для чего нужны дженерики java

Дженерики (Java, обучающая статья)

Предисловие

За основу данной статьи была взята информация из 6-ой главы книги «Oracle Certified Professional Java SE 7 Programmers Exams 1Z0-804 and 1Z0-805». Она была немного изменена (кое-где обрезана, а кое-где дополнена с помощью Google и Википедии). Здесь показаны далеко не все нюансы дженериков — для более подробной информации следует обратиться к официальной документации. Приятного прочтения.

Введение

Обобщённое программирование — это такой подход к описанию данных и алгоритмов, который позволяет их использовать с различными типами данных без изменения их описания. В Java, начиная с версии J2SE 5.0, добавлены средства обобщённого программирования, синтаксически основанные на C++. Ниже будут рассматриваться generics (дженерики) или > — подмножество обобщённого программирования.

Допустим мы ничего не знаем о дженериках и нам необходимо реализовать специфический вывод на консоль информации об объектах различного типа (с использованием фигурных скобок).

Ниже пример реализации:

В вышеприведённом коде была допущена ошибка, из-за которой на консоли мы увидим следующее:

Теперь на время забудем об этом примере и попробуем реализовать тот же функционал с использованием дженериков (и повторим ту же ошибку):

Самое существенное отличие (для меня) в том, что при ошибке, аналогичной предыдущей, проблемный код не скомпилируется:

Думаю, многие согласятся, что ошибка компиляции «лучше» ошибки времени выполнения, т.к. чисто теоретически скомпилированный код с ошибкой может попасть туда, куда ему лучше бы и не попадать. Это очевидное достоинство дженериков. Теперь подробнее рассмотрим конструкции, относящиеся к дженерикам в этом примере. Для того, чтобы код скомпилировался, достаточно заменить строку

Посмотрим на декларацию BoxPrinter:

После имени класса в угловых скобках » » указано имя типа «Т», которое может использоваться внутри класса. Фактически Т – это тип, который должен быть определён позже (при создании объекта класса).

Внутри класса первое использование T в объявлении поля:

Здесь объявляется переменная дженерик-типа (generic type), т.о. её тип будет указан позже, при создании объекта класса BoxPrinter.

В main()-методе происходит следующее объявление:

Здесь указывается, что Т имеет тип Integer. Грубо говоря, для объекта value1 все поля Т-типа его класса BoxPrinter становятся полями типа Integer (private Integer val;).
Ещё одно место, где используется T:

Как и в декларации val с типом Т, вы говорите, что аргумент для конструктора BoxPrinter имеет тип T. Позже в main()-методе, когда будет вызван конструктор в new, указывается, что Т имеет тип Integer:

Теперь, внутри конструктора BoxPrinter, arg и val должны быть одного типа, так как оба имеют тип T. Например следующее изменение конструктора:

приведёт к ошибке компиляции.

Последнее место использования Т в классе – метод getValue():

Тут вроде тоже всё ясно – этот метод для соответствующего объекта будет возвращать значение того типа, который будет задан при его (объекта) создании.

При создании дженерик-классов мы не ограничены одним лишь типом (Т) – их может быть несколько:

Нет ограничений и на количество переменных с использующих такой тип:

Алмазный синтаксис (Diamond syntax)

Вернёмся немного назад к примеру со строкой кода:

Если типы не будут совпадать:

То мы получим ошибку при компиляции:

Немного лениво каждый раз заполнять типы и при этом можно ошибиться. Чтобы упростить жизнь программистам в Java 7 был введён алмазный синтаксис (diamond syntax), в котором можно опустить параметры типа. Т.е. можно предоставить компилятору определение типов при создании объекта. Вид упрощённого объявления:

Следует обратить внимание, что возможны ошибки связанные с отсутствием «<>» при использовании алмазного синтаксиса

В случае с примером кода выше мы просто получим предупреждение от компилятора, Поскольку Pair является дженерик-типом и были забыты «<>» или явное задание параметров, компилятор рассматривает его в качестве простого типа (raw type) с Pair принимающим два параметра типа объекта. Хотя такое поведение не вызывает никаких проблем в данном сегменте кода, это может привести к ошибке. Здесь необходимо пояснение понятия простого типа.

Посмотрим на вот этот фрагмент кода:

Теперь посмотрим на вот этот:

По результатам выполнения оба фрагмента аналогичны, но у них разная идея. В первом случае мы имеем место с простым типом, во вторым – с дженериком. Теперь сломаем это дело – заменим в обоих случаях

Для простого типа получим ошибку времени выполнения (java.lang.ClassCastException), а для второго – ошибку компиляции. В общем, это очень похоже на 2 самых первых примера. Если в двух словах, то при использовании простых типов, вы теряете преимущество безопасности типов, предоставляемое дженериками.

Универсальные методы (Generic methods)

По аналогии с универсальными классами (дженерик-классами), можно создавать универсальные методы (дженерик-методы), то есть методы, которые принимают общие типы параметров. Универсальные методы не надо путать с методами в дженерик-классе. Универсальные методы удобны, когда одна и та же функциональность должна применяться к различным типам. (Например, есть многочисленные общие методы в классе java.util.Collections.)

Рассмотрим реализацию такого метода:

Нам в первую очередь интересно это:

» » размещено после ключевых слов «public» и «static», а затем следуют тип возвращаемого значения, имя метода и его параметры. Такое объявление отлично от объявления универсальных классов, где универсальный параметр указывается после имени класса. Тело метода вполне обычное – в цикле все элементы списка устанавливаются в одно значение (val). Ну и в main()-методе происходит вызов нашего универсального метода:

Стоит обратить внимание на то, что здесь не задан явно тип параметра. Для IntList – это Integer и 100 тоже упаковывается в Integer. Компилятор ставит в соответствие типу Т – Integer.

А сейчас вопрос – какая (-ие) из нижеприведённых строк откомпилируется без проблем?

Ответ с пояснением:
Первый вариант неправильный, т.к. нельзя создавать объект интерфейса.
Во втором случае мы создаем объект типа ArrayList и ссылку на него базового для ArrayList класса. И там, и там дженерик-тип одинаковый – всё правильно.
В третьем и четвёртом случае будет иметь ошибка компиляции, т.к. дженерик-типы должны быть одинаковыми (связи наследования здесь никак не учитываются).

Условие одинаковости дженерик-типов может показаться не совсем логичным. В частности хотелось бы использовать конструкцию под номером 3. Почему же это не допускается?

Будем думать от обратного – допустим 3-ий вариант возможен. Рассмотрим такой код:

Wildcards (Маски)

Сейчас будут рассмотрены Wildcard Parameters (wildcards). Этот термин в разных источниках переводится по-разному: метасимвольные аргументы, подстановочные символы, групповые символы, шаблоны, маски и т.д. В данной статье я буду использовать «маску», просто потому, что в ней меньше букв…

Как было написано выше вот такая строка кода не скомпилируется:

Но есть возможность похожей реализации:

Под маской мы будем понимать вот эту штуку – » «.

А сейчас пример кода использующего маску и пригодного к компиляции:

Метод printList принимает список, для которого в сигнатуре использована маска:

И этот метод работает для списков с различными типами данных (в примере Integer и String).

Однако вот это не скомпилируется:

И ещё один маленький пример:

Тут не возникнет проблем компиляции. Однако нехорошо, что переменная numList хранит список со строками. Допустим нам нужно так объявить эту переменную, чтобы она хранила только списки чисел. Решение есть:

Данный код не скомпилируется, а всё из-за того, что с помощью маски мы задали ограничение. Переменная numList может хранить ссылку только на список, содержащий элементы унаследованные от Number, а всё из-за объявления: List numList. Тут мы видим, как маске задаётся ограничение – теперь numList предназначен для списка с ограниченным количеством типов. Double как и Integer наследуется от Number, поэтому код приведённый ниже скомпилируется.

То, что было описано выше называется ограниченными масками (Bounded wildcards). Применение таких конструкций может быть весьма красивым и полезным. Допустим нам необходимо посчитать сумму чисел различного типа, которые хранятся в одном списке:

Double-тип был использован для переменной result т.к. он без проблем взаимодействует с другими числовыми типами (т.е. не будет проблем с приведением типов).

На этом все. Надеюсь, данная статья была полезной.

Если Вам понравилась статья, проголосуйте за нее

Голосов: 175 Голосовать для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Источник

Дженерики в Java для самых маленьких: синтаксис, границы и дикие карты

Разбираемся, зачем нужны дженерики и как добавить их в свой код.

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Оля Ежак для Skillbox Media

У нас в парадной подъезде рядом с почтовыми ящиками стоит коробка. Предполагалось, что туда будут выбрасывать бумажный спам, который какие-то вредители упорно кладут в эти самые ящики. Но в коробке вместе с бумажками лежат пустые бутылки и банки, подозрительного вида пакеты, а в нынешних реалиях — ещё и использованные медицинские маски. Почему люди так делают? Потому что так можно.

Теперь представьте, что содержимое коробки вы отвозите на переработку, а перед этим каждый раз приходится отделять бумагу от прочего мусора. Не хотели бы вы заполучить такую коробку, которая не даст положить в себя что-то, кроме бумаги? Если ваш ответ «да» — вам понравятся дженерики (generics).

Содержание

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Фулстек-разработчик. Любимый стек: Java + Angular, но в хорошей компании готова писать хоть на языке Ада.

Знакомимся с дженериками

До появления дженериков программисты могли неявно предполагать, что какой-то класс, интерфейс или метод работает с элементами определённого типа.

Посмотрите на этот фрагмент кода:

Здесь предполагается, что метод printSomething работает со списком строк. Мы можем догадаться об этом, потому что в цикле все элементы приводятся (преобразуются) к классу String, а потом ещё и метод length этого класса вызывается.

Но смотрите, что сделали программисты Саша и Маша, — они поленились заглянуть внутрь метода и положили в список: один — число, а вторая — экземпляр StringBuilder.

Вот только тестировщик назначил баг не кому-то из них, а Паше, который написал метод printSomething, — потому что ошибка произошла именно во время его выполнения.

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Паша быстро нашёл истинных виновников и попросил их исправить заполнение списка. Но на будущее решил подстраховаться от подобных ситуаций и переписал метод с использованием дженериков. Вот так:

Теперь, если кто-то захочет положить в массив нестроковый элемент, ошибка станет заметной сразу — ещё на этапе компиляции.

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Обратите внимание, что во второй версии Пашиного метода item не приводится насильно к типу String. Мы просто получаем в цикле очередной элемент списка, и компилятор соглашается, что это, очевидно, будет строка. Код стал менее громоздким, читать его стало проще.

Объявляем дженерик-классы и создаём их экземпляры

Давайте запрограммируем ту самую коробку, о которой шла речь в начале статьи: создадим класс Box, который умеет работать только с элементами определённого типа. Пусть для простоты в этой коробке пока будет только один элемент:

В классе два метода:

Во всех случаях, кроме заголовка класса, символ T пишется без угловых скобок, он обозначает один и тот же параметр типа.

Теперь создадим коробку для бумаги. Пусть за бумагу отвечает класс Paper, а значит, экземпляр правильной коробки создаётся вот так:

Это полный вариант записи, но можно и короче:

Так как слева мы уже показали компилятору, что нужна коробка именно для бумаги, справа можно опустить повторное упоминание Paper — компилятор «догадается» о нём сам.

Это «угадывание» называется type inference — выведение типа, а оператор « <>» — это diamond operator. Его так назвали из-за внешнего сходства с бриллиантом.

E — element, для элементов параметризованных коллекций;

K — key, для ключей map-структур;

V — value, для значений map-структур;

N — number, для чисел;

T — type, для обозначения типа параметра в произвольных классах;

S, U, V и так далее — применяются, когда в дженерик-классе несколько параметров.

Дженерик-классы хороши своей универсальностью: с классом Box теперь можно создать не только коробку для бумаги, но и, например, коробки для сбора пластика или стекла:

А можно пойти ещё дальше и создать дженерик-класс с двумя параметрами для коробки с двумя отсеками. Вот так:

Теперь легко запрограммировать коробку, в одном отсеке которой будет собираться пластик, а во втором — стекло:

Обратите внимание, что type inference и diamond operator позволяют нам опустить оба параметра в правой части.

Объявляем и реализуем дженерик-интерфейсы

Объявление дженерик- интерфейсов похоже на объявление дженерик-классов. Продолжим тему переработки и создадим интерфейс пункта переработки GarbageHandler сразу с двумя параметрами: тип мусора и способ переработки:

Реализовать (имплементить) этот интерфейс можно в обычном, не дженерик- классе:

Но можно пойти другим путём и сначала объявить дженерик-класс с двумя параметрами:

Или скомбинировать эти два способа и написать дженерик-класс только с одним параметром:

Дженерик-классы и дженерик-интерфейсы вместе называются дженерик-типами.

Можно создавать экземпляры дженерик-типов «без расшифровки», то есть никто не запретит вам объявить переменную типа Box — просто Box:

Для такого случая даже есть термин — raw type, то есть «сырой тип». Эту возможность оставили в языке для совместимости со старым кодом, который был написан до появления дженериков.

В новых программах так писать не рекомендуется. Да и зачем? Ведь при таком способе теряются все преимущества использования дженериков.

Пишем дженерик-методы

В примерах выше мы уже видели параметризованные методы в дженерик-классах и интерфейсах. Типизированными могут быть как параметры метода, так и возвращаемый тип.

До этого мы использовали в методах только те обозначения типов, которые объявлены в заголовке дженерик-класса или интерфейса, но это не обязательно. Предположим, у нашего пункта переработки есть ещё опция: сбор опасных отходов, которые сотрудники вывозят на утилизацию в другое место. Напишем метод для этого:

У метода transfer есть свой личный параметр для типа, который не обязан совпадать ни с типом T, ни с типом S. При первом упоминании новый параметр, как и в случае с заголовком класса или интерфейса, пишется в угловых скобках.

Дженерик-методы можно объявлять и в обычных (не дженерик) классах и интерфейсах. Наш класс для переработки мог быть выглядеть так:

Здесь дженерики используются только в методе.

Обратите внимание на синтаксис: параметры типов объявляются после модификатора доступа ( public), но перед возвращаемым типом ( void). Они перечисляются через запятую в общих угловых скобках.

Ограничиваем дженерики сверху и снизу

Давайте немного расширим наше представление о мусоре и введём для него дополнительное свойство — массу «типичного представителя», то есть массу одной пластиковой бутылки или листка бумаги, например.

Теперь попробуем использовать эту массу в методе уже знакомого класса Box:

И получим ошибку при компиляции: мы не рассказали компилятору, что T — это какой-то вид мусора. Исправим это с помощью так называемого upper bounding — ограничения сверху:

Теперь метод getItemWeight успешно скомпилируется.

Здесь T extends Garbage означает, что в качестве T можно подставить Garbage или любой класс-наследник Garbage. Из уже известных нам классов это могут быть, например, Paper или Plastic. Так как и у Garbage, и у всех его наследников есть метод getWeight, его можно вызывать в новой версии дженерик-класса Box.

Для одного класса или интерфейса можно добавить сразу несколько ограничений. Вспомним про интерфейс для пункта приёма мусора и введём класс для метода переработки — HandleMethod. Тогда GarbageHandler можно переписать так:

Wildcards

Термин wildcard пришёл в программирование из карточной игры. В покере, например, так называют карту, которая может сыграть вместо любой другой. Джокер — известный пример такой «дикой карты».

Wildcard нельзя подставлять везде, где до этого мы писали буквенные обозначения. Не получится, например, объявить класс Box или дженерик-метод, который принимает такой тип:

Wildcards удобно использовать для объявления переменных и параметров методов совместно с классами из Java Collection Framework — здесь собраны инструменты Java для работы с коллекциями. Если вы не очень хорошо знакомы с ними, освежите знания, прочитав эту статью.

В примере ниже мы можем подставить вместо «?» любой тип, в том числе Paper, поэтому строка успешно скомпилируется:

Wildcards можно применять для ограничений типов:

Это уже знакомое нам ограничение сверху, upper bounding, — вместо «?» допуст им Garbage или любой его класс-наследник, то есть Paper подходит.

Но можно ограничить тип и снизу. Это называется lower bounding и выглядит так:

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Собираем понятия, связанные с дженериками

Мы не успели разобраться с более сложными вещами — например, с заменами аргументов типов в классах-наследниках, с переопределением дженерик-методов, не узнали об особенностях коллекций с wildcards.

Обо всём этом и не только — в следующих статьях. А пока соберём небольшой словарик из терминов, которые связаны с использованием дженериков, — они пригодятся при чтении специальной литературы:

ТерминРасшифровка
Дженерик-типы (generic types)Дженерик-класс или дженерик-интерфейс с одним или несколькими параметрами в заголовке
Параметризованный тип (parameterized types)Вызов дженерик-типа. Для дженерик-типа List параметризованным типом будет, например, List
Параметр типа (type parameter)Используются при объявлении дженерик-типов. Для Box T — это параметр типа
Аргумент типа (type argument)Тип объекта, который может использоваться вместо параметра типа. Например, для Box

Paper — это аргумент типа

WildcardОбозначается символом «?» — неизвестный тип
Ограниченный wildcard (bounded wildcard)Wildcard, который ограничен сверху — или снизу —
Сырой тип (raw type)Имя дженерик-типа без аргументов типа. Для List сырой тип — это List

Ещё больше о дженериках, коллекциях и других элементах языка Java узнайте на нашем курсе «Профессия Java-разработчик». Научим программировать на самом востребованном языке и поможем устроиться на работу.

Переменные ссылочного типа хранят адрес ячейки в памяти, в которой лежит значение этой переменной.
В этом их ключевое отличие от примитивных типов, когда в переменной хранится само значение.
Все ссылочные типы в Java наследуются от типа Object.

Источник

Дженерики в Java для тех, кто постарше: стирание типов, наследование и принцип PECS

Рассказываем, как в любой непонятной ситуации правильно сочетать дженерик-типы.

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

В предыдущей статье «Дженерики для самых маленьких» мы рассказали о том, что такое дженерики (generics), зачем они нужны и как создавать дженерик-типы и методы. Там же говорили про ограничения (boundings) и wildcards. Без этих основ вам будет сложно разобраться с тем, что написано дальше. Поэтому освежите знания, если это необходимо.

Из этой статьи вы узнаете:

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Фулстек-разработчик. Любимый стек: Java + Angular, но в хорошей компании готова писать хоть на языке Ада.

Почему ни один дженерик не доживает до выполнения программы

Воспользуемся примером из первой части рассказа о дженериках: там был класс Box — коробка для сбора мусора: можно было положить в неё или извлечь из неё только объект определённого типа:

Теперь создадим экземпляр такого класса и подставим вместо T конкретный тип: например, Paper — для коробки, в которую будем собирать бумагу:

Можно предположить, что теперь мы имеем дело с таким классом:

Эта запись помогает понять, как класс будет работать, но она не имеет ничего общего с тем, во что превращается дженерик-класс или интерфейс в результате компиляции.

Компилятор не генерирует class-файл для каждого параметризованного типа. Он создаёт один class-файл для дженерик-типа.

Компилятор стирает информацию о типе, заменяя все параметры без ограничений ( unbounded) типом Object, а параметры с границами ( bounded) — на эти границы. Это называется type erasure.

Кроме стирания (иногда говорят «затирания») типов, компилятор может добавлять приведение (cast) к нужному типу и создавать переходные bridge-методы, чтобы сохранить полиморфизм в классах-наследниках.

Пример 1. Стирание типа для дженерика без границ

Все параметры типов заменяются на Object. Вот что получится для нашего класса-коробки:

Пример 2. Стирание типа для дженерика с границами

Объявим дженерик-интерфейс c ограничением сверху ( upper bounding):

Вот что от этого останется после компиляции:

Пример 3. Bridge-метод

Создадим класс-наследник коробки для бумаги и переопределим в нём метод putItem:

Этому классу не всё равно, какого типа объекты приходят к нему в putItem, — нужно, чтобы они были типа Paper. Поэтому компилятору придётся немного докрутить класс — добавить в него bridge-метод с приведением типа:

А вот ещё несколько примеров дженерик-типов и того, что от них останется после компиляции:

До компиляцииПосле компиляции
>Box
Box
List []List[]

Теперь, когда вы знаете про type erasure и его последствия, наверняка сможете ответить на вопрос, почему нельзя создать дженерик-Exception:

В каждом блоке try catch проверяется тип исключения, так как разные типы исключений могут обрабатываться по-разному. Для дженерик-исключения определить конкретный тип было бы невозможно, а потому компилятор даже не даст его создать. Это правило относится к классу Throwable и его наследникам.

Как создать наследника дженерик-класса

Пример 1. Класс-наследник — не дженерик.

Чтобы получить обычный, не дженерик-класс, мы должны вместо параметра T передать какой-то конкретный тип, что мы и сделали — передали Paper.

Пример 2. Класс-наследник и сам дженерик с тем же числом параметров.

Параметры у Box и SuperGenericBox не обязаны обозначаться буквой T (от type) — можно брать любую. В этом примере важно, чтобы буквы были одинаковые, иначе компилятор не разберётся.

Пример 3. Класс-наследник — дженерик с другим числом параметров.

Здесь уже не один, а два параметра. Один передадим родителю, а второй используем как-нибудь ещё — например, напишем метод newMethod с параметром этого нового типа.

У наследника класса-дженерика может быть сколько угодно параметров, включая ноль (когда это вовсе не дженерик). Главное — помнить про все параметры типа родительского класса и передать для каждого параметра конкретный тип или какой-то из параметров класса-наследника.

Что не так с дженерик-типами классов-наследников

В Java можно присвоить объект одного типа объекту другого типа, если типы совместимы: реализуют один и тот же интерфейс или лежат в одной цепочке наследования.

Например, PaperBox — наследник Box, и пример ниже успешно компилируется:

В терминах объектно-ориентированного программирования это называют отношением is a (является): бумажная коробка — это коробка (является коробкой). Или говорят, что PaperBox — это подтип (subtype) Box. При этом Box — супертип PaperBox.

Теперь возьмём не простую коробку, а её дженерик-вариант ( Box ), в которую будем класть разные типы мусора: Paper, Glass и тому подобные типы — наследники Garbage:

В этом случае в качестве аргумента типа можно выбрать как Garbage, так и его подтип:

Но что, если Box станет типом параметра метода? Сможем ли мы в этом случае передать другой дженерик-тип? Напишем простой пример:

И убедимся, что замена тут не пройдёт. Несмотря на то что Paper — подтип Garbage, Box

Дженерики инвариантны. Это означает, что, даже если A — подтип B, дженерик от A не является подтипом дженерика от B.

Для сравнения, массивы в Java ковариантны: если A — подтип B, A[] — подтип B[].

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Как переопределить метод с дженерик-типами

Потренируемся сначала на простых типах и вспомним, что при переопределении методов необязательно полностью повторять сигнатуру родительского метода. Например, у таких методов могут различаться типы возвращаемых значений.

Переопределение будет правильным, если тип переопределённого метода — это подтип исходного метода. Например, так:

Добавим немного дженериков и применим то же правило:

Дженерики добавляют ещё пару возможностей для корректного переопределения. Оно будет верным, если:

Звучит сложно, так что лучше взглянем на код:

Правда, в обоих случаях компилятор покажет предупреждение о небезопасном использовании типов ( unchecked warning):

Note: GlassBox.java uses unchecked or unsafe operations.

Его можно понять: исходный метод требует, чтобы возвращался список объектов типа Garbage, а переопределённые хотят просто какой-то список. Там могут быть объекты типа Garbage, а могут и любые другие — вот компилятору и тревожно.

Зато если в исходном методе возвращаемый тип — с wildcard без ограничений, то при аналогичном переопределении предупреждений не будет:

При переопределении дженерик-методов с одинаковым числом параметров типа можно произвольно менять обозначения этих параметров:

В переопределённом методе параметр типа назван S, а не T, но переопределение остаётся корректным.

А вот ограничения для дженерика в переопределённом методе добавлять нельзя:

Получился не переопределённый метод, а просто метод с таким же названием.

Зато можно из дженерик-метода сделать обычный метод:

Компилятор спокоен, потому что метод в классе Box станет именно таким после type erasure — параметр типа будет заменён на Object.

Переопределение дженерик-метода будет корректно, если:

Как wildcards с ограничениями «портят» коллекции и зачем нужен принцип PECS

Если нужно что-то сделать с коллекциями объектов нескольких подтипов, удобны wildcards с ограничениями.

Например: List означает, что список может состоять из объектов типа Paper и всех его подтипов, а в List могут быть объекты типа Paper и всех супертипов — например, Garbage или Object.

С wildcards и коллекциями есть маленькая проблема — коллекции вроде тех, что в примере выше, нельзя использовать на полную катушку: свободно читать из них и записывать новые данные. Чтобы запомнить это ограничение, даже придумали принцип — принцип PECS.

PECS — Producer Extends, Consumer Super. Его суть:

Получается, в коллекцию с extends нельзя добавлять, а из коллекции с super нельзя читать? Вроде бы всё понятно, но давайте проверим:

Попробуем положить сюда экземпляр Paper — наследника Garbage:

Получим ошибку компиляции. Ладно, тогда, может, хотя бы объект типа Garbage подойдёт?

И снова нет. Принцип PECS не соврал — объект в такой список добавить нельзя. Единственное исключение — null. Вот так можно:

С первой частью принципа разобрались, теперь создадим коллекцию с ограничением снизу:

Добавим туда один объект типа Paper:

И попробуем его же прочитать. Если верить PECS, у нас это не должно получиться:

Но компилятору всё нравится — никаких ошибок нет. Проблемы, впрочем, начнутся, когда мы захотим сохранить полученное значение в переменной типа Paper или типа, совместимого с ним:

Вторая часть принципа PECS означает, что из коллекций, ограниченных снизу, нельзя без явного приведения типа (cast) прочитать объекты граничного класса, да и всех его родителей тоже. Единственное, что доступно, — тип Object:

К сожалению, принцип PECS ничего не говорит о том, какие объекты можно читать из producer, а какие добавлять в customer. Мы не придумали своего принципа, но сделали табличку, чтобы собрать вместе все правила:

Тип ограниченияЧто можно читатьЧто можно записывать
extends SomeType>Объекты SomeType и всех его супертиповТолько null
super SomeType>Объекты типа ObjectОбъекты типа SomeType и всех его подтипов

И даже картинку нарисовали:

для чего нужны дженерики java. Смотреть фото для чего нужны дженерики java. Смотреть картинку для чего нужны дженерики java. Картинка про для чего нужны дженерики java. Фото для чего нужны дженерики java

Теперь точно не запутаетесь 🙂

Ещё больше хитростей дженериков и других особенностей Java — на курсе «Профессия Java-разработчик». Научим программировать на самом востребованном языке и поможем устроиться на работу.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *