат отключения прибора, потребляющего электроэнергию, при серьезных перегрузках оборудования по току электропитания.
Области использования прибора
Электротепловые реле предназначены для предотвращения выхода из строя электромоторов от перегрузок по показателям рабочего тока, в результате которых происходит превышение нормативных показателей рабочей температуры последних. Любой электрический двигатель имеет номинальный рабочий ток. Критическое превышение этой технической характеристики в течение длительного времени приведет к перегреву обмоток силовой установки, разрушению изоляционного слоя и выходу из строя мотора в целом.
Устройство электротепловой защиты отключит электрический двигатель и не допустит аварии и выхода из строя электромотора. Термореле защиты от перегрузок применяются и в других сферах народного хозяйства, быту и производстве, но основное их предназначение — это защита электрических силовых установок от увеличения тока нагрузки до критических значений. Без этого прибора безопасно эксплуатировать электрические двигатели невозможно!
Конструкция и принцип работы прибора
Надежность работы энергетических установок напрямую зависит от различных перегрузок, которым данное устройство подвергается в период эксплуатации. Для каждого устройства существуют предельные величины тока и их длительность, при которых оборудование функционирует в нормальном и безопасном режиме. При номинальных значениях тока длительность работы электродвигателя или любой другой электроустановки ограничена только механической прочностью вращающихся деталей. При длительном превышении этого значения возникает аварийная ситуация.
Для обеспечения защиты электрических двигателей и другого оборудования от перегрузок широко используются устройства с биметаллическими элементами. Эти приборы работают в соответствии с законом физики, описанным учеными Джоулем и Ленце в 19 веке и определяющим зависимость выделенного тепла от силы тока на конкретном участке электрической цепи. Именно это закон является определяющим в работе электротеплового реле (расцепителя). В составе конструкции прибора имеется спираль, которая является излучателем тепла. Непосредственно рядом с ней монтируется биметаллическая пластина, реагирующая на излучаемое тепло.
Термопластины изготовлены из двух металлических сплавов с различной теплопроводностью, которые при нагреве/охлаждении меняют свою геометрию. Это свойство биметаллических элементов заложено в принцип функционирования теплового расцепителя. При любом увеличении или уменьшении тока нагрузки, рабочие пластины меняют свое пространственное расположение и механически воздействуют на толкатель, который размыкает или замыкает контактные группы термореле, подключенные к обмоткам магнитного пускателя (МП). Пускатель двигателя срабатывает и отключает нагрузку от электрической сети. Стандартная конструкция электротеплового реле представлена на следующей картинке.
На работу тепловых расцепителей с биметаллическими пластинами оказывает воздействие температура окружающего воздуха, дополнительно нагревая рабочие элементы конструкции прибора. Для исключения этого явления все устройства этого типа снабжены дополнительными компенсирующими биметаллическими пластинами, изгибающимися в противоположную сторону относительно основных элементов.
Компенсатор является регулятором тока срабатывания устройства. Для регулировки используется эксцентрик со шкалой, разделенной на две части. При повороте влево ручки компенсатора значение тока срабатывания уменьшается, а при смещении вправо соответственно увеличивается. Регулировка значений тока срабатывания расцепителя происходит путем увеличения/уменьшения зазора между толкателем и основной пластиной, за счет воздействия эксцентрика на дополнительную биметаллическую пластину.
Важно! При обрыве или отключении одной из фаз питания, в трехфазной сети, ток нагрузки в оставшихся двух фазах увеличивается, что приводит к срабатыванию электротеплового реле. Исходя из этого, можно сказать, что тепловой расцепитель является защитой электродвигателя от работы в аварийной ситуации с оборванной фазой.
Виды термореле защиты
Следует отметить, что на современном рынке электротехнических изделий представлены разные типы модулей тепловой защиты электрических силовых агрегатов. Каждый из этих типов устройств используется в конкретной ситуации и для определенного вида электрического оборудования. К основным разновидностям тепловых реле защиты можно отнести следующие конструкции.
Из вышеприведенной информации видно, что в настоящее время существует несколько различных типов электротепловых реле. Все они используются для решения одной-единственной задачи — защиты электрических двигателей и других силовых электроустановок от токовых перегрузок с повышением температур рабочих частей агрегатов до критических значений.
Где купить
Максимально быстро приобрести устройство можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Схема подключения теплового реле
Чаще всего, подключение теплового реле осуществляется непосредственно к магнитному пускателю. Силовые контакты устройства позволяют выполнить его монтаж на МП без проводов. Также существуют модели тепловой защиты, которые можно установить как самостоятельный модуль на монтажную панель или DIN-рейку в электрический шкаф. На следующем рисунке представлена структурная схема подключения теплового реле в соответствии с действующим ГОСТом.
На следующем рисунке приведена схема управления электродвигателем, отключающим его от сети в случае возникновения аварийной ситуации: перегрузке по току или обрыву провода одной из фаз.
Для непосвященного человека все эти принципиальные схемы не значат ровно ничего, поэтому на следующей картинке будет представлена более доступная для понимания простым потребителем схема подключения электротеплового реле с фотографиями всех элементов, входящих в систему защиты электрических моторов от токовых перегрузок.
Коротко рассмотрим, как действует данная компоновка защиты электродвигателей. Входной автомат обеспечивает подачу одной фазы через нормально-замкнутую аварийную кнопку «Стоп» на разомкнутую кнопку «Пуск». При ее включении, напряжение питания попадается на обмотку магнитного пускателя, который последовательно включает электромотор. Все фазы питающей электросети, поступающие на электрический двигатель, проходят через обмотки реле с биметаллическими элементами. В случае увеличения тока нагрузки до максимальных значений срабатывает тепловая защита и силовая установка обесточивается.
Внимание! Электротепловое реле устанавливается в цепь питания после всех типов контакторов, но перед электродвигателем или другим электрическим оборудованием. Включение размыкающего цепь устройства выполняется кнопкой «Стоп». Все элементы системы защиты соединены последовательно.
Выбор электротеплового реле
Выбор термореле зависит от многих факторы его эксплуатации: температуры окружающей среды; где оно установлено; мощности подключенного оборудования; необходимых средств аварийного оповещения и так далее. Чаще всего, потребитель делает выбор, основываясь на следующих технических характеристиках прибора.
Цена реле тепловой защиты может колебаться в очень широком диапазоне. Стоимость устройства зависит от многих факторов: общих технических характеристик, наличия дополнительных функций, используемых при производстве материалов, а также от популярности производителя прибора. Минимальная цена термореле около 500 рублей, а максимальная может доходить до нескольких тысяч. Реле от известных производителей, в обязательном порядке, комплектуются паспортом с подробным описанием технических характеристик, а также полной инструкцией по подключению прибора к электроустановкам.
Преимущества устройства
По своей сути, тепловое реле является автоматическим устройством отключения электрооборудования от сети питания. Но в отличие от простого автомата включения/отключения электротепловое реле имеет ряд следующих существенных преимуществ:
К другим достоинствам тепловых реле можно отнести малые габариты, массу и, конечно же, стоимость, а также простоту конструкции и высокую эксплуатационную надежность. Определенным недостатком устройства является необходимость в периодических настройках и поверках.
Заключение
Электротепловое реле (расцепитель) — это один из самых важных элементов системы защиты электрических двигателей и другого электрооборудования. Данное устройство способно защитить электроустановку от любых перегрузок. Тепловой расцепитель не подвержен ложным отключениям нагрузки при кратковременных скачках тока, что выгодно отличает его от входного автомата. Термореле защиты можно монтировать не только совместно с МП, но и как самостоятельное защитное устройство.
P.S. Подключайте тепловое реле к электросиловым установкам в полном соответствии c инструкцией по эксплуатации. Если у вас нет достаточного опыта в выполнение таких работ, то лучше обратиться к специалистам. Самостоятельно ремонтировать прибор можно только при наличии элементарных знаний в области электротехники. В противном случае ремонт термореле следует производить в специализированном сервисном центре!