для чего предназначен дожигающий впрыск

Системы питания топливом дизельных двигателей. Различные виды.

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

Сегодня вот решил по больше узнать о видах питания дизельных двигателей. Вот информация которую удалось нарыть.

Различают следующие системы питания топливом: –

Одноточечный (центральный, моно) впрыск топлива (SPI)

Одноточечный впрыск – это электронно-управляемая система впрыска топлива, в которой электромагнитная форсунка периодически впрыскивает топливо во впускной трубопровод перед дроссельной заслонкой.

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

Многоточечный (распределенный) впрыск топлива (MPI)

Многоточечный впрыск создает условия для более оптимальной, по сравнению с одноточечным впрыском, работы системы смесеобразования.Для каждого цилиндра предусмотрена топливная форсунка, через которую топливо впрыскивается непосредственно перед впускным клапаном.

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

Механическая система впрыска топлива

В механической системе впрыска топлива масса впрыскиваемого топлива определяется топливо-распределительным устройством (дозатором), от которого топливо направляется к форсунке, автоматически открывающейся при определенном давлении.

Комбинированная электронно-механическая система впрыска топлива

Комбинированная система впрыска базируется на механической, которая для более точного управления впрыскиванием снабжена электронным блоком, управляющим режимом работы насоса и форсунок с топливо распределительным устройством.

Электронные системы впрыска топлива

Электронно управляемые системы впрыска обеспечивают прерывистый впрыск топлива форсунками с электромагнитным управлением. Масса впрыскиваемого топлива определяется временем открытия форсунки.Необходимость соблюдения жестких норм содержания вредных веществ в отработавших газах диктует высокие требования к регулированию состава топливовоздушной смеси и конструкции системы впрыска. При этом важно обеспечить как точность момента впрыска, так и точность дозировки массы впрыскиваемого топлива в зависимости от количества подаваемого воздуха.

Для выполнения этих требований в современных системах многоточечного (распределенного) впрыска топлива на каждый цилиндр двигателя приходится по электромагнитной форсунке, причем управление каждой форсунки осуществляется индивидуально. Количество впрыскиваемого топлива и корректировка момента впрыска рассчитываются для каждой форсунки в электронном блоке управления (ECU). Процесс смесеобразования улучшается за счет впрыскивания точно отмеренного количества топлива непосредственно перед впускным клапаном (или клапанами) в точно установленный момент времени. Это, в свою очередь, в значительной степени предотвращает попадание топлива на стенки впускного трубопровода, что может привести к временным отклонениям коэффициента избытка воздуха от среднего значения в неустановившемся режиме работы двигателя. Так как в многоточечной системе впрыска через впускной трубопровод проходит только воздух, трубопровод может быть выполнен таким образом, чтобы в оптимальной степени соответствовать газодинамическим характеристикам наполнения цилиндров двигателя.

Непосредственный впрыск — системы с внутренним смесеобразованием

В таких системах, называемых >системами с непосредственным впрыском (DI), топливные форсунки с электромагнитным приводом, размещенные в каждом цилиндре, впрыскивают топливо непосредственно в камеру сгорания. Смесеобразование происходит внутри цилиндра. Для обеспечения эффективного сгорания смеси существенную роль играет процесс распыления выходящего из форсунки топлива.

Во впускной трубопровод двигателя с непосредственным впрыском топлива, в отличие от двигателя с внешним смесеобразованием, подается исключительно воздух. Таким образом, исключается попадание топлива на стенки впускного трубопровода.

Если при внешнем смесеобразовании в процессе сгорания обычно присутствует однородная топливовоздушная смесь, то при внутреннем смесеобразовании двигатель может работать как с однородной, так и с неоднородной смесью.

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

Работа двигателя при послойном распределении смеси

Смесь при послойном распределении заряда воспламеняется только в зоне вокруг свечи зажигания. В остальных частях камеры сгорания содержатся свежая смесь и остаточные отработавшие газы двигателя без следов несгоревшего топлива. На режимах холостого хода и при малой нагрузке таким образом обеспечивается работа на обедненной смеси, что приводит к снижению расхода топлива.

Работа двигателя при наличии однородной смеси

Однородная смеси занимает полностью объем камеры сгорания (как и при внешнем смесеобразовании), и весь заряд свежего воздуха, поступившего в камеру, участвует в процессе сгорания. Поэтому этот способ образования смеси применяется в условиях работы двигателя при полной и средней нагрузках.

Источник

Для чего предназначен дожигающий впрыск

Инжектор или впрыск (от английского inject – «впрыск») топлива – система дозированной подачи топлива в цилиндры двигателя. Существует много разновидностей впрыска – механический, моновпрыск, распределенный, непосредственный. Мы будем рассматривать только относительно современные электронные системы распределенной подачи топлива, на основе ЭСУД (электронной системы управления двигателем) рассчитывающей подачу топлива на основе сигналов установленных на двигателе датчиков.

На рисунке схематично показан принцип многоточечного распределенного впрыска. Подача воздуха ( 2 ) регулируется дроссельной заслонкой ( 3 ) и перед разделением на 4 потока накапливается в ресивере ( 4 ). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход (MAF) или давление в ресивере (MAP). Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки ( 5 ) устанавливаются в канал в непосредственной близости от впускных клапанов. Распределенный или точечный (то есть, когда на каждый цилиндр работает своя форсунка) впрыск топлива делится на три типа:

• Одновременный, когда за один оборот коленвала ( 360 °) все 4 форсунки отрабатывают одновременно.

Суммарное время впрыска на одновременном и попарно-параллельном способе одинаково, на фазированном – в два раза выше, т.к за один цикл одновременного и попарно-параллельного впрыска форсунка включается два раза, а на фазированном один, поэтому время ее работы увеличено примерно в 2 раза.

I. Датчики

Итак, начнем с информации, необходимой ЭБУ (Электронному блоку управления) для управления впрыском и зажиганием, т.н «Определяющие параметры»

Положение коленвалаДатчик положения коленвала (ДПКВ)
Частота вращения коленвалаДатчик положения коленвала (ДПКВ)
Массовый расход воздухаДатчик массового расхода воздуха (ДМРВ)
Температура охлаждающей жидкостиДатчик температуры ОЖ (ДТОЖ)
Положение дроссельной заслонкиДатчик положения дроссельной заслонки (ДПДЗ)
Напряжение питания бортовой сети автомобиляЭлектронный блок управления ДВС
Скорость движения автомобиляДатчик скорости (ДС)
Наличие детонацииДатчик детонации (ДД)
Включение кондиционера
Содержание О 2 в отработанных газахДатчик кислорода (ДК)
Положение (фаза) распредвалаДатчик фазы (ДФ)
Контроль вибрации двигателяДатчик неровной дороги (ДНД)

Для функционирования ЭСУД не обязательно наличие всех датчиков. Комплектации зависят от системы впрыска, от норм токсичности и пр. В программе управления есть флаги комплектации, которые информируют ПО о наличии или отсутствии каких-либо датчиков. В таблице серым выделены основные датчики, необходимые для работы (исключение составляют системы впрыска на «классику», где не используется датчик детонации).

Датчик кислорода используется только в системах с катализатором под нормы токсичности Евро‑ 2 и Евро‑ 3 (в Евро‑ 3 используется два датчика кислорода (ДК) – до катализатора и после него). Датчик фазы нужен для более точного расчета времени впрыска в системах с фазированным впрыском.

ДПКВ служит для общей синхронизации системы, расчета оборотов двигателя и положения КВ в определенные моменты времени. ДПКВ – полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

ДМРВ служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

ДТОЖ служит для определения коррекции топливоподачи и зажигания по температуре и управления электровентилятором (ВСО). При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя. Внимание! Сигнал ДТОЖ подается только на ЭБУ, для индикации на панели используется другой датчик.

ДПДЗ служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия ДЗ, оборотов двигателя и циклового наполнения.

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя УОЗ. В первых ЭСУД применялся резонансный ДД, пришедший с системы GM. Сейчас повсеместно используются широкополосные ДД.

Напряжение бортовой сети автомобиля – по нему определяется степень коррекции работы электромагнитных клапанов форсунок и времени накопления в модуле зажигания (МЗ)

Датчик скорости автомобиля используется при расчетах блокировки/возобновления топливоподачи при движении. Этот сигнал так же подается на приборную панель для расчета пробега. 6000 сигналов с ДС примерно соответствуют 1 км. пробега автомобиля.

Датчик Фазы служит для точной синхронизации по времени впрыска в системах с фазированным (последовательным) впрыском. При аварии или отсутствие датчика система переходит на попарно – параллельную (групповую) систему подачи топлива.

Запрос на включение кондиционера служит для информации ЭБУ о том, что необходимо подготовить двигатель к включению кондиционера (появлению нагрузки на двигатель) – изменить обороты ХХ и принцип регулирования ХХ.

Датчик неровной дороги (раньше применялся довольно редко, сейчас все чаще, в связи с вводом норм токсичности Евро‑ 3 ) cлужит для оценки уровня вибраций автомобиля при детектировании пропусков воспламенения, с его помощью оценивается правильность работы зажигания (cлужит для оценки уровня вибраций автомобиля. Это необходимо для правильной работы системы детектирования пропусков воспламенения, чтобы определить причину неравномерности.)

II. Исполнительные механизмы

ТопливоподачаФорсунки
Бензонасос
Система зажиганияМодуль зажигания
Регулировка холостого ходарегулятор холостого хода (РХХ)
ДиагностикаЛампа Check Engine (CE)
Вывод данных через колодку диагностики
Вентилятор системы охлаждения
Функции маршрутного компьютераСигнал на тахометр
Сигнал расхода топлива
Муфта компрессора кондиционера
Система улавливания паров бензина (Евро‑ 2 ; 3 )Клапан СУПБ (или «адсорбер»)

Модуль зажигания – электронное устройство управления искрообразованием. Содержит в себе два независимых канала для поджига смеси в 1 – 4 и 2 – 3 цилиндрах. То есть реализуется принцип «холостой искры». В последних модификациях низковольтные элементы МЗ помещены в ЭБУ, а для получения высокого напряжения используются либо выносная двухканальная катушка зажигания, либо катушки зажигания непосредственно на свече.

Регулятор холостого хода служит (совместно с УОЗ – регулированием) для поддержании заданных оборотов ХХ. Представляет собой прецизионный шаговый двигатель, регулирующий обводной канал воздуха в корпусе дроссельной заслонки, для обеспечения двигателя воздухом, необходимым для поддержания ХХ ( 7 – 12 кг/час) при закрытой дроссельной заслонке.

Вентилятор системы охлаждения управляется ЭБУ по сигналам ДТОЖ. Разница между включением/выключением как правило 4 – 5 грд.С.

Сигнал на тахометр выдается на приборную панель для индикации текущих оборотов двигателя.

Сигнал расхода топлива выдается на маршрутный компьютер – 16000 импульсов на 1 расчетный литр израсходованного топлива. Данные эти приблизительные, т.к рассчитываются они на основе суммарного времени открытия форсунок с учетом некоторого эмпирического коэффициента, который необходим для компенсации погрешностей измерения, вызванных работой форсунок в нелинейном участке диапазона, асинхронной топливоподачей и другими факторами. Как показывает практика, сигнал расхода топлива более – менее соответствует истине на системах с ДК.

Адсорбер, он же СУПБ является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро‑ 2 не предусмотрен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг.

Управление муфтой кондиционера служит для включения кондиционера после обработки сигнала на запрос включения кондиционера, т.е когда система готова к этому.

Более подробно о принципе работы датчиков и исполнительных механизмах можно прочитать здесь.

III. Электронный блок управления

ЭБУ (электронный блок управления) – по сути специализированный компьютер, обрабатывающий данные, поступающие с датчиков и по определенному алгоритму управляющий исполнительными механизмами. Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами (ИМ).

Сама программа хранится в микросхеме ПЗУ, английское название микросхемы – CHIP (чип), отсюда и пошло название ЧИП-ТЮНИНГ, то есть изменение программы управления двигателем. Содержимое «чипа» – обычно делится на две функциональные части – собственно программа, осуществляющая обработку данных и математические расчеты и блок калибровок. Калибровки – набор (массив) фиксированных данных (переменных) для работы программы управления.

Сам чип-тюнинг делится, соответственно два направления: перекалибровку переменных программы и на изменение алгоритмов обработки калибровок. Часто эти направления смешиваются, но цель у них одна – улучшение эксплуатационных характеристик управляемого двигателя. Следует иметь ввиду, что для правильной работы любой программы необходимо наличие полностью исправных датчиков и ИМ. Тюнинговые прошивки, как правило, более точно настроены, поэтому, естественно, более требовательны к состоянию датчиков и ИМ. При «затюнивании» неисправности можно получить прямо противоположный ожидаемому эффект. Поэтому любой чип-тюнинг должен производиться только после тщательной диагностики, на полностью исправном авто, к которому нет никаких замечаний. Самый «правильный», но самый сложный и дорогой чип-тюнинг – это настройка программы на конкретное авто и конкретного водителя, либо записывая диагностические логи заездов, либо, что более правильно, прямо в движении автомобиля, используя специальные программно – аппаратные средства (так называемые «инженерные блоки). Для исправных серийных моторов подготовлено довольно большое количество готовых «коммерческих» решений, ознакомиться с ними можно в разделе «Коммерческие прошивки» на сайте chiptuner.ru. Эти прошивки предназначены для «среднего» пользователя и для тех мастерских и СТО, где нет возможности заниматься индивидуальной настройкой.

Источник

Система распределенного впрыска K-Jetronic

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

Система распределенного впрыска K-Jetronic представляет собой механическую систему непрерывного впрыска топлива

Система впрыска K-Jetronic имеет следующее устройство:

• дроссельная заслонка;
• расходомер воздуха;
• дозатор-распределитель топлива;
• регулятор давления питания;
• регулятор управляющего давления;
• форсунки впрыска;
• пусковая форсунка;
• термореле;
• клапан добавочного воздуха.

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

1. топливный насос
2. аккумулятор топлива
3. топливный фильтр
4. регулятор управляющего давления
5. форсунка впрыска
6. пусковая форсунка
7. дозатор-распределитель топлива
8. расходомер воздуха
9. термореле
10. клапан добавочного воздуха

Дроссельная заслонка предназначена для регулирования объема поступающего воздуха. Заслонка имеет механический привод от педали газа.

Расходомер воздуха обеспечивает измерение объема воздуха за счет пропорционального перемещения напорного диска. Напорный диск соединен с плунжером дозатора-распределителя с помощью рычагов. При открытии дроссельной заслоники во впускной коллектор поступает больший объем воздуха, который перемещает напорный диск расходомера. Напорный диск крепится на рычаге. На оси рычага закреплен другой рычаг с роликом и регулировочным винтом. Ролик упирается в нижний конец плунжера дозатора-распределителя.

для чего предназначен дожигающий впрыск. Смотреть фото для чего предназначен дожигающий впрыск. Смотреть картинку для чего предназначен дожигающий впрыск. Картинка про для чего предназначен дожигающий впрыск. Фото для чего предназначен дожигающий впрыск

предназначен для распределения топлива по форсункам цилиндров на всех режимах работы двигателя. Распределение топлива осуществляется за счет перемещения плунжера. Снизу на плунжер воздействует рычаг напорного диска, сверху – управляющее давление, которое создает регулятор управляющего давления. Согласованное перемещение плунжера и напорного диска обеспечивает стехиометрическое соотношение воздуха и бензина в топливно-воздушной смеси.

Регулятор давления питания поддерживает постоянное по величине давление топлива в системе.

Регулятор управляющего давления создает подпорное давление на верхнем конце плунжера, за счет чего достигается обогащение иди обеднение топливно-воздушной смеси. Это необходимо при определенных режимах работы двигателя, в т.ч. при холодном пуске, прогреве на холостом ходу, а также при максимальной нагрузке.

Форсунки впрыска обеспечивают непрерывный впрыск топлива под давлением.

Для обеспечения запуска двигателя при температуре ниже 10°С в системе K-Jetronic применяется пусковая форсунка и клапан добавочного воздуха.

Пусковая форсунка осуществляет при запуске и прогреве двигателя впрыск во впускной коллектор дополнительного количества топлива. Работа пусковой форсунки осуществляется под управлением термореле.

Термореле устанавливается в блоке цилиндров двигателя, где отслеживает температуру охлаждающей жидкости. При запуске двигателя термореле включает пусковую форсунку. При достижении охлаждающей жидкости определенной температуры пусковая форсунка отключается.

Клапан добавочного воздуха обеспечивает дополнительную порцию воздуха при запуске двигателя в обход дроссельной заслонки. В исходном положении клапан открыт. По мере прогрева двигателя клапан закрывается (перемещается биметаллическая пластина с диафрагмой клапана).

Холостой ход двигателя регулируется двумя винтами:

а) количества смеси, устанавливающий частоту вращения коленчатого вала двигателя на холостом ходу;
б) качества смеси, определяющий содержание угарного газа в отработавших газах.
Регулировки холостого хода изначально производятся заводом-изготовителем.

Принцип действия системы K-Jetronic

При нажатии педали газа открывается дроссельная заслонка. Проходящий через нее воздух перемещает напорный диск расходомера воздуха. Движение диска через рычаги передается на плунжер дозатора-распределителя.

Топливная система подает бензин к дозатору-распределителю, от которого плунжер нагнетает топливо к форсункам впрыска. Форсунки непрерывно впрыскивают топливо во впускной коллектор двигателя. Там оно смешивается с воздухом и образуется топливно-воздушная смесь. При открытии впускных клапанов топливно-воздушная смесь поступает в камеры сгорания двигателя.

Количество топлива поступающего к форсункам определяется положением дроссельной заслонки. Чем больше открыта дроссельная заслонка, тем больше воздуха проходит через впускной коллектор и тем больше топлива подается к форсункам. В зависимости от режимов работы двигателя объем впрыскиваемого топлива регулируется управляющим давлением.

Для увеличения оборотов во время пуска двигателя и работы на холостом ходу во впускной коллектор подается дополнительная порция воздуха через клапан дополнительной подачи воздуха и дополнительная порция топлива пусковой форсункой.

Источник

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

Системы впрыска бензина с одной форсункой работают по следующей схеме:

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

Непосредственный впрыск топлива в бензиновом двигателе – наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Так как причин возникновения неисправностей, связанных с системой впрыска топлива, достаточно много, в первую очередь рекомендуется провести диагностику автомобильным сканером на наличие ошибок. Без посещения сервиса это можно сделать с помощью универсального устройства Rokodil ScanX Pro.

Также с помощью данного сканера можно отрегулировать положение дроссельной заслонки, проверить систему выхлопных газов, считать параметры работы двигателя и многое другое.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *